Mixed Organofluorine-Organosilicon Chemistry. 13. One-Pot Synthesis of Difluoroaldols from Acylsilanes and Trifluoromethyltrimethylsilane. Application to the Synthesis of a **Difluoro Analogue of Egomaketone**

Olivier Lefebvre, Thierry Brigaud,* and Charles Portella*

Laboratoire "Réactions Selectives et Applications", Associé au CNRS (UMR 6519), Université de Reims Champagne-Ardenne, Faculté des Sciences, BP 1039, 51687 Reims Cedex 2, France

thierry.brigaud@univ-reims.fr

Received November 1, 2000

Difluoroaldol compounds **3** were synthesized in a one-pot procedure involving an acylsilane **1**, trifluoromethyltrimethylsilane (TFMTMS), and an aldehyde. The key intermediate of this reaction is a difluoroenoxysilane 2. Ytterbium triflate proved to be a very efficient catalyst for promoting the aldol type reaction under very mild conditions. The potential of this reaction for the convergent synthesis of difluorinated compounds was illustrated by the synthesis of difluoroegomaketone 7d through dehydration of the corresponding aldol compound 3d.

Introduction

The introduction of a difluoromethylene unit into an organic molecule presents a significant importance in bioorganic and medicinal chemistry.¹ More precisely, due to their strong electron-withdrawing effect, fluorine atoms activate the hydration of an adjacent carbonyl group when they are introduced in the α position. This hydrate acts as a transition state mimic for ester and amide bond cleavage. Therefore, numerous bioactive compounds containing the difluoromethylene ketone unit are inhibitors of HIV-1 protease,² elastase,³ renin,⁴ and human heart chymase.⁵

The aldol reaction is a powerful synthetic tool for the creation of carbon-carbon bonds, and its application to

the synthesis of functionalized α, α -difluorocarbonyl compounds has proven to be very productive. Besides difluoroenolate chemistry,⁶ successful aldol-type reactions have been reported from difluoroenol ethers,⁷ difluoroketene silyl acetals,⁸ and difluoroenoxysilanes. The latter were prepared from chlorodifluoromethyl ketones,⁹ trifluoroacetylsilane,¹⁰ and trifluoromethyl ketones.¹¹ These procedures produce metal wastes or use solvents incompatible with Lewis acids, so the difluoroenoxysilane has to be isolated before performing the aldol reaction. Moreover, these procedures need the preliminary synthesis of a fluorinated substrate. We report here a highly convergent one-pot procedure for the synthesis of α, α difluoro- β -hydroxy ketones starting from an acylsilane, trifluoromethyltrimethylsilane (TFMTMS), and an aldehyde. The key intermediate of this reaction is a difluoroenoxysilane whose reactivity in Michael additions,12 glycosylations,¹³ allylations and benzylations,^{14,15} and aldol reactions with benzaldehyde¹⁴ and acylsilanes¹⁶ has

^{*} To whom correspondence should be addressed. thierry.brigaud@univ-reims.fr or charles.portella@univ-reims.fr.

^{(1) (}a) Biomedical Frontiers of Fluorine Chemistry; Ojima, I., Mc-Carthy, J. R., Welch, J. T., Eds.; American Chemical Society: Washington, DC, 1996. (b) Fluorine in Bioorganic Chemistry; Welch, J. T., Eswarakrishnan, S., Eds.; John Wiley and Sons: New York, 1991. (c) Tozer, M. J.; Herpin, T. *Tetrahedron* **1996**, *52*, 8619–8683. (d) Resnati, G. *Tetrahedron* **1993**, *49*, 9385–9445. (e) Bravo, P.; Resnati, G. *Tetrahedron Asymm.* **1990**, *1*, 661–692. (f) Welch, J. T. *Tetrahedron* 1987, 43, 3123-3197.

^{(2) (}a) Schirlin, D.; Baltzer, S.; Van Dorsselaer, V.; Weber, F.; Weill, C.; Altenburger, J. M.; Neises, B.; Flynn, G.; Remy, J. M.; Tarnus, C. Bioorg. Med. Chem. Lett. **1993**, *3*, 253–258. (b) Schirlin, D.; Van Dorsselaer, V.; Tarnus, C.; Taylor, D. L.; Tyms, A. S.; Baltzer, S.; Weber, F.; Remy, J. M.; Brennan, T.; Farr, R.; Janowick, D. *Bioorg. Med. Chem. Lett.* **1994**, *4*, 241–246. (c) Sham H. L.; Wideburg, N. E.; Spanton, S. G.; Kohlbrenner, W. E.; Betebenner, D. A.; Kempf, D. J.; Norbeck, D. W.; Plattner, J. J.; Erickson, J. W. *J. Chem. Soc., Chem. Commun.* **1991**, 110–112. (d) Silva, A. M.; Cachau, R. E.; Sham H. L.; Erickson, J. W. *J. Mol. Biol.* **1996**, *255*, 321–346.

<sup>EFICKSON, J. W. J. Mol. Biol. 1996, 253, 321-346.
(3) Skiles, J. W.; Miao, C.; Sorek, R.; Jacober, S.; Mui, P. W.; Chow, G.; Weldon, S. M.; Possanza, G.; Skoog, M.; Keirns, J.; Letts, G.; Rosenthal, A. S. J. Med. Chem. 1992, 35, 4795-4808.
(4) (a) Doherty, A. M.; Sircar, I.; Kornberg, B. E.; Quin, J.; Winters, R. T.; Kaltenbronn, J. S.; Taylor, M. D.; Batley, B. L.; Rapundalo, S. R.; Ryan, M. J.; Painchaud, C. A. J. Med. Chem. 1992, 35, 2-14. (b) Cabialty D. Tarawara C. Paletara S. J. Part.</sup> Schirlin, D.; Tarnus, C.; Baltzer, S.; Remy, J. M. Bioorg. Med. Chem. Lett. 1992, 2, 651–654.

<sup>Lett. 1932, 2, 051–054.
(5) (a) Eda, M.; Ashimori, A.; Akahoshi, F.; Yoshimura, T.; Inoue, Y.; Fukaya, C.; Nakajima, M.; Fukuyama, H.; Imada, T.; Nakamura, N.</sup> *Bioorg. Med. Chem. Lett.* 1998, *8*, 913–918. (b) Eda, M.; Ashimori, A.; Akahoshi, F.; Yoshimura, T.; Inoue, Y.; Fukaya, C.; Nakajima, M.; Fukuyama, H.; Imada, T.; Nakamura, M. *Bioorg. Med. Chem. Lett.* 1998, *8*, 919–924.

^{(6) (}a) Balnaves, A. S.; Gelbrich, T.; Hursthouse, M. B.; Light, M. E.; Palmer, M. J.; Percy, J. M. J. Chem. Soc., Perkin Trans. 1 1999, 2525-2535. (b) Balnaves, A. S.; Palmer, M. J.; Percy, J. M. J. Chem. *Soc., Chem. Commun.* **1999**, 2183–2184. (c) Howarth, J. H.; Owton, W. M.; Percy, J. M. *J. Chem. Soc., Chem. Commun.* **1995**, 2183–2184. (d) Schirlin, D.; Baltzer, S.; Altenburger, J. M.; Tarnus, C.; Remy, J. M. *Tetrahedron* **1996**, *52*, 757–758. (e) Fukuda, H.; Tetsu, M.; Kitazume, T. Tetrahedron 1996, 52, 157-164.

