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Stereoselective synthesis of tri- and tetrasubstituted alkenylsilanes has been realized by the selective intramolecular silicon migration in the

rapidly equilibrating alkenyllithium species. Subsequent copper- and palladium-mediated coupling with allyl and aryl halides provides tri- and
tetrasubstituted alkenes possessing all different carbon-substituents with complete stereoselectivity.

Alkenylmetal species play crucial roles in the stereoselective are almost identical. We, however, are interested in the
synthesis of multisubstituted alkenes, which are ubiquitous possibility to use rapidly equilibrating alkenylmetal species
and essential structural constituents in organic molecules. for stereoselective synthesis of multisubstituted alkenes. We
Since the stereochemical outcome of the alkenes dependnvisaged that discrimination of the reactivity betweE) (
critically on the stereochemistry of alkenylmetal species, its and @)-isomers of alkenylmetal species becomes possible
isomerization usually results in the loss of stereochemical if one isomer could selectively react with an electrophile by
purity. Therefore, configurationally labile alkenylmetal spe- intramolecular reaction (Scheme 1). We report here the
cies have not been considered as important synthetic precur-

sors for stereochemically defined multisubstituted alkénes, || EGTGTGTGcNGCGGGG

because reactivity of)- and @)-isomers of alkenylmetals Scheme 1
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alcohol through alkene isomerization has been repdriisd,
synthetic scope as well as explicit mechanism have not bee
clarified. We now demonstrate that the current strategy
provides a powerful route for varieties of tri- and tetrasub-
stituted alkenes with defined stereochemistty.

Our initial finding for the stereoselective synthesis of
multisubstituted alkenes was obtained witefa (R = R®
= R*=Ph, R = H, 96%E)°" was treated with butyllithium
(1.1 equiv) in THF at-72 to 0°C for 0.5 h (Scheme 2.
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After usual hydrolytic workup, we isolated alkenylsilane
(2)-2a as an exclusive isomer in almost quantitative yield
(Table 1, entry 1). The structure bd and2awas confirmed

by X-ray crystallographic analysfsand by NMR analysis
based on NOE, respectively, revealing that olefin isomer-
ization as well as silicon migration from oxygen to carbon
took place. As transmetalation from tellurium to lithium takes
place with retention of stereochemistry through a hypervalent
tellurium intermediaté the result could be explained by the
initial formation of @)-alkenyllithium @)-3, which subse-
quently isomerized to thegj-isomer® followed by the silicon
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Mrable 1. Synthesis of Tri- and Tetrasubstituted Alkenylsilahes

entry substrate (Z: E) product yield (%) Z:E
R!  OSiMes MesSi  OH
PhTe TP RITNATP
1 R' =Ph [1a] (4:96) Z-2a 94 >99:]
2 R! = 3-pyridyl (1:99) 84  >99:1
3 R' =4-BrC¢H, (1:99) 40  >99:1
Ph OSiMe; Me;Si  OH
prTe” TR pr TR
4 R®=Ph, R*=H (28:72) 91  >99:1
5  R’=c-CeHy, R*=H (33:67) 84  >99:1
6 R®, R* = -(CH,);- (13:87) 60  >99:1
Ph  OSiMes MesSi  OH
PhTe” Y R? Ph N RS
R? R2
7 R*=R®=Me [1b] (51:49) 7Z-2b 87  >99:1
8 R*=Me, R*=Ph (85:15) 91  >99:1
9 R*=Me, R’ = H (46:54) 62  >99:1
10  R?*=Ph, R*=Me (43:57) 97  >99:1
Ph OSiEt; Et3Si OH
PhTe” Y “Ph N ph
11 (51:49) 85  >99:1
1c 7-2¢
Ph OH Ph OH
b PMTe S (1:>99) S 99 83:17
5 6

aButyllithium (1.1—-1.2 equiv) was added to a THF solution bfca.
0.5 M solution) at—72 °C, and the resulting solution was slowly warmed
to 0 °C over 0.5 hP Performed with 2.2 equiv of buthyllithium.

migration from oxygen to carbon # (Scheme 2§.Trans-
metalation to the corresponding alkenylcopper species by
the reaction ofla with Me,Cu(CN)Li,'® or MeCuLi

