2001 Vol. 3, No. 9 1303–1305

Desymmetrization of 4-Dimethylsiloxy-1,6-heptadiynes through Sequential Double Silylformylation

Dominique Bonafoux and Iwao Ojima*

Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794-3400

iojima@notes.cc.sunysb.edu

Received February 5, 2001

ABSTRAC1

i) Rh(acac)(CO)2, CO, ii) R₃SiH, Rh(acac)(CO)2, CO

Desymmetrization of dimethylsilyloxyalkadiynes (1) by Rh-catalyzed intramolecular silylformylation affords 5-exo-(formylmethylene)-oxasilacyclopentanes 2 in high yields. Novel sequential double silylformylation of 1a also provides desymmetrization, giving 3-(3-silyl-2-formylprop-2-enyl)-5-exo-(formylmethylene)oxasilacyclopentanes 4 in excellent yields. Reduction of 2a and 4 with NaBH₄ gives the corresponding 5-exo-(hydroxymethylmethylene)oxasilacyclopentanes 3a and 5, respectively.

Silylformylation of alkynes catalyzed by Rh and Co–Rh complexes has been extensively studied in the past decade and provides a powerful method for the regio- and stereoselective syntheses of β -formylvinylsilanes.^{1–6} The reaction

(1) (a) Ojima, I.; Ingallina, P.; Donovan, R. J.; Clos, N. *Organometallics* **1991**, *10*, 38. (b) Ojima, I.; Donovan, R.; Ingallina, P.; Clos, N.; Shay, W. R.; Egushi, M.; Zeng, Q.; Korda, A. *J. Cluster Sci.* **1992**, *3*, 423. (c) Egushi, M.; Zeng, Q.; Korda, A.; Ojima, I. *Tetrahedron Lett.* **1993**, *34*, 915. (d) Ojima, I.; Donovan, R. J.; Egushi, M.; Shay, W. R.; Ingallina, P.; Korda, A.; Zeng, Q. *Tetrahedron* **1993**, *49*, 5431. (e) Ojima, I.; Li, Z.; Donovan, R. J.; Ingallina, P. *Inorg. Chim. Acta* **1998**, *270*, 279. (f) Ojima, I.; Li, Z.; Zhu, J. In *The Chemistry of Organic Silicon Compounds*; Rappoport, Z., Apaloig, Y.; Ed.; John Wiley & Son: New York, 1998; Chapter 29, p 1687.

Apatolg, 1.; Ed.; John Wiley & Soh: New Tork, 1996, Chapter 29, p 1667.

(2) (a) Matsuda, I.; Ogiso, A.; Sato, S.; Izumi, Y. J. Am. Chem. Soc.

1989, 111, 2332. (b) Matsuda, I.; Ogino, A.; Sato, S. J. Am. Chem. Soc.

1990, 112, 6120. (c) Matsuda, I.; Sakakibara, J.; Nagashima, H. Tetrahedron

Lett. 1991, 32, 7431. (d) Matsuda, I.; Sakakibara, J.; Inoue, H.; Nagashima,

H. Tetrahedron Lett. 1992, 33, 5799. (e) Matsuda, I.; Fukuta, Y.;

Tsuchihashi, T.; Nagashima, H.; Itoh, K. Organometallics 1997, 16, 4327.

(3) (a) Doyle, M. P.; Shanklin, M. S. *Organometallics* **1993**, *12*, 11. (b) Doyle, M. P.; Shanklin, M. S. *Organometallics* **1993**, *12*, 11. (b)

(4) Zhou, J. Q.; Alper, H. Organometallics 1994, 13, 1586.

(5) Ojima, I.; Vidal, E.; Tzamarioudaki, M.; Matsuda, I. J. Am. Chem. Soc. 1995, 117, 6797.

