Supersilylsilane R*SiX₃: Darstellung, Charakterisierung und Strukturen; sterische und van-der-Waals Effekte der Substituenten X [1]

Supersilylsilanes R*SiX₃: Syntheses, Characterization and Structures; Steric and van-der-Waals Effects of Substituents X [1]

Nils Wiberg, Wolfgang Niedermayer, Heinrich Nöth⁺, Jörg Knizek⁺, Werner Ponikwar⁺ und Kurt Polborn⁺

Department Chemie der Universität München, Butenandtstr. 5-13 (Haus D), D-81377 München ⁺ Röntgenstrukturanalysen

Sonderdruckanforderungen an Prof. Dr. N. Wiberg. E-mail: niw@cup.uni-muenchen.de

Z. Naturforsch. 55 b, 389-405 (2000); eingegangen am 24. Januar 2000

Silicon, SupersilyIsilanes, Van-der-Waals Effects

Supersilylsilanes R*SiX₃ (R* = supersilyl = SitBu₃; X = H, Me, tBu, Ph, SiMe₃, F, Cl, Br, I, OMe, OSO_2CF_3) are prepared (i) by reactions of supersilylhalosilanes with supersilyl sodium NaR* (Hal/R* exchange), (ii) by reactions of supersilvalues with hydride H^- (Hal/H exchange), (iii) by reactions of supersilylsilanes with halogens Hal₂ (H/Hal exchange, R*/Hal exchange), (iv) by reactions of supersilylhalosilanes with nucleophiles like F⁻, MeO⁻ (Hal/F or Hal/OMe exchange) and (v) by reactions of supersilvisilanes with strong acids (H/OSO₂CF₃ exchange). NMR chemical shifts $\delta(^{29}Si)$ of the SiX₃ groups of R*SiX₃ strongly depends on the nature of X. The supersilyIsilanes R*SiX₃ are in part moisture sensitive (especially compounds with SiX₃=SiHHal₂ and SiH₂Hal), in part sensitive against oxygen (compounds with SiX=SiBr or SiI), and some of them react with supersilyl sodium by supersilanidation (for example R*SiF₃, R*SiH₂Cl, R*SiMeHCl) or by reduction (for example R*SiCl₃, R*SiMeBr₂, R*SiPhBrCl). X-ray structure analyses of disilanes $tBu_3Si-SiX_3$ with $SiX_3 \equiv SitBu_3$, $SiPh_3$, SiI₃, SiPhCl₂ show a staggered conformation. Due to steric repulsion of the *t*Bu₃Si and SiX₃ groups as well as van-der-Waals attraction of the substituents *t*Bu and X in *t*Bu₃Si-SiX₃ the SiSi bonds are longer than 2.34 Å (the normal SiSi single bond length) and the torsion angles are smaller/larger than 60° (the ideal staggered conformation). From the extent of SiSi bond elongation and CSiSiX angle compression it is concluded that the bulkiness of X increases in direction $Cl < I < Ph < SiMe_3 < CMe_3$ ($tBu_3Si-SitBu_3$ has to date the longest SiSi bond of all disilanes) and the van-der-Waals forces between tBu/X increase in direction tBu/I < tBu/tBu < tBu < tBtBu/Ph.

1. Einleitung

Vor einigen Jahren konnten wir mit orangefarbenem Tetrasupersilyl-*tetrahedro*-tetrasilan R*₄Si₄ erstmals eine ungeladene Verbindung mit einem zentralen Cluster aus vier an den Ecken eines Tetraeders lokalisierten Si-Atomen synthetisieren [2].

Die Verbindung entsteht in fast quantitativer Ausbeute gemäß Gleichung (1) durch Reaktion von Tetrahalogen-1,2-disupersilyldisilan (Halogen = Cl, Br, I) mit Supersilylnatrium in Tetrahydrofuran (THF) und ist – bedingt durch die hohe Sperrigkeit der an das Tetrahedran gebundenen Tri-*tert*-butylsilylgruppen **SitBu₃ = Supersilyl = R*** (vgl. Abb. 3c) – außerordentlich (bis weit über 300°C) thermostabil.