⁽⁷⁾ Kodama, Y.; Yamane, H.; Okumura, M.; Shiro, M.; Taguchi, T. Tetrahedron 1995, 51, 12217-12228.

^{(8) (}a) Iseki, K.; Kuroki, Y.; Asada, D.; Takahashi, M.; Kishimoto, S.; Kobayashi, Y. *Tetrahedron* **1997**, *53*, 10271–10280. (b) Iseki, K.; Asada, D.; Kuroki, Y. *J. Fluorine Chem.* **1999**, *97*, 85–89.

^{(9) (}a) Yamana, M.; Ishihara, T.; Ando, T. *Tetrahedron Lett.* **1983**, *24*, 507–510. (b) Kuroboshi, M.; Ishihara, T. *Tetrahedron Lett.* **1987**, 28, 6481-6484

^{(10) (}a) Jin, F.; Jiang, B.; Xu, Y. *Tetrahedron Lett.* **1992**, *33*, 1221–1224. (b) Jin, F.; Xu, Y.; Huang, W. J. Chem. Soc., Perkin Trans. 1 1993, 795-799.

^{(11) (}a) Uneyama, K.; Mizutani, G.; Maeda, K.; Kato, T. J. Org. Chem. **1999**, 64, 6717–6723. (b) Uneyama, K.; Maeda, K.; Kato, T.; Katagiri, T. Tetrahedron Lett. **1998**, 39, 3741–3744. (c) Amii, H.; Kobayashi, T.; Hatamoto, Y.; Uneyama, K. J. Chem. Soc., Chem. Commun. 1999, 1323–1324. (d) Fleming, I.; Roberts, R. S.; Smith, S.
 C. J. Chem. Soc., Perkin Trans. 1 1998, 1215–1228.
 (12) Lefebvre, O.; Brigaud, T.; Portella, C. Tetrahedron 1998, 54,

^{5939 - 5948}

 Table 1. One-Pot Aldol Reaction with Various Lewis

 Acids

Entry	R ¹	R ²	Lewis acid	Aldol (% yield) a,b
1	Ph	Ph	TiCl ₄ (1.5 equiv)	3a (71)
2	Ph	Ph	BF ₃ .OEt ₂ (1.2 equiv)	3a (78)
3	Ph	, rt	TiCl4 (1.5 equiv)	3b (58)
4	Ph	-r ² -	BF3.OEt2 (1.2 equiv)	3c (61)
5	3-furyl		BF3.OEt2 (1.2 equiv)	3d (69)
6	Ph	,r.L	TiCl4 (1.2 equiv)	3e(14)+ Ph
				3f (41)
7	Ph	,rt	BF ₃ .OEt ₂ (1.2 equiv)	3e (69)
8	Ph	,z.,	Yb(OTf)3 (0.01 equiv)	3e (78)

^a Isolated yield. ^b Overall yield based on the starting acylsilane.

already been reported by our group. This strategy, applied to the aldol reaction, has allowed a short synthesis of a fluorinated analogue of the furan monoterpenoid egomaketone.

Results and Discussion

Lewis Acid-Catalyzed One-pot Aldol Reactions. The chain reaction of TFMTMS with an acylsilane under fluoride activation giving a difluoroenoxysilane can be achieved with the same efficiency in ether, THF, or dichloromethane¹⁴ which is the standard solvent for Mukaiyama type aldol reactions.¹⁷ Therefore, the difluoroenoxysilanes **2** were quantitatively generated in dichloromethane from the reaction of acylsilane **1** and TFMT- MS under tetrabutylammonium difluorotriphenylstannate (DFTPS) initiation. The aldehyde and a Lewis acid were then added to the solution. The reaction was first carried out with a stoichiometric amount of conventional Lewis acids (TiCl₄ or BF₃·OEt₂) added at low-temperature, giving the expected aldol compounds in a good yield despite the one-pot process (Scheme 1, Table 1). The reaction was applied to aromatic, aliphatic, and ethylenic aldehydes. It is worth noting that TiCl₄ was not suitable to use in aldol reactions with unsaturated aldehydes (Table 1, entry 6). In this case, the major product was the chlorinated compound **3f** probably resulting from a $S_{N^{\prime}}\xspace$ reaction of the intermediate titanium oxide. We can assume that the chlorination took place in situ and did not occur during hydrolysis because aldol 3e did not give 3f when treated under hydrolysis conditions. Furthermore, it is known that S_N' chlorination of this kind of allylic alcohol in the non-fluorinated series required stronger acidic conditions (12 N hydrochloric acid)¹⁸ than that used in our workup procedure. This side reaction could easily be avoided by using BF₃·OEt₂ as the Lewis acid to give the unique compound **3e** (Table 1, entry 7). The use of lanthanide salts such as Yb(OTf)₃ as catalyst is one of the major improvements of the last few years in aldol type reactions.¹⁹ Our one-pot reaction proceeded smoothly at room temperature with only 10% Yb(OTf)₃ to give 3e in 78% yield (Table 1, entry 8). With this mild catalyst, both free hydroxy- and trimethylsilyl-protected aldol 3g and 3h were obtained (Table 2, entry 1). In a standard procedure, removal of the trimethylsilyl protecting group was achieved by workup with fluoride ions. Difluoroaldol compounds were then obtained in good yield in a very convergent way starting from aromatic or aliphatic acylsilanes and aldehydes (Scheme 2, Table 2). The reaction with α , β -unsaturated aldehydes selectively gave the aldol compounds 3e-j (Table 2, entries 4, 5, 6, 8). No Michael adducts were obtained as we observed with enones.¹² It should be noticed that the aliphatic aldol **3k** (Table 2, entry 6) was the only one to be isolated as the hydrate.

Construction of the α, α -Difluoro- β, γ -unsaturated Ketone Unit. Synthesis of Difluoroegomaketone. In the course of our studies on gem-difluoroterpene analogues synthesis, we recently demonstrated the usefulness of difluoroenoxysilanes to build, in a one-pot reaction, the difluorohomoallylic and difluorohomobenzylic units of difluorodehydro-ar-curcumene and difluoro-arturmerone, respectively.¹⁵ We now present an application of the one-pot aldol reaction to the synthesis of a difluoro analogue of egomaketone.²⁰ Such a compound, possessing a difluoroallylic moiety, could be reached by a formal β , γ dehydration of the corresponding difluoroaldol 3d (Scheme 3). This transformation proved to be problematic, and appropriate conditions had to be found. The aldol 3c was used as a model to determine suitable conditions for this reaction. Due to the electron-withdrawing effect of fluorine, the acid-catalyzed dehydration of difluoroaldol 3c

^{(13) (}a) Brigaud, T.; Lefebvre, O.; Plantier-Royon, R.; Portella, C. Tetrahedron Lett. **1996**, 37, 6115–6116. (b) Berber, H.; Brigaud, T.; Lafebure, O.; Plantier Payon, P.; Portella, C. Chem. Fur. L in press

Lefebvre, O.; Plantier-Royon, R.; Portella, C. *Chem. Eur. J.*, in press. (14) Brigaud, T.; Doussot, P.; Portella, C. *J. Chem. Soc., Chem. Commun.* **1994**, 2117–2118.

