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Abstract: 2-Trimethylsilyl protection of benzothiophenes and ben-
zofurans prevents anion migration to the 2-position when lithiated
species are formed. These lithiated benzothiophenes and benzo-
furans provide superior results in additions to piperidones. De-
protection is conveniently achieved under acidic conditions. Direct
C-7 metalation of benzothiophene is enabled by 2-triisopropylsilyl
protection at C-2.

Key words: lithiation, metalation, benzothiophene, silyl protecting
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As key intermediates in the synthesis of the dual SSRI/
5HT1A antagonist LY433221 and related compounds, we
required an efficient large-scale synthesis of 4-ben-
zothiophene substituted tetrahydropyridine derivatives
such as 1 (Scheme 1).1 Related 4-aryltetrahydropyridines
are of general interest due to their wide range of biological
activities.2 An ideal approach to this class of compounds
seemed to be addition of a Grignard reagent derived from
7-bromobenzothiophene (3) to 1-Boc-4-piperidone (2),
followed by acid catalyzed elimination and deprotection
(Scheme 1). We report herein that optimal implementa-
tion of the chemistry in Scheme 1 requires C-2 protection
with a trimethylsilyl (TMS) group and formation of the
7-lithio anion. An extension of this protection strategy
enables direct C-7 lithiation of 2-triisopropyl-silyl-
benzothiophene. This novel strategy allows direct access
to 7-substituted benzothiophenes.

Scheme 1

Grignard addition to piperidone 2 has been reported to
proceed in low yield due to competing attack of the
Grignard reagent on the Boc group.2a In our hands, addi-
tion of piperidone 2 to the Grignard reagent of bromide 33

in THF at reflux, afforded a 2:1 ratio of tertiary alcohol 4
and quenched benzothiophene (5), but no evidence for
Boc removal (Scheme 2).4 Enolization of piperidone 2 is
the most likely explanation for these results.5 Enolization
by a Grignard reagent is normally a minor side reaction
except for hindered or unusually acidic ketones.6 Piperi-
done 2 may have increased acidity due to the inductive
effect of the N-Boc group.7,8

Scheme 2

Utilization of the more reactive lithium anion should
allow operation at low temperature where enolization side
reactions are normally suppressed. The 7-lithio anion was
prepared by treatment of bromide 3 in THF with n-BuLi
in hexanes at –78 °C for five minutes. Addition of piperi-
done 2 afforded the expected products 4 and 5 along with
by-product 6 in a ratio of 5:1:1 (Scheme 3). By-product 6
is derived from proton transfer from the more acidic 2-po-
sition. Formation of the 2-isomer was eliminated by add-
ing n-BuLi last to a mixture of bromide 3 and ketone 2 in
THF at –78 °C, but complete conversion of bromide 3
required 1.5 equivalents of n-BuLi due to competing
reaction with the ketone.

Scheme 3
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The rearrangement of benzothiophene anions to the ther-
modynamically favored 2-position is known.9 Although
proton transfer may be suppressed by use of a less polar
solvent, metal-halogen exchange rates are slowed and an-
ion solubility issues became problematic with bromide
3.10 Blocking the 2-position with a silyl group is common-
ly used to solve this problem in metalation of aryl,11 or
thiophene rings,12 but has been rarely applied to ben-
zothiophene chemistry.13 This strategy was successfully
applied to 7-bromobenzothiophene (3) and related mole-
cules as described below.

Treatment of bromide 3 with two equivalents of lithium
diisopropylamide (LDA) and two equivalents of commer-
cial trimethylsilyl chloride (TMSCl) afforded the silyl-
protected bromide 7 in quantitative yield (Scheme 4). Use
of excess reagents allowed the reaction to be driven to
completion without use of purified TMSCl. Metal-halo-
gen exchange of protected bromide 7 in THF at –60 °C
afforded a stable organolithium species. Addition of pip-
eridone 2 as a solution in THF at –60 °C afforded the de-
sired addition product 8 in 92% yield. This is a dramatic
improvement over the 40–60% yields that were typical us-
ing the Grignard chemistry. Silyl deprotection can be
achieved under basic or acidic conditions.14 As shown in
Scheme 4, deprotection occurred readily in 91% yield
with 6 N HCl and toluene at reflux, the standard condi-
tions used for Boc deprotection and alcohol dehydration.
The overall process from 7-bromobenzothiophene (3)
proceeded in 84% yield and required only one step for the
silyl protection strategy, since protiodesilylation occurred
during Boc removal/dehydration.15,16 Conversion of tet-
rahydropyridine 1 to LY433221 will be described in due
course.