Da die Disilan-Edukte $R^*X_2Si-SiX_2R^*$ zur Bildung von $R^*_4Si_4$ ihrerseits durch dehalogenierende Kopplung geeigneter, aus Silanen SiX₄ zugänglicher Monosilan-Voredukte R^*SiX_3 gewonnen werden, stellte sich die Frage, ob das *tetrahedro*-Tetrasilan gegebenenfalls im Eintopfverfahren aus R^*SiX_3 oder – besser – aus SiX₄ und geeigneten Supersilylierungs- sowie Dehalogenierungsmitteln zugänglich ist. Auch erhofften wir uns von einer Dehalogenierung geeigneter Edukte R^*SiX_3

0932–0776/00/0500–0389 \$ 06.00 © 2000 Verlag der Zeitschrift für Naturforschung, Tübingen · www.znaturforsch.com K

die Bildung weiterer Siliciumcluster. Wir befaßten uns demzufolge eingehend mit der Synthese von Supersilylsilanen $R*SiX_3$ (X = H, Me, *t*Bu, Ph, SiMe₃, F, Cl, Br, I, OMe, OTf = OSO₂CF₃)

Nachfolgend sei nun zunächst über Synthesen, dann über Charakterisierung und anschließend über Strukturen der Supersilylsilane $R*SiX_3 -$ und damit im Zusammenhang über abstoßende sterische und anziehende van-der-Waals Effekte der Substituenten X – berichtet (bezüglich vorläufiger Hinweise auf Synthesen einiger Supersilylsilane $R*SiX_3$ vgl. [3 - 5]). Eine nachstehende Veröffentlichung wird sich dann mit der – zu Disilanen, Cyclosilanen, Silylenen, Disilenen und *tetrahedro*-Tetrasilan führenden – Dehalogenierung halogenhaltiger Supersilylsilane $R*SiX_3$ und damit zugleich mit der Beantwortung der oben gestellten Frage beschäftigen [6].

2. Synthesen der Supersilylsilane R*SiX₃ (R* = SitBu₃)

Die Supersilylsilane $R*SiX_3$ lassen sich nach zwei Methoden synthetisieren: Durch Verbindungsaufbau (Knüpfung der R*Si-Bindung) und durch Verbindungsumwandlung (Ersatz von X gegen einen anderen Substituenten X').

Durch **Verbindungsaufbau** entstehen die Supersilylsilane R*SiX₃ vielfach bequem gemäß Gleichung (2) im Zuge der Einwirkung von Natriumsupersilanid NaR* auf Halogensilane in organischen Medien (THF, Benzol, Pentan):

Hal-Si + NaR*
$$\overrightarrow{A}$$
 R*-Si (2)

Zunehmende Elektronegativität des zu substituierenden Halogens und abnehmende Sperrigkeit der übrigen siliciumgebundenen Substituenten erleichtern die Supersilanidierung. Demgemäß lassen sich etwa mit NaR* in SiF₄, SiH₂Cl₂ und MeSiHCl₂ bis zu zwei Halogenatome, in SiCl₄, Me₂SiCl₂, PhSiHCl₂ und Ph₂SiCl₂ ein Halogenatom und in SiBr₄ kein Halogenatom gegen R* austauschen. Anstelle von R*SiBr₃ bildet sich in letzterem Falle hauptsächlich R*Br als R*-haltiges Produkt (SiBr₄ + NaR* \rightarrow R*Br + NaSiBr₃ (\rightarrow Folgeprodukte)). Analog verlaufen die Reaktionen von NaR* mit ClSiBr₃, Cl₂SiBr₂, Cl₃SiBr oder von $R_{2}^{*}Mg$ mit SiBr₄, wogegen $R_{2}^{*}Zn$ bis 65 °C nicht mit SiBr₄ reagiert. Glatt im Sinne von (2) erfolgt die Supersilanidierung von Me₃SiCl, tBu₂MeSiCl, Ph₂MeSiCl, Ph₃SiCl und (Me₃Si)₃SiCl. Einen Sonderfall stellt das Silan SiHCl₃ dar, das trotz kleiner Substituenten und elektronegativem Halogen mit NaR* nur untergeordnet zu R*SiHCl₂ reagiert. Tatsächlich deprotoniert NaR* das Edukt SiHCl₃, wobei das gemäß SiHCl₃ + NaR* \rightarrow Na⁺SiCl₃⁻ + R*H gebildete Anion SiCl₃⁻ mit anwesendem SiHCl₃ bzw. NaR* zu einem Produktgemisch abreagiert. Interessanterweise setzt sich das mit Supersilylnatrium NaSi*t*Bu₃ hinsichtlich seiner Sperrigkeit vergleichbare Trisyllithium LiC(SiMe₃)₃ in glatter Reaktion sowohl mit SiBr₄ als auch mit SiHCl₃ unter Alkanidierung um [7]. Bezüglich der u. a. zu R*SiCl₃ führenden Umsetzung von NaR* mit

Cl₃Si-SiCl₃ vgl. den Exp. Teil.