⁽¹⁵⁾ Lefebvre, O.; Brigaud, T.; Portella, C. Tetrahedron 1999, 55, 7233-7242.

⁽¹⁶⁾ Saleur, D.; Brigaud, T.; Bouillon, J.-P.; Portella, C. Synlett **1999**, 432–434.

^{(17) (}a) Mukaiyama, T.; Narasaka, K.; Banno, K. *Chem. Lett.* **1973**, 1011–1014. (b) Mukaiyama, T.; Banno, K.; Narasaka, K. *J. Am. Chem. Soc.* **1974**, *96*, 7503–7509.

⁽¹⁸⁾ Marvell, E. N.; Nelson, J. W. J. Org. Chem. 1980, 45, 5217-5218.

^{(19) (}a) Kobayashi, S.; Hachiya, I.; Takahori, T. Synthesis 1993,
371–373. (b) Lanthanides: Chemistry and Use in Organic Synthesis;
Kobayashi, S., Ed.; Springer-Verlag: Berlin Heidelberg, 1999.
(20) (a) Koyanagi, J.; Yamamoto, K.; Nakayama, K.; Tanaka, A. J.

^{(20) (}a) Koyanagi, J.; Yamamoto, K.; Nakayama, K.; Tanaka, A. J. Nat. Prod. 1995, 58, 1955–1957. (b) Ueda, T.; Fujita, Y. Chem. Ind. 1962, 1618–1619. (c) Tokuda, M.; Satoh, S.; Suginome, H. J. Org. Chem. 1989, 54, 5608–5613. (d) Gosselin, P.; Masson, S.; Thuillier, A. J. Org. Chem. 1979, 44, 2807–2809.

Scheme 2

Entry	\mathbf{R}^{1}	R ²	Aldol (% yield) ^{a,b}
1	CH ₃		$3g(43) + 3h(19)^c$
2	Ph	Ph	3a (65)
3	Ph	,r [‡]	3c (49)
4	Ph	~~~	3e (78)
5	Ph	ant and	3i (52)
6	Ph	such	3j (52) ^d
7	CH ₃	C ₈ H ₁₇	3k (51) ^e
8	CH3		3I (53) ^f

 a Isolated yield. b Overall yield based on the starting acylsilane. c O-Silylated aldol. This reaction was carried out without fluoride workup. d 75/25 mixture of isomers. e Isolated as the hydrate. f 75/25 mixture of diastereomers.

failed because of the destabilization of the intermediate carbocation. For example, **3c** did not undergo dehydration when treated with H_2SO_4 or H_3PO_4 in THF, CH_2Cl_2 , or DMF even at reflux temperature. Compound 3c was then converted into the corresponding sulfonic or phosphoric derivatives in order to attempt a β -elimination under basic conditions. No elimination reaction occurred when 3c was reacted with thionyl chloride or phosphorus oxychloride in the presence of triethylamine whereas the corresponding mesylate 4 led to the sultone 5 under treatment with potassium tert-butoxide (Scheme 4). The deprotonation of the methanesulfonyl moiety and subsequent intramolecular addition to the carbonyl group proved to be more favorable than β -elimination. One can assume that the difluoromethylene unit stabilizes the quaternization of the adjacent carbon atom and prevents a retro-aldol process, thus explaining the formation of

the kinetic product 5. We anticipated that this side reaction could be avoided by performing the elimination reaction on the tosylate derivative. Indeed, β -elimination took place in the presence of DBU, but only 33% of the tosylate (NMR monitoring) was transformed after 8 h at reflux in toluene. The difluoroaldol 3c was successfully dehydrated via its triflate derivative 6c which underwent a mild β -elimination at room temperature in toluene using DBU as a base according to a reported procedure (Scheme 5).²¹ One should notice, that because of the presence of fluorine atoms in α -position of the triflate, **6c** happened to be very stable, and it could be obtained in a very good yield after purification by silica gel chromatography. The conversion of 3c into 7c was effective even without isolation of the intermediate triflate, but replacement of dichloromethane by toluene was essential for the elimination step. Finally, the furanderived aldol **3d** was subjected to this reaction sequence. Its preparation proved to be more efficient with $BF_3 \cdot OEt_2$ than with Yb(OTf)₃ as the Lewis acid. It was converted in fair yield into the triflate **6d** whose β -elimination occurred in a good yield to give the difluoroegomaketone 7d (Scheme 5).

Conclusion

Acylsilane + TFMTMS + aldehyde constitute an effective convergent three-component system for the synthesis of difluoroaldol via the key intermediate difluoroenoxysilane. The possibility of quantitatively generating the difluoroenoxysilane in dichloromethane, the effectiveness of ytterbium triflate used in a catalytic amount, and the one-pot character of this transformation are the main attractive features of this chemistry. The application of the above strategy to the synthesis of difluoroegomaketone is an illustration of the potential of this methodology toward the synthesis of elaborate fluorinated compounds.

Experimental Section¹⁵

Commercially available reagents were used as supplied. Tetrabutyl-*n*-ammonium difluorotriphenylstannate (DFTPS) was prepared according to the reported procedure.²²

Warning. Care should be taken in the manipulation of the following fluorinated compounds, as they may be biochemically active. Their toxicological properties are unknown.

Acylsilanes Preparations. The acylsilanes **1a**²³ and **1b** were synthesized by the Brook and Corey method.^{23,24}

⁽²¹⁾ Morikawa, T.; Nishiwaki, T.; Nakamura, K.; Kobayashi, Y. Chem Pharm. Bull. 1989, 37, 813-815.

⁽²²⁾ Gingras, M. Tetrahedron Lett. 1991, 32, 7381-7384.
(23) Corey, E. J.; Seebach, D. J. Am. Chem. Soc. 1967, 89, 434-439

⁽²⁴⁾ Brook, A. G.; Duff, J. M.; Jones, P. F.; Davis, A. R. J. Am. Chem. Soc. **1967**, *89*, 431–434.

3-Furoyltrimethylsilane (1b): yellow oil; flash chromatography (petroleum ether–CH₂Cl₂, 4:1); ¹H NMR δ 0.32 (s, 9H), 6.73 (d, ³J_{HH} = 1.9 Hz, 1H), 7.41 (d, ³J_{HH} = 1.9 Hz, 1H), 8.07 (s, 1H); ¹³C NMR δ –2.13, 106.4, 129.2, 143.7, 148.2, 228.5; IR (neat) 1593, 1248, 1153 cm⁻¹; MS *m*/*z* 168 (M⁺⁺ + 1, 79), 167 (100), 125 (96), 107 (81). Anal. Calcd for C₈H₁₂O₂Si: C, 57.10, H, 7.19. Found: C, 57.22, H, 7.41.

Aldol Reaction. General Procedure

In Situ Preparation of the Difluoroenoxysilane (2). To a solution of acylsilane 1 (1.5 mmol) and TFMTMS (0.30 mL, 2.0 mmol) in dry CH_2Cl_2 (5 mL) at 0 °C under argon and protected from light was added a catalytic amount of *n*tetrabutylammonium difluorotriphenylstannate (54 mg, 0.08 mmol). After 5 min of stirring at 0 °C, the reaction mixture was stirred for 25 min at room temperature. The formation of the difluoroenoxysilane was monitored by GC, and it was used in the next step in a one-pot procedure.

