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Abstract—When 2-substituted alkyl 1-indanone-2-acetates 1 were treated with samarium diiodide, 3-substituted 2-hydroxy-2,3-
methano-1-oxo-1,2,3,4-tetrahydronaphthalenes 4 were obtained. The reaction is proposed to proceed through a rearrangement
initiated by intramolecular ketone–ester coupling. Oxidation of these products 4 or their silyl ethers 13 by ceric(IV) ammonium
nitrate involving regioselective bond cleavage of their bicyclo[4.1.0]-rings produced the corresponding benzotropolone derivatives
10.
© 2003 Elsevier Ltd. All rights reserved.

Development of effective methods to construct
medium-sized rings is an important target in organic
synthesis.1 Among successful ways to achieve this
objective is an employment of a cyclization and ring
expansion method.2 We have recently discovered that
the reaction of �-ester substituted indanones I (n=1)
with samarium diiodide (SmI2) promoted intramolecu-
lar ketone–ester coupling followed by rearrangement
to finally give one-carbon homologated �-hydroxy
benzocyclohexenones II (n=1) (Eq. (1)).3 Then, we
considered that this method was applicable to the syn-
thesis of benzotropolones4 whose structures are often
found in naturally occurring theaflavins.5 However,

the reaction of �-ester substituted tetralones I (n=2)
with SmI2 did not give the expected �-hydroxy benzo-
cycloheptenones II (n=2) under the same reaction
conditions.6 In this paper, we would like to report the
preliminary results obtained by an exploratory study
on an alternative approach to the synthesis of ben-
zotropolones utilizing a two-carbon-homologation
methodology as described in Eq. (2). Although the
direct transformation of III to IV was not successful
by SmI2, we finally discovered that sequential reduc-
tion and oxidation processes using Sm(II) and Ce(IV)
salts, respectively, made such a transformation possi-
ble (see below).

Table 1. Reaction of 2-substituted alkyl 1-indanone-2-acetates 1, 2, 3 with SmI2

Yield of 4 (%)Conv. (%)R2R1SubstrateEntry

1a Me1a Me 99 48
2b Me1a 98 59Me

1a Me Me 100 293c

1b Me n-Pr 98 664b

6799Allyl5b Me1c
PhCH26b 841d 42Me
Me7a Et 47>952a
MePh 543a 938a

a 1a, 2a or 3a was added to 0.10 M SmI2 solution.
b 1 was added to 0.06 M SmI2 solution.
c 0.10 M SmI2 solution was added to 1a.

Keywords : �-keto ester; ketone–ester coupling; samarium diiodide; cyclopropane ring opening; ceric(IV) ammonium nitrate; benzotropolone.
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(1)

(2)

When methyl 2-methyl-1-indanone-2-acetate 1a7 was
treated with 2.2 equivalents of SmI2, the expected com-
pound 5a (R2=Me) was not obtained. Instead, a rear-
rangement product, 2-hydroxy-2,3-methano-3-methyl-
1-oxo-1,2,3,4-tetrahydronaphthalene 4a was isolated in
48% yield (Eq. (3)) (entry 1 in Table 1).8,9 Modification
of the reaction conditions influenced the yield of 4a to
some extent. For example, the yield of 4a increased
under the diluted conditions (entry 2) while the inverse
addition in which SmI2 was added to the solution of 1a
decreased the yield of 4a (entry 3). Similar rearrange-
ments were also observed for the reaction of other
derivatives 1, 2 and 3 with SmI2 while the yields of the
corresponding products 4 were modest (Table 1).8 It
was then found that the effect of the alkoxy substituent
of the ester group (OR1) on the yield of 4 was rather
small (entries 1, 7 and 8).