(8) (a) Wardell, J. L. InComprehensgie Organometallic Chemistry
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Schleyer, P. RJ. Am. Chem. Sod988 110, 6033. (c) Knorr, R.; von
Roman, T.Angew. Chem., Int. Ed. Engl984 23, 366. (d) Zweifel, G.;
Murray, R. E.; On, H. PJ. Org. Chem.1981 46, 1292. (e) Knorr, R;
Lattke, E.Tetrahedron Lett1977, 45, 3969. (f) Panek, B. L.; Neff, E. J.;
Chu, H.; Panek, M. GJ. Am. Chem. Sod.975 97, 3996.
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reagent¥'! in EL,O also afforded Z)-2a as an exclusive

product in 74 and 81% yields, respectively. Scheme 3

The present reaction is generally applicable to alkenyl- Cul (1.1 equiv)
telluride 1 bearing different R R?, R, and R groups and LiOBu-t (1.2 equiv) 7 0SiMe;
afforded the resultingZ)-alkenylsilane2 in good to excellent allyl chioride (1.2 equiv) :DY\
yields (Table 1}? Most notably, Z)-isomers of both tri- and THF/DMF, 1t, 0.5 h
tetrasubstituted alkenes were exclusively formed regardless LI
of the geometrical purity of the starting alkenyltellurides in @ — 1%, >96% E
all cases, indicating that both th&)¢ and ¢)-isomers of Cul (1.1 equiv)
alkenyllithium species generated frofih gave the same LiOBu-t (1.2 equiv) p-NO,CeH,  OSiMe;
product. The reaction also tolerates a variety &faRd R PACLEPPNs)z 01 equiy) L A
groups to give the secondary and tertially alcohols efficiently. P-NO,CeHyl (1.2 equiv)

THF/DMF, rt, 0.5 h 8

Although hydroxyl group-directed carbometalation of pro- 05% 567% 7

pargyl alcohol derivatives has been widely used for the
stereoselective synthesis of multisubstituted alkéh
y s 3). We are pleased to find that the coupling reaction de-

applicability of this method is limited to primary alcohols. ) ) ;
Therefore, the current method provides a stereoselective\/emped by Takeda could be nicely applied to this system.

synthetic route to highly substituted allyl alcohols with T.hus, alkenylsilan@b was transform_ed directly to skipped
defined alkene geometry. The current reaction exhibited high di€N€7 upon transmetalation from silicon to copper followed

functional group selectivities, and arylbromide function was ?y the treatment \Il;lith' allyl IChloride.I Furtlrll(er trlanst()rmatipn
retained to the product (entry 3). We could also utilize a TOM copper to palladium also enabled alkenyl-aryl coupling

variety of silyl groups, an@calso formed upon starting from reaction to give vicinally aryl-substituted alke®@ excellent
1c (entry 11) yield. In both transformations, the stereochemistry of the

Several control experiments further supported the reaction alkenyl carbon was retained in the products. Therefore, the

pathway as depicted in Scheme 1. First, isomerization of stereoselective synthesistetrasubstituted alkenes possess-

alkenyllithium species was ascertained by the experimentsIng all different carboE substltuerlumuld be easily achlevéld. .
using5 (>99% E), which resulted in the formation of an In summary, we have deve pped a new stergose ective
83:17 mixture of E)- and @)-isomers o6 upon treatment synthesis of tri- and tetrasubstituted alkenes using confor-
of butyllithium followed by hydrolysis. The result is con- mation.ally labile alkenyllithium species. Furthermore, sily!
sistent with the fact that-aryl-substituted alkenyllithiums ~ 9"0UP In the products serves as useful surrogate of reactive

isomerize at low temperature in a polar solvent such as’THF alkenylmetal species_ with defined structL_Jre_ for further
and clearly indicates the role of the silicon migration as the synthetic transformations. Because alkenyllithiums are also

stereochemistry-determining step. Second intramolecularpmpar?d .by the transmetalatior) from alkg nylstannanes.or
silicon migration is ascertained by the scrambling experi- alkenyliodides, or carbometalation, a variety of synthetic
ments. Thus, treatment of an equimolar amountiofand routes would be feasible. In addition, an internal electrophile
1c with butyllithium resulted in the selective formation of would not be limited to the silyl groups. Exploration of such

(2)-2b (59%) and Z)-2c (64%), and no silicon-scrambled possibilities is now in progress.
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single stereoisomer regardless of the stereochemistry-of
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