TiCl₄ Activation of the Aldehyde. To the solution of difluoroenoxysilane were added the aldehyde (1.8-2.2 mmol, 1.2-1.5 equiv) and TiCl₄ (1.8-2.2 mmol, 1.2-1.5 equiv) at -78 °C (see Table 1). After being stirred 24 h at room temperature, the reaction was quenched by addition of a saturated NaHCO₃ solution (10 mL). After extraction with CH₂Cl₂ (3 × 15 mL), the organic layer was washed with brine and dried over MgSO₄, and the solvent was purified by silica gel column chromatography.

BF₃·OĒt₂ Activation of the Aldehyde. To the solution of difluoroenoxysilane were added the aldehyde (2.2 mmol, 1.5 equiv) and BF₃·OEt₂ (1.8 mmol, 1.2 equiv) at -30 °C. After being stirred 24 h at room temperature, the reaction was quenched by addition of a saturated NaHCO₃ solution (10 mL). After extraction with CH₂Cl₂ (3 × 15 mL), the organic layer was washed with brine and dried over MgSO₄, and the solvent was evaporated under reduced pressure. The crude product was purified by silica gel column chromatography.

Yb(OTf)₃ Activation of the Aldehyde. To the solution of difluoroenoxysilane were added the aldehyde (1.8 mmol, 1.2 equiv) and Yb(OTf)₃ (0.15 mmol, 0.1 equiv) at room temperature. The reaction mixture was stirred 24 h at room temperature, and Bu₄NF·3H₂O (1 equiv) or an aqueous solution of KF (6 mmol, 4 equiv, in 2 mL) was added. The mixture was then stirred for 3 h (Bu₄NF·3H₂O) or 48 h (KF), and a saturated NaHCO₃ solution (10 mL) was added. After extraction with CH₂Cl₂ (3 × 15 mL), the organic layer was washed with brine and dried over MgSO₄, and the solvent was evaporated under reduced pressure. The crude product was purified by column chromatography over silica gel.

2,2-Difluoro-3-hydroxy-1,3-diphenylpropan-1-one (3a):^{11d} yellow oil; flash chromatography (petroleum ether–CH₂Cl₂, 1:1); ¹H NMR δ 3.10 (d, ³*J*_{HH} = 5.0 Hz, 1H, OH), 5.34 (dt, ³*J*_{HF} = 18.6 Hz, ³*J*_{HF} = ³*J*_{HH} = 5.0 Hz, 1H), 7.34–8.04 (m, 10H); ¹⁹F NMR δ –106.0 (d, *J*_{AB} = 292.0 Hz, 1F), –116.8 (dd, *J*_{AB} = 292.0 Hz, ³*J*_{FH} = 18.6 Hz, 1F); ¹³C NMR δ 73.4 (dd, ²*J*_{CF} = 27.6 Hz, ²*J*_{CF} = 21.7 Hz), 116.0 (dd, *J*_{CF} = 263.8 Hz, *J*_{CF} = 258.0 Hz), 134.9, 134.5, 132.6, 130.2, 129.0, 128.6, 128.3, 128.1, 191.0 (t, ²*J*_{CF} = 29.5 Hz); IR (neat) 3474, 3036, 1693 cm⁻¹. Anal. Calcd for C₁₅H₁₂O₂F₂: C, 68.70, H, 4.61. Found: C, 68.35, H, 6.63.

2,2-Difluoro-3-hydroxy-5-methyl-1-phenylhexan-1one (3b): light yellow oil; flash chromatography (petroleum ether-CH₂Cl₂, 1:1); ¹H NMR δ 0.96 (d, ³J_{HH} = 6.5 Hz, 3H), 1.01 (d, ³J_{HH} = 6.5 Hz, 3H), 1.50 (ddt, J_{AB} = 14.1 Hz, ³J_{HH} = 6.9 Hz, ³J_{HH} = ⁴J_{HF} = 2.3 Hz, 1H), 1.44 (m, 1H), 1.66 (ddd, J_{AB} = 14.1 Hz, ³J_{HH} = 9.7 Hz, ³J_{HH} = 4.2 Hz, 1H), 2.46 (m, 1H), 4.33 (ddd, ³J_{HF} = 16.0 Hz, ³J_{HH} = 9.7 Hz, ³J_{HH} = 6.9 Hz, 1H), 7.51 (tm, ³J_{HH} = 7.6 Hz, 2H), 7.66 (tm, ³J_{HH} = 7.2 Hz, 1H), 8.11 (d, ³J_{HH} = 8.4 Hz, 2H); ¹⁹F NMR δ -108.5 (d, J_{AB} = 293.7 Hz, 1F), -117.5 (dd, J_{AB} = 293.7 Hz, ³J_{FH} = 16.0 Hz, 1F); ¹³C NMR δ 21.2, 23.5, 24.1, 37.6, 69.7 (t, ²J_{CF} = 25.6 Hz), 16.8 (t, J_{CF} = 258.9 Hz), 128.9, 130.2, 132.4, 134.4, 190.7 (t, ²J_{CF} = 30.5 Hz); IR (neat) 3452, 2957, 2926, 1697, 1116 cm⁻¹. Anal. Calcd for C₁₃H₁₆O₂F₂: C, 64.54, H, 6.66. Found: C, 64.37, H, 6.74.

2,2-Difluoro-3-hydroxy-4-methyl-1-phenylpentan-1one (3c): light yellow oil; flash chromatography (petroleum ether–AcOEt, 9:1); ¹H NMR δ 1.07 (d, ³*J*_{HH} = 6.1 Hz, 3H), 1.01 (d, ³*J*_{HH} = 6.1 Hz, 3H), 2.16 (o, ³*J*_{HH} = 6.1 Hz, 1H), 2.53 (d, ³*J*_{HH} = 6.1 Hz, 1H), 4.07 (dt, ³*J*_{HF} = 19.5 Hz, ³*J*_{HH} = 6.1 Hz, 1H), 7.39–7.68 (m, 3H), 8.10 (d, ³*J*_{HH} = 8.4 Hz, 2H); ¹⁹F NMR δ –105.8 (d, *J*_{AB} = 289.9 Hz, 1F), -116.0 (dd, *J*_{AB} = 289.9 Hz, ³*J*_{HF} = 19.5 Hz, 1F); ¹³C NMR δ 17.1, 20.2, 28.3, 74.9 (dd, ²*J*_{CF} = 26.6 Hz, ²*J*_{CF} = 22.6 Hz), 117.6 (dd, *J*_{CF} = 258.9 Hz, *J*_{CF} = 268.8 Hz), 128.6, 130.1, 132.5, 134.4, 190.8 (t, ²*J*_{CF} = 30.5 Hz); IR (neat) 3460, 2957, 1697 cm⁻¹; MS *m*/*z* 228 (M⁺, 10), 208 (M⁺-HF, 60), 192 (51), 165 (100). Anal. Calcd for C₁₂H₁₄O₂F₂: C, 63.15, H, 6.18. Found: C, 63.55, H, 6.57.