(3)

On the basis of the above results and those of a related
study,3 a plausible reaction mechanism, represented by
1 and SmI2, is proposed as shown in Scheme 1. Single
electron transfer from SmI2 to the ketone carbonyl of 1
gives the samarium ketyl radical 6. Subsequent ketyl
radical cyclization onto the ester carbonyl, which might
be reversible, gives the cyclobutoxy radical 7. Then, 7
undergoes ring-opening and re-cyclization liberating
methoxy anion and samarium ion (MeOSmI2) to give 8.
The reaction of 8 with another equivalent of SmI2

giving 9 is followed by hydrolysis to yield 4. Higher
concentration of SmI2 surrounding 8 should further
accelerate the conversion of 8 to 9, which seems to be
consistent with the results presented in Table 1; the
yield of 4a in entry 1 is greater than that in entry 3.

We noticed that the products 4 possess a cyclopropoxy
structure which could be opened with certain metal
oxidants.10 Thus, we first attempted to react 4a with
FeCl3 since Fe(III) salts are known as effective reagents

Scheme 1.

Table 2. Reaction of 3-substituted 1-hydroxy-2,3-methano-
1-oxo-1,2,3,4-tetrahydronaphthalenes 4 with CAN

4 R2 Conv. of 4 (%) Yield of 10 (%)Entry

4a1 100 47Me
4b2 41100n-Pr

393 4c 100Allyl
4 4d 100 38PhCH2

for the related transformations.10a,c,e Some consumption
of 4a was observed in MeCN; however, the expected
ring opening products were not isolated from the com-
plicated product mixture. On the other hand, 4a was
quantitatively recovered in DMF. Then, we conducted
the reaction of 4a with ceric ammonium nitrate
(CAN)10b in MeCN to find the formation of 6-methy-
3,4-benzotropolone 10a (Eq. (4)) (entry 1 in Table 2).11

The same reaction also proceeded in THF to give 10a
(54%). Although 1H HMR analysis of the reaction
mixture of 4a with CAN suggested the presence of
11a,12 10a was isolated by silica gel column chromato-
graphy (Eq. (4)). As one may expect, when the reaction
was conducted in MeOH, the methoxy substituted
product 12a13 that was stable during column chro-
matography was isolated. Reactions of other 4 with
CAN gave the corresponding 10 in moderate yields
(Table 2).11 It should be noted that the acetate of 4a
prepared by the reaction of 9a with acetic anhydride
was not reactive with CAN. As has been seen in related
chemistry,10a–d silyloxy cyclopropanes are known to be
reactive substrates with metal oxidants. Thus, the reac-
tion mixture of 1a with SmI2 was quenched with
Me3SiCl followed by extraction and concentration to
give a reaction mixture which was then treated with
CAN without further purification (Scheme 2).14 The
overall yield of 10a (52%) from 1a in this reaction was
better than that (ca. 25%) obtained under the corre
sponding stepwise conditions (1a�4a�10a). Again,
FeCl3 was found to be ineffective.

(4)
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Scheme 2.

Scheme 3.

In Scheme 3, a plausible reaction mechanism is pre-
sented. Single electron transfer from 4 or 13 to CAN
gives their radical cations. The intermediate 14 possess-
ing tertiary carbon radical is formed through subse-
quent deprotonation or desilylation and ring-opening
while the order of each step could not be easily spe-
cified. The reaction of 14 with another equivalent of
CAN followed by attack of certain nucleophiles (Nu−)
to the formed carbocation yields the benzocycloheptan-
dione 11 or 12, depending on the solvents used. If
elimination of HNu from these adducts occurs, the
following keto–enol tautomerization yields 6-substi-
tuted 3,4-benzotropolone 10.

In conclusion, although the conditions are not fully
optimized yet, the results presented above demonstrate
that a novel set of reduction and oxidation processes
using Sm(II) and Ce(IV) salts, respectively, is effective
for the transformation of 2-substituted alkyl 1-
indanone-2-acetates to the benzotropolone derivatives
via 3-substituted 2-hydroxy-2,3-methano-1-oxo-1,2,3,4-
tetrahydronaphthalenes. Studies probing the potential
applicability of this methodology to reductive forma-
tion and oxidative ring-opening of other cyclo-
propanols are continuing.15
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