(6) Monteil, F.; Matsuda, I.; Alper, H. J. Am. Chem. Soc. 1995, 117, 4419

has been applied to the efficient synthesis of pyrrolizidine alkaloids and other organic syntheses. 1d,2b,7,8 The silylformylation of 1-alkynes gives (Z)-1-silyl-2-formyl-1-alkenes with complete regio- and stereoselectivity. 1-4 However, this means that it is practically impossible to obtain the products with opposite regiochemistry, i.e, (Z)-2-silyl-1-formyl-1-alkenes. The control of regioselectivity is, however, difficult for the reaction of simple internal alkynes.² To solve this problem, the intramolecular silylformylation of 1-alkynes and internal alkynes has been successfully developed by introducing a dimethylsiloxy, i.e., HMe2SiO, moiety as the directing group.⁵ A similar reversal of selectivity was achieved by introducing a HSiR2 moeity to the alkyl terminal carbon of alkynes.⁶ Intramolecular silylformylation of ω -hydrosiloxyalkenes has also been developed using Rh(acac)(CO)₂ as catalyst under very high pressure of CO (68 atm).9 We

⁽⁷⁾ Bärfacker, L.; Hollmann, C.; Eilbracht, P. Tetrahedron 1998, 54, 4493

⁽⁸⁾ Eilbracht, P.; Hollmann, C.; Schmidt, A. M.; Bärfacker, L. Eur. J. Org. Chem. 2000, 7, 1131.

⁽⁹⁾ Leighton, J. L.; Chapman, E. J. Am. Chem. Soc. 1997, 119, 12416.

describe here our preliminary results on the successful desymmetrization of dimethylsiloxyalkadiynes based on Rhcatalyzed silylformylation, as well as a novel sequential double silylformylation protocol.

Desymmetrization of Dimethylsiloxyalkadiynes. Intramolecular silylformylation of 4-dimethylsiloxy-1,6-heptadiyne (**1a**) catalyzed by Rh(acac)(CO)₂ (0.5 mol %) in toluene (0.072 M) at 25 °C and 10 atm of CO proceeded smoothly to give 5-*exo*-(formylmethylene)oxasilacyclopentane **2a** in 98% yield (Scheme 1). When the reaction was

Scheme 1. Desymmetrization of 4-Dimethylsiloxy-1,6-heptadiyne (**1a**) by Rh-Catalyzed Intramolecular Silylformylation^a

^a (i) Rh(acac)(CO)₂, CO (10 atm), toluene, rt, 16 h, 98%; (ii) NaBH₄, MeOH, O °C, 50 min, 70%.

carried out under 1–5 atm of CO, intramolecular hydrosilylation of **1a** took place in addition to the desired silylformylation. Since **2a** was found to be unstable for purification through a silica gel column, it was reduced to the corresponding alcohol **3a** using NaBH₄ in methanol (70% isolated yield after purification though silica gel column). In a similar manner, the reaction of 5-dimethylsiloxy-2,7-nonadiyne (**1b**) at 60 °C and 20 atm of CO cleanly gave the corresponding intramolecular silyformylation product **2b** in 82% isolated yield, which was stable for chromatographic purification on silica gel (Scheme 2).

Scheme 2. Desymmetrization of the 5-Dimethylsiloxy-2,7-nonadiyne (**1b**) by Rh-Catalyzed Intramolecular Silylformylation^a

^a (i) Rh(acac)(CO)₂, CO (20 atm), toluene, 60 °C, 16 h, 82%.

These reactions have achieved the desymmetrization of siloxyalkadiynes to give highly functionalized useful synthetic intermediates **2a** and **2b**, which can readily be further manipulated at the unreacted acetylene moiety as well as the α,β -unsaturated aldehyde moiety. It is obvious that after appropriate reduction of the aldehyde moiety the subsequent Tamao oxidation¹⁰ of these compounds would lead to the formation of the corresponding 1,3,5-triols.¹¹

Desymmetrization of 1a via Sequential Double Silylformylation. If the intramolecular silylformylation of **1a** is much faster than the intermolecular reaction, the sequential double silylformylation of **1a** should take place in the presence of 1 equiv of a hydrosilane to give 3-(3-silyl-2-formylprop-2-enyl)-5-*exo*-(formylmethylene)-oxasilacyclopentane **4** (Table 1). In fact, the reaction of **1a** catalyzed by

Scheme 3. Mechanism of the Double Silylformylation of 1a with PhMe₂SiH

Rh(acac)(CO)₂ (0.5 mol %) in the presence of HSiMe₂Ph or HSiEt₃ at 25 °C and 10 atm of CO proceeded smoothly to give **4** (R₃Si = (a) PhMe₂; (b) Et₃Si) in quantitative yield. The reaction using a bulky and less reactive hydrosilane, HSiMe₂'Bu, required 50 °C for 24 h to complete, affording **4c** in excellent yield. Results are summarized in Table 1.