Die hohe Sperrigkeit der Supersilylgruppe erlaubt nur elektrophile, aber keine nucleophilen Substitutionen am Si-Atom der Gruppe. Demgemäß sind zwar Umsetzungen von NaR* mit HalSiR₃ im Sinne von Gleichung (2) möglich, wogegen NaSiX₃ nicht mit R*Hal reagiert. Wenig wahrscheinlich sind wohl auch Insertionen von Silvlenen SiX₂ in die sterisch behinderte SiX-Bindung von R*X gemäß R*X + SiX₂ \rightarrow R*SiX₃ (vgl. den Exp. Teil sowie bezüglich der Insertionen von Carbenen in die R*X-Bindung Lit. [8]). Außer durch nucleophile Substitutionsreaktionen läßt sich der Aufbau von R*SiX₃ auch auf radikalischem Wege bewerkstelligen. Die letzte Methode stellt bisher den einzigen Zugang zu Superdisilan R*SitBu₃ \equiv tBu₃Si-SitBu₃ dar: $2NaR^* \rightarrow 2Na^+ + 2R^{*\bullet} + 2e^- \rightarrow 2Na^+ + R^{*-}$ $R^* + 2e^-$. Als Oxidationsmittel haben sich TCNE und AgNO₃ bewährt [3].

Sind Supersilylsilane durch Supersilanidierung nicht oder aus anderen Gründen schwer zugänglich, so lassen sie sich vielfach durch **Verbindungsumwandlung** in organischen Medien aus Supersilylsilanen R*SiX₃ gewinnen. So führt die *Hydrierung* mit LiAlH₄ gemäß Gleichung (3) oder die *Halogenierung* mit Hal₂ gemäß Gleichung (4a) bzw. (4b)

$$R^{*}-S_{i}^{|}-Hal + H^{-} \xrightarrow{\mathbf{B}} R^{*}-S_{i}^{|}-H \quad (3)$$

$$R^{*}-S_{i}^{|}-H \quad +Hal_{2} \xrightarrow{\mathbf{C}} R^{*}-S_{i}^{|}-Hal \quad (4a)$$

$$R^{*}-S_{i}^{|}-R^{*} +Hal_{2} \xrightarrow{\mathbf{D}} R^{*}-S_{i}^{|}-Hal \quad (4b)$$

Tab. 1. Darstellung und Charakterisierung von Supersilylsilanen $R*SiX_3$ (X = H, Organyle, Halogen, OR). Alle gewonnenen Silane sind *farblose Feststoffe*.

Supersilyl- monosilane	Darst. Verf.	Schmp. [°C]	$\delta(^{29}\text{Si})$ [SiX ₃]	Re [d]	eakti [e]	ionen [f]
Hal-frei:						
R*SiH ₃	A, B	137	-107.1	_	_	-
R*SiH ₂ Me	B	59	-71.55	_	_	-
R*SiH ₂ Ph	В	67	-61.71	_	-	-
R*SiMe ₃ [12]	Α	90 [g]	-19.23	_	-	_
R*SitBu ₃ [12]	[k]	198	+35.35	-	_	-
R*SiPh ₃ [a]	Α	195	-18.53	-	-	-
R*SiMePh ₂ [a]	Α	?	-9.19	-	-	-
R*SiMe ₂ tBu [a]	Α	?	-7.84	_	_	-
$R*Si(SiMe_3)_3$ [a]	Α	?	-8.78	-	_	_
F-haltig						
R*SiF ₃	Α	190 [g]	-55.67	+	_	S
R*SiMeF ₂	E	218 [g]	-17.96	+	-	R
Cl-haltig						
R*SiH ₂ Cl [b]	Α	145	-28.57	+	_	S
R*SiHCl ₂	A, C	191	-0.89	+	_	(S)
R*SiCl ₃ [c]	A, C	250 [g]	+18.04	+	-	R
R*SiHMeCl