Scheme 4

The benzothiophene silyl protection strategy was applied
to the preparation of the related benzofuran 14
(Scheme 4).17 The 4-fluoro group complicated the robust
and simple silylation conditions described above, due to
the ortho directing ability of the fluorine.18 Treatment of
7-bromo-4-fluorobenzofuran (9)19 with excess LDA and
excess TMSCl afforded a 1:1 mixture of mono-silylated

product 10 and the bis-silylated product 11. These com-
pounds could be separated by chromatography, but it was
more convenient to carry the mixture directly into the
metal-halogen exchange/addition step to afford a mixture
of mono- and bis-silylated products 12 and 13 in 72%
yield. Both products were conveniently deprotected under
acidic conditions to afford the 4-substituted tetrahydropy-
ridine oxalate salt 14 in 75% yield.20 Subsequently it was
shown that the mono-silylated benzofuran 10 could be ob-
tained with <1% of bis-silylated 11 by silylation with 1.3
equivalents of LDA and 1.3 equivalents of TMSCl in
THF/chlorobenzene at –78 °C.

Additions to hindered N-benzylpiperidone 1621 highlight-
ed the benefit of lithio anion 15b relative to the Grignard
reagent 15a (Scheme 5). Due to steric hindrance, enoliza-
tion by the Grignard reagent was now the major reaction.
Simple substitution of the lithium reagent 15a in this se-
quence led to a dramatically improved 66% yield of 17
over the same two steps.22

Scheme 5

After demonstrating that 2-silyl protection of ben-
zothiophenes allowed generation of a stable 7-lithio anion
by metal-halogen exchange, it was of interest to see if di-
rected ortho lithiation of a 2-silyl protected ben-
zothiophene could give access to the same species.
Although metalation of related dibenzothiophenes has
been achieved, the C-7 directed metalation of ben-
zothiophenes has not been reported.23 Initially ben-
zothiophene (5) was converted to the 2-TMS derivative
and treated with n-BuLi in THF at room temperature. Af-
ter addition of piperidone 2, a mixture of 7-substituted and
2-susbstituted products was obtained, indicating competi-
tion between deprotonation at C-7 and nucleophilic silyl
removal at C-2. In order to prevent attack at silicon, the
triisopropylsilyl (TIPS) derivative 18 was prepared
(Scheme 6).24 Complete metalation of TIPS protected 18
could not be achieved using n-BuLi in THF without com-
peting reaction with THF.25 Metalation using 1.5 equiva-
lents of n-BuLi and 1.5 equivalents of TMEDA in hexane
at room temperature, followed by addition of ketone 2 in
THF at –78 °C afforded a 76% yield of the desired 7-sub-
stituted benzothiophene 20.26 Tandem alcohol dehydra-
tion and deprotection using TFA occurred analogously to
the TMS derivative to provide tetrahydropyridine 1. This
novel approach to 7-substituted benzothiophenes avoids
dealing with the odiferous bromo thiophenol precursors
that lead to the bromo  substituted benzothiophenes used
above. This strategy should find further application in
benzothiophene synthesis.
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In conclusion we have shown that 2-TMS protected
benzothiophene and benzofuran substrates enable metal-
halogen exchange to provide useful lithiated intermedi-
ates. These lithiated intermediates provide superior results
in additions to ketones relative to the corresponding
Grignard reagents. 2-TIPS protection of benzothiophene
allows directed metalation at C-7, providing an expedient
route to 7-susbstituted benzothiophenes.
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142.1, 141.8, 139.2, 130.8, 124.2, 122.3, 120.0, 78.5, 70.9, 
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were separated and the acid layer was washed with toluene. 
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and extracted with EtOAc. The extracts were concentrated to 
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Et2O and HCl/EtOAc was added until the pH measured 2–3. 
The solid was collected and dried to afford 271 g (93%) of 
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(br s, 1 H). 13C NMR (62.5 MHz, DMSO): d = 13.5, 29.6, 
38.9, 43.4, 119.3, 122.7, 12.9, 123.2, 131.5, 137.7, 139.6, 
140.9. MS: m/z = 231 [M+]. Anal. Calcd for C14H18ClNS: C, 
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1H NMR (500 MHz, CDCl3): d = 1.22 (d, 18 H, J = 7 Hz), 
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