To establish the mechanism of this double silylformylation, the reaction of ${\bf 1a}$ in the presence of the most reactive silane (Me₂PhSiH) was monitored by 1H NMR. The integration of

(11) Zacuto, M. J.; Leighton J. L. J. Am. Chem. Soc. 2000, 122, 8587.

Org. Lett., Vol. 3, No. 9, 2001

^{(10) (}a) Tamao, K.; Tohma, T.; Inui, N.; Nakayama, O.; Ito, Y. *Tetrahedron Lett.* **1990**, *31*, 7733. (b) Tamao, K.; Nakajima, T.; Sumiya, R.; Arai, H.; Higushi, N.; Ito, Y. *J. Am. Chem. Soc.* **1986**, *108*, 6090. (c) Graeme, R. J.; Landais, Y. *Tetrahedron* **1996**, *52*, 7599.

Table 1. Sequential Double Silylformylation of 4-Dimethylsilyl-1,6-heptadiyne $1a^a$

OSiMe
$$_2$$
H i R_3 Si C HO S Me 4

1a ii C HO C

	hydrosilane	conditions	4 (%) ^b	5 (%) ^c
a	PhMe ₂ SiH	rt, 8 h	100	56
b	Et ₃ SiH	rt, 18 h	100	74
c	'BuMe ₂ SiH	50 °C, 24 h	98	62

 a Conditions: (i) R₃SiH, Rh(acac)(CO)₂, CO (10 atm), toluene; (ii) NaBH₄, MeOH, 0 °C. b GC yield using methylene chloride as external standard. c Isolated yield.

the aldehyde signals at δ 9.5 (d, ${}^3J=4.12$ Hz, intramolecular silylformylation) and δ 9.7 (s, intermolecular silylformylation) as well as the integration of the signal corresponding to the unreacted terminal alkyne at δ 2.0 (t, ${}^4J=2.5$ Hz) allowed an accurate determination of the composition of the reaction mixture at a given time. It was found that during the first 2 h of the reaction, the intramolecular silylformylation proceeded exclusively, affording $\bf 2a$. Once the intramolecular reaction had completed ($t \geq 2$ h), the intermolecular reaction took place to give $\bf 4a$. Thus, this transformation can be called "sequential double silylformylation".

To look into the mechanism of the unique sequential double silylformylation process, a labeling experiment was performed using PhMe₂SiD. Then, rather unexpectedly, the deuterium incorporation to both aldehyde moieties was observed (35% to the aldehyde arising from the intramolecular silylformylation and 65% to that from the inter-

molecular reaction). This scrambling clearly indicates that H-D exchange takes place at a certain intermediate in the catalytic cycle. We propose a catalyst cycle that can accommodate the observed results in Scheme 3. Cycle 1 depicts the intramolecular reaction, and cycle 2 the intermolecular reaction. It is very likely that the observed H-D exchange takes place at the intermediate C, where PhMe₂-SiD can react with $\bf C$ instead of $\bf 1a$ through σ -bond metathesis (see transition state I) to form PhMe₂SiH and deuterated 2a after reductive elimination. When PhMe₂SiH thus generated is involved in cycle 2, it leads to the formation of nondeuterated aldehyde moiety. When the concentration of 1a is sufficient enough, the resulting PhMe₂Si[Rh]H does not react with the unreacted acetylene moiety of 2a to go into cycle 2 but rather reacts with 1a to regenerate A and go back to cycle 1 through σ -bond metathesis (see transition state II). This is due to the fact that 1a has a much stronger affinity to Rh-catalyst species than PhMe₂SiH(D) because of its two acetylene groups. It is reasonable to assume that PhMe₂-SiH(D) would start competing with 1a when the concentration of 1a is decreased as the intramolecular reaction proceeds.

In conclusion, the desymmetrization of dimethylsilyloxyalkadiynes 1 by Rh-catalyzed intramolecular silylformylation and novel sequential double silylformylation of 1a was successfully achieved to afford highly functionalized useful synthetic intermediates, oxasilacyclopentanes 2 and 4.

Acknowledgment. This research was supported by grants from the National Institutes of Health (NIGMS) and the National Science Foundation. Generous support from Mitsubishi Chemical Corp. is gratefully acknowledged.

Supporting Information Available: The characterization datas of compounds **2–5**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL0156594

Org. Lett., Vol. 3, No. 9, 2001