2,2-Difluoro-1-(3-furyl)-3-hydroxy-4-methylpentan-1-one (3d): light yellow oil; flash chromatography (petroleum ether–AcOEt, 9:1); ¹H NMR δ 1.06 (d, ³*J*_{HH} = 5.9 Hz, 6H), 1.63 (m, 1H), 2.12 (m, 1H), 3.99 (ddd, ³*J*_{HF} = 19.5 Hz, ³*J*_{HH} = 6.9 Hz, ³*J*_{HF} = 4.9 Hz, 1H), 6.88 (s, 1H), 7.47 (s, 1H), 8.26 (s, 1H); ¹⁹F NMR δ –108.8 (dd, *J*_{AB} = 274.7 Hz, ³*J*_{HF} = 4.9 Hz, 1F), -119.3 (dd, *J*_{AB} = 274.7 Hz, ³*J*_{HF} = 19.5 Hz, 1F); ¹³C NMR δ 17.0, 19.9, 28.3, 77.8 (t, ²*J*_{CF} = 23.6 Hz), 109.2, 117.4 (dd, *J*_{CF} = 259.9 Hz, *J*_{CF} = 256.0 Hz), 122.6, 143.9, 150.6 (dd, ³*J*_{CF} = 11.8 Hz, ³*J*_{CF} = 5.9 Hz), 186.2 (t, ²*J*_{CF} = 33.5 Hz); IR (neat) 3460, 2966, 2936, 1691 cm⁻¹. Anal. Calcd for C₁₀H₁₂O₃F₂: C, 55.05, H, 5.54. Found: C, 55.22, H, 5.86.

2,2-Difluoro-3-hydroxy-5-methyl-1-phenylhex-4-en-1one (3e): light yellow oil; flash chromatography (petroleum ether-CH₂Cl₂, 1:1); ¹H NMR δ 1.73 (s, 3H), 2.00 (s, 3H), 2.50 (m, 1H), 4.97 (dddd, ³J_{HF} = 15.1 Hz, ³J_{HF} = 7.9 Hz, ³J_{HH} = 8.6 Hz, ³J_{HH} = 6.2 Hz, 1H), 5.36 (dm, ³J_{HH} = 8.6 Hz, 1H), 7.49 (tm, ³J_{HH} = 7.6 Hz, 2H), 7.64 (tm, ³J_{HH} = 7.6 Hz, 1H), 8.09 (dm, ³J_{HH} = 7.6 Hz, 2H); ¹⁹F NMR δ -108.5 (dd, J_{AB} = 286.1 Hz, ³J_{HF} = 7.9 Hz, 1F), -115.3 (dd, J_{AB} = 286.1 Hz, ³J_{HF} = 15.1 Hz, 1F); ¹³C NMR δ 18.5, 25.9, 68.8 (t, ²J_{CF} = 26.6 Hz), 116.7 (dd, J_{CF} = 256.0 Hz, J_{CF} = 261.9 Hz), 118.2, 128.6, 130.1, 132.7, 134.3, 141.7, 190.5 (t, ²J_{CF} = 29.5 Hz); IR (neat) 3427, 1697, 1450 cm⁻¹; MS *m*/*z* 241 (M⁺, 10), 205 (50), 156 (42); HRMS calcd for C₁₃H₁₅O₂F₂ 240.0961, found 240.0927.

5-Chloro-2,2-difluoro-5-methyl-1-phenylhex-3-en-1one (3f): colorless oil; flash chromatography (petroleum ether– CH₂Cl₂, 4:1); ¹H NMR δ 1.73 (s, 6H), 6.09 (dt, ³*J*_{HH} = 16.0 Hz, ³*J*_{HF} = 11.1 Hz, 1H), 6.48 (dt, ³*J*_{HH} = 16.0 Hz, ⁴*J*_{HF} = 2.5 Hz, 1H), 7.51 (tm, ³*J*_{HH} = 7.4 Hz, 2H), 7.65 (tm, ³*J*_{HH} = 7.4 Hz, 1H), 8.08 (d, ³*J*_{HH} = 7.4 Hz, 2H); ¹⁹F NMR δ -98.5 (d, ³*J*_{HF} = 11.1 Hz, 2F); ¹³C NMR δ 31.6, 65.7, 115.6 (t, *J*_{CF} = 250.0 Hz), 120.0 (t, ²*J*_{CF} = 24.6 Hz), 128.7, 130.1, 131.9, 134.3, 143.8 (t, ³*J*_{CF} = 8.9 Hz), 188.6 (t, ²*J*_{CF} = 31.5 Hz); IR (neat) 1705, 1259 cm $^{-1}$ Anal. Calcd for $C_{13}H_{13}OF_2Cl:\ C,\ 60.36,\ H,\ 5.06.$ Found: C, 60.58, H, 4.95.

3,3-Difluoro-4-hydroxy-4-(2-naphthyl)butan-2-one (3g): white solid; flash chromatography (petroleum ether–AcOEt, 9:1); mp 108 °C; ¹H NMR δ 2.29 (t, ⁴*J*_{HF} = 1.1 Hz, 3H), 2.65 (m, 1H), 5.31 (dd, ³*J*_{HF} = 15.9 Hz, ³*J*_{HF} = 7.5 Hz, 1H), 7.47–7.58 (m, 3H), 7.81–7.92 (m, 4H); ¹⁹F NMR δ –113.0 (dd, *J*_{AB} = 270.3 Hz, ³*J*_{HF} = 7.5 Hz, 1F), -122.2 (dd, *J*_{AB} = 270.3 Hz, ³*J*_{HF} = 7.5 Hz, 1F), -122.2 (dd, *J*_{AB} = 270.3 Hz, ³*J*_{HF} = 15.9 Hz, 1F); ¹³C NMR δ 25.7, 73.2 (dd, ²*J*_{CF} = 28.5 Hz, ²*J*_{CF} = 24.6 Hz), 114.6 (dd, *J*_{CF} = 261.8 Hz, *J*_{CF} = 255.9 Hz), 124.9, 126.4, 126.7, 127.5, 127.7, 128.2, 132.1, 132.9, 133.6, 200.1 (dd, ²*J*_{CF} = 32.5 Hz, ²*J*_{CF} = 27.5 Hz); IR (KBr) 3462, 1736, 1601, 1111 cm⁻¹; MS *m*/*z* 250 (M⁺, 24), 157 (90), 129 (100). Anal. Calcd for C₁₄H₁₂O₂F₂: C, 67.20, H, 4.83. Found: C, 67.04, H, 4.83.

3,3-Difluoro-4-(2-naphthyl)-4-trimethylsilyloxybutan-2-one (3h): white solid; flash chromatography (petroleum ether–AcOEt, 95:5); mp 69 °C; ¹H NMR δ 0.07 (s, 9H), 2.37 (d, ⁴*J*_{HF} = 2.7 Hz, 3H), 5.25 (dd, ³*J*_{HF} = 17.9 Hz, ³*J*_{HF} = 6.5 Hz, 1H), 7.50–7.59 (m, 3H), 7.85–7.88 (m, 4H); ¹⁹F NMR δ –111.2 (dd, *J*_{AB} = 255.5 Hz, ³*J*_{HF} = 6.5 Hz, 1F), –124.7 (dd, *J*_{AB} = 255.5 Hz, ³*J*_{HF} = 17.9 Hz, 1F); ¹³C NMR δ –0.2, 26.6, 74.2 (dd, ²*J*_{CF} = 31.5 Hz, ²*J*_{CF} = 23.6 Hz), 115.2 (dd, *J*_{CF} = 261.1 Hz, *J*_{CF} = 255.1 Hz), 125.3, 126.3, 126.5, 127.7, 127.8, 127.9, 128.2, 132.8, 133.2, 133.6, 200.9 (dd, ²*J*_{CF} = 33.2 Hz, ²*J*_{CF} = 24.0 Hz); IR (KBr) 2959, 1738, 1253 cm⁻¹; MS *m*/*z* 322 (M⁺, 20), 250 (15), 229 (100); HRMS calcd for C₁₇H₂O₂F₂Si 322.1200, found 322.1188.

2,2-Difluoro-3-hydroxy-1-phenylpent-4-en-1-one (3i): colorless oil; flash chromatography (petroleum ether $-CH_2Cl_2$, 1:1); ¹H NMR δ 2.75 (m, 1H), 4.78 (dt, ³J_{HF} = 15.6 Hz, ³J_{HF} = ³J_{HH} = 5.7 Hz, 1H), 5.45 (dd, ³J_{HH} = 10.6 Hz, ⁴J_{HH} = 1.4 Hz, 1H), 5.52 (d, ³J_{HH} = 17.2 Hz, 1H), 6.03 (ddd, ³J_{HH} = 17.2 Hz, ³J_{HH} = 10.6 Hz, ³J_{HH} = 7.9 Hz, 1H), 7.50 (t, ³J_{HH} = 7.9 Hz, 2H), 7.65 (t, ³J_{HH} = 7.9 Hz, 1H), 8.11 (d, ³J_{HH} = 7.9 Hz, 2H); ¹⁹F NMR δ -107.1 (dd, J_{AB} = 293.7 Hz, ³J_{HF} = 5.7 Hz, 1F), -115.6 (dd, J_{AB} = 293.7 Hz, ³J_{HF} = 15.6 Hz, 1F); ¹³C NMR δ 72.5 (dd, ²J_{CF} = 27.6 Hz, ²J_{CF} = 25.6 Hz), 115.8 (dd, J_{CF} = 261.8 Hz, J_{CF} = 257.9 Hz), 120.4, 128.7, 130.2 (t, ³J_{CF} = 3.9 Hz), 131.2, 134.6, 190.3 (t, ²J_{CF} = 29.5 Hz); IR (neat) 3439, 1699, 1599 cm⁻¹; MS m/z 213 (M⁺, 5), 156 (43), 105 (100).

2,2-Difluoro-3-hydroxy-5,9-dimethyl-1-phenyldeca-4,8dien-1-one (3j) (75:25 isomers mixture): light yellow oil; flash chromatography (petroleum ether-ethyl acetate, 93:7); ¹H NMR (major isomer) δ 1.59 (s, 3H), 1.66 (s, 3H), 1.71 (d, ⁴J_{HH} = 1.1 Hz, 3H), 2.07 (m, 4H), 2.40 (d, ${}^{3}J_{HH}$ = 5.7 Hz, 1H), 5.00 (m, 1H), 5.05 (m, 1H), 5.34 (d, ${}^{3}J_{HH}$ = 9.1 Hz, 1H), 7.49 (tm, ${}^{3}J_{\rm HH} = 7.6$ Hz, 2H), 7.64 (tm, ${}^{3}J_{\rm HH} = 7.6$ Hz, 1H), 8.10 (d, ${}^{3}J_{\rm HH}$ = 7.6 Hz, 2H); (minor isomer) δ 1.60 (s, 3H), 1.68 (s, 3H), 1.80 (d, ${}^{4}J_{HH} = 1.1$ Hz, 3H), 2.09 (m, 4H), 2.33 (d, ${}^{3}J_{HH} = 5.2$ Hz, 1H), 5.00 (m, 1H), 5.05 (m, 1H), 5.40 (d, ${}^{3}J_{HH} = 8.7$ Hz, 1H), 7.49 (tm, ${}^{3}J_{\text{HH}} = 7.6$ Hz, 2H), 7.64 (tm, ${}^{3}J_{\text{HH}} = 7.6$ Hz, 1H), 8.10 (d, ${}^{3}J_{\text{HH}} = 7.6$ Hz, 2H); 19 F NMR (major isomer) $\delta - 108.8$ (dd, $J_{AB} = 286.1$ Hz, ${}^{3}J_{HF} = 22.9$ Hz, ${}^{4}J_{HF} = 7.6$ Hz, 1F), -115.0 (dd, $J_{AB} = 286.1$ Hz, ${}^{3}J_{HF} = 15.2$ Hz, 1F); (minor isomer) δ -107.4 (dm, J_{AB} = 286.1 Hz, 1F), -116.1 (dd, J_{AB} = 286.1 Hz, ${}^{3}J_{\text{HF}} = 17.2$ Hz, 1F); 13 C NMR (major isomer) δ 17.0, 17.6, 25.5, 26.0, 39.6, 68.7 (t, ${}^{2}J_{CF} = 25.6$ Hz), 116.8 (dd, $J_{CF} = 259.9$ Hz, $J_{CF} = 256.0$ Hz), 117.9, 123.4, 128.6, 130.0, 131.9, 132.6, 134.3, 145.0, 191.0 (t, ${}^{2}J_{CF}$ = 31.5 Hz); *(minor isomer)* δ 17.0, 17.6, 25.6, 26.3, 40.5, 68.6 (t, ${}^{2}J_{CF}$ = 25.4 Hz), 116.6 (dd, J_{CF} = 265.8 Hz, $J_{\rm CF} = 261.9$ Hz), 118.4, 123.4, 128.6, 130.0, 132.4, 132.9, 134.3, 145.4, 190.5 (t, ${}^{2}J_{CF} = 29.5$ Hz); IR (neat) 3418, 2966, 2916, 1699 cm⁻¹; MS m/z 308 (M⁺, 25), 291 (99), 105 (100); HRMS calcd for $C_{18}H_{22}O_2F_2$ 308.1585, found 308.1570.

3,3-Difluoro-dodecane-2,2,4-triol (3k): white solid; flash chromatography (petroleum ether–AcOEt, 9:1); mp 42 °C; ¹H NMR δ 0.87 (t, ³J_{HH} = 6.5 Hz, 3H), 1.14–1.45 (m, 12 H), 1.52 (s, 1H), 2.42 (m, 5H), 3.99 (ddd, ³J_{HF} = 22.9 Hz, ³J_{HH} = 8.4 Hz, ³J_{HH} = 4.2 Hz, 1H), 5.15 (m, 2H); ¹⁹F NMR δ –129.2 (d, J_{AB} = 249.8 Hz, 1F), -131.4 (dd, J_{AB} = 249.8, ³J_{HH} = 22.9 Hz, 1F); ¹³C NMR δ 14.1, 22.6, 24.1, 25.1, 29.3, 29.4, 29.5, 31.8, 33.7, 73.8 (dd, ²J_{CF} = 29.5 Hz, ²J_{CF} = 23.6 Hz), 95.2 (dd, ²J_{CF} = 33.5 Hz, ²J_{CF} = 25.6 Hz), 113.9 (t, J_{CF} = 253.9 Hz); IR (KBr)

3935, 2918, 1471, 1142 cm⁻¹; MS m/z 250 (18), 229 (58), 157 (93), 129 (100).

(1R)-4-(6,6-Dimethylbicyclo[3.1.1]hept-2-en-2-yl)-3,3-difluoro-4-hydroxybutan-2-one (3l) (75:25 mixture of diastereomers): colorless oil; flash chromatography (petroleum ether-ethyl acetate, 92:8); ¹H NMR δ 0.85 (s, 3H), 1.34 (s, 3H), 1.97–2.49 (m, 7H), 2.33 (d, ${}^{4}J_{\rm HF} = 3.4$ Hz, 3H minor isomer), 2.38 (d, ${}^{4}J_{\text{HF}}$ = 2.3 Hz, 3H major isomer), 4.49 (dd, ${}^{3}J_{\text{HF}}$ = 18.3 Hz, ${}^{3}J_{\text{HF}} = 7.6$ Hz 1H), 5.70 (m, 1H); ${}^{19}\text{F}$ NMR (major isomer) δ -112.3 (dd, $J_{\rm FF}$ = 270.8 Hz, ${}^3J_{\rm HF}$ = 7.6 Hz, 1F), -122.8 (dd, $J_{\rm FF}$ = 270.8 Hz, ${}^3J_{\rm HF}$ = 18.3 Hz, 1F); (*minor isomer*) δ -110.9 (d, $J_{\rm FF} = 267.0$ Hz, 1F), -123.8 (dd, $J_{\rm FF} = 267.0$, ${}^{3}J_{\rm HF} = 15.3$ Hz, 1F); 13 C NMR (major isomer) δ 21.1, 25.5, 26.0, 31.5, 31.7, 40.6, 42.6, 73.1 (dd, ${}^{2}J_{C-F} = 27.6$ Hz, ${}^{2}J_{C-F} = 23.6$ Hz), 115.3 (dd, $J_{C-F} = 261.8$ Hz, $J_{C-F} = 253.9$ Hz), 124.6, 142.3, 200.1 (dd, ${}^{2}J_{CF} = 27.3$ Hz, ${}^{2}J_{CF} = 33.5$ Hz); (minor isomer) δ 21.3, 25.8, 26.1, 31.5, 31.7, 40.3, 42.6, 73.4 (dd, ${}^{2}J_{C-F} = 29.5$ Hz, $^{2}J_{C-F} = 26.6$ Hz), 115.3 (dd, $J_{C-F} = 261.8$ Hz, $J_{C-F} = 253.9$ Hz), 124.7, 142.5, 200.1 (dd, ${}^{2}J_{C-F} = 33.6$ Hz, ${}^{2}J_{C-F} = 27.1$ Hz); IR (neat) 3449, 2922, 1743 cm⁻¹; MS m/z 244 (M⁺, 8), 227 (25), 121 (23); 107 (100); HRMS calcd for $C_{13}H_{18}O_2F_2$ 244.1275, found 244.1294.

Dehydration of Aldol Compounds

2,2-Difluoro-3-methanesulfonyloxy-4-methyl-1-phenylpentan-1-one (4). Triethylamine (0.55 mL, 3.6 mmol, 6 equiv) and methanesulfonyl chloride (0.15 mL, 2.0 mmol, 3 equiv) were added to a solution of **3c** (0.15 g, 0.6 mmol) in CH₂Cl₂ (3 mL) at 0°. The mixture was stirred overnight, and water (10 mL) was added. After extraction with CH₂Cl₂ (3 × 15 mL), the organic layer was washed with brine and dried over MgSO₄, and the solvent was evaporated under reduced pressure, giving **4** (0.150 g, 74%) as a red liquid. ¹H NMR δ 1.09 (d, ³*J*_{HH} = 6.1 Hz, 6H), 2.19–2.27 (m, 1H), 3.08 (s, 3H), 5.23 (ddd, ³*J*_{HF} = 14.9 Hz, ³*J*_{HF} = 10.9 Hz, ³*J*_{HH} = 4.0 Hz, 1H), 7.51– 7.72 (m, 3H), 8.10 (d, ³*J*_{HF} = 10.9 Hz, ¹J_C), ¹¹S NMR δ –103.4 (dd, *J*_{AB} = 288.0 Hz, ³*J*_{HF} = 10.9 Hz, 1F), -110.4 (dd, *J*_{AB} = 288.0 Hz, ³*J*_{HH} = 14.9 Hz, 1F); ¹³C NMR δ 16.8, 20.1, 28.4, 38.9, 82.5 (dd, ²*J*_{CF} = 23.6 Hz, ²*J*_{CF} = 19.7 Hz), 116.2 (t, *J*_{CF} = 259.8 Hz), 129.0, 130.0 (t, ³*J*_{CF} = 3.9 Hz), 131.8, 134.9, 188.3 (t, ²*J*_{CF} = 31.5 Hz); MS *m*/*z* 201 (M⁺-105, 65), 105 (100).

3,3-Difluoro-2-hydroxy-2-phenyl-4-isopropylbutan-1,4sultone (5). To a solution of mesylate 4 (0.15 g, 0.5 mmol) in THF (3 mL) was added t-BuOK (0.07 g, 0.6 mmol, 1.2 equiv) at room temperature. The mixture was stirred 24 h, and water (5 mL) was added. After extraction with Et_2O (3 \times 15 mL), the organic layer was washed with brine and dried over MgSO₄, and the solvent was evaporated under reduced pressure. Purification by flash chromatography (petroleum ether-CH₂Cl₂, 3:2) gave 5 (0.085 g, 60%) as a solid; mp 197 °C; ¹H NMR δ 1.14 (m, 6H), 1.56 (s, 1H) 2.39 (m, 1H), 3.46 (d, $J_{AB} =$ 14.5 Hz, 1H), 4.14 (dm, $J_{AB} = 14.5$ Hz, 1H), 4.92 (dd, ${}^{3}J_{HF} =$ 23.0 Hz, ${}^{3}J_{\text{HH}} = 4.8$ Hz, 1H), 7.43 (massif, 3H), 7.63 (massif, 2H); $^{19}\mathrm{F}$ NMR δ -128.1 (d, J_{AB} = 265.1 Hz, 1F), 123.6 (dd, J_{AB} = 265.1 Hz, ${}^{3}J_{\rm FH}$ = 23.0 Hz, 1F)); 13 C NMR δ 17.4 (d, ${}^{4}J_{\rm CF}$ = 3.9 Hz), 19.8 (d, ${}^{4}J_{CF}$ = 3.9 Hz), 27.3, 54.2, 74.0 (t, ${}^{2}J_{CF}$ = 27.6 Hz), 83.0 (dd, ${}^{2}J_{CF} = 35.4$ Hz, ${}^{2}J_{CF} = 24.6$ Hz), 116.2 (t, $J_{CF} =$ 258.8 Hz), 126.5, 128.5, 129.3, 135.2; IR (KBr) 3462, 2922, 1441, 1340 cm⁻¹; MS m/z 201 (M⁺ – 105, 72), 105 (100). Anal. Calcd for C13H16O4F2S: C, 50.97, H, 5.26. Found: C, 51.24, H, 5.03.

2,2-Difluoro-3-trifluoromethanesulfonyloxy-4-methyl-1-phenylpentan-1-one (6c). To a solution of aldol 3c (0.255 g, 1.1 mmol) in CH₂Cl₂ (5 mL) at 0 °C under argon were added 2,6-di-*tert*-butylpyridine (0.33 mL, 1.3 equiv) and triflic anhydride (0.21 mL, 1.1 equiv). The mixture was stirred overnight at room temperature. After addition of a saturated NH₄Cl solution (10 mL), the solution was extracted with CH₂Cl₂ (3 × 15 mL). The organic layer was washed with brine and dried over MgSO₄, and the solvent was evaporated under reduced pressure. Purification by flash chromatography (petroleum ether–CH₂Cl₂, 4:1) gave **6c** (0.335 g, 83%). Oil. ¹H NMR δ 1.13 (d, ³*J*_{HH} = 6.9 Hz, 3H), 1.17 (d, ³*J*_{HH} = 6.9 Hz, 3H), 2.35 (m, 1H), 5.49 (ddd, ³*J*_{HF} = 17.5 Hz, ³*J*_{HH} = 7.5 Hz, 1H); 8.16 (d, ³*J*_{HH} = 7.5 Hz, 2H); ¹⁹F NMR δ –74.1 (s, 3F), –100.4 (d, ²*J*_{FF} = 298 Hz, 1F), -112.6 (dd, ${}^{2}J_{FF} = 298$ Hz, ${}^{3}J_{HF} = 17.5$ Hz, 1F); ${}^{13}C$ NMR δ 16.4, 20.1, 28.6, 87.5 (dd, ${}^{2}J_{CF} = 23.6$ Hz, ${}^{2}J_{CF} = 19.7$ Hz), 114.8 (t, $J_{CF} = 290.0$ Hz), 118.5 (q, $J_{CF} = 318.0$ Hz), 129.0, 130.1, 131.3, 135.9, 187.4 (t, ${}^{2}J_{CF} = 30.5$ Hz).

2,2-Difluoro-3-trifluoromethanesulfonyloxy-1-(3-furanyl)-4-methylpentan-1-one (6d). Following the same procedure than for the aldol **3c**, **3d** (0.526 g, 2.4 mmol) gave **6d** (0.409 g, 49%) as a colorless oil after purification by flash chromatography (petroleum ether-CH₂Cl₂, 9:1). ¹H NMR δ 0.99 (d, ³*J*_{HH} = 5.7 Hz, 3H), 1.00 (d, ³*J*_{HH} = 6.9 Hz, 3H), 2.19 (m, 1H), 5.22 (ddd, ³*J*_{HF} = 16.4 Hz, ³*J*_{HF} = 7.6 Hz, ³*J*_{HH} = 3.8 Hz, 1H), 6.80 (s, 1H), 7.43 (s, 1H), 8.22 (s, 1H); ¹⁹F NMR δ -74.4 (s, 3F), -104.1 (dd, *J*_{FF} = 282.0 Hz, ³*J*_{HF} = 7.6 Hz, ¹³C NMR δ 16.4, 19.7, 28.4, 87.4 (dd, ²*J*_{CF} = 23.6 Hz, ²*J*_{CF} = 20.7 Hz), 109.0, 114.5 (dd, *J*_{CF} = 263.0 Hz, *J*_{CF} = 259.0 Hz); IR (neat) 3148, 2986, 1693, 1215 cm⁻¹; MS (CI⁺) *m*/*z* 368 (M + 18, 45), 200 (100), 183 (84), 165 (71).

2,2-Difluoro-4-methyl-1-phenylpent-3-en-1-one (7c). To a solution of triflate **6c** (0.335 g, 0.9 mmol) in toluene (3 mL) was added DBU (0.34 mL, 2.3 mmol, 2.5 equiv) under argon. The mixture was stirred 4 h at room temperature. After addition of a saturated NH₄Cl solution (50 mL), the solution was extracted with CH₂Cl₂ (3 × 50 mL). The organic layer was washed with brine and dried over MgSO₄, and the solvent was evaporated under reduced pressure. Purification by flash chromatography (petroleum ether–CH₂Cl₂, 9:1) gave **7c** (0.140 g, 72%) as a colorless liquid. ¹H NMR δ 1.83 (m, 6H), 5.66 (tm, ³J_{HF} = 13.3 Hz, 1H), 7.49 (m, 2H), 7.59 (m, 1H), 8.05 (d, ³J_{HH} = 7.6 Hz, 2H); ¹⁹F NMR δ –93.1 (d, ³J_{HF} = 13.3 Hz); ¹³C NMR

 δ 19.3, 26.6, 115.9 (t, J_{CF} = 249.0 Hz), 117.7 (t, $^2J_{CF}$ = 26.0 Hz), 128.2, 130.0, 132.0, 134.0, 147.2 (t, $^3J_{CF}$ = 7.7 Hz), 188.8 (t, $^2J_{CF}$ = 31.5 Hz); IR (neat), 2922, 1705, 1441 cm^{-1}. Anal. Calcd for $C_{12}H_{12}OF_2$: C, 68.56, H, 5.75. Found: C, 68.67, H, 6.03.

2,2-Difluoro-1-(3-furanyl)-4-methylpent-3-en-1-one (7d). Following the same procedure than for the triflate **6c, 6d** (0.368 g, 1.0 mmol) gave **7d** (0.166 g, 79%) as a colorless solid after purification by flash chromatography (petroleum ether–CH₂Cl₂, 4:1). mp 42 °C; ¹H NMR δ 1.75 (s, 3H), 1.76 (s, 3H), 5.43 (tm, ³J_{HF} = 15.2 Hz, 1H), 6.76 (s, 1H), 7.38 (s, 1H), 8.08 (s, 1H); ¹⁹F NMR δ –96.4 (d, ³J_{FH} = 15.2 Hz); ¹³C NMR δ 19.3, 26.5, 109.4, 115.7 (t, J_{CF} = 248.7 Hz), 116.2 (t, ²J_{CF} = 27.5 Hz), 122.0, 143.9, 147.7 (t, ³J_{CF} = 7.9 Hz), 149.8, 184.2 (t, ²J_{CF} = 35.5 Hz); IR (KBr) 3148, 2986, 2936, 1693 cm⁻¹; MS *m*/*z* 200 (M⁺, 50), 181 (10), 149 (15), 105 (100). Anal. Calcd for C₁₀H₁₀O₂F₂: C, 60.00, H, 5.04. Found: C, 60.14, H, 5.15.

Acknowledgment. The authors thank the "Ministère de l'Education Nationale, de la Recherche et de la Technologie" for a Ph.D. fellowship to O. L., and Bayer A. G. (Dr A. Marhold) for a gift of trifluoromethyltrimethylsilane. They also express their thanks to Benoit Didier and Sébastien Leclerc for their assistance, to H. Bailla and S. Lanthony for their technical assistance in the analytical aspects, and to Dr. K. Plé for English correction.

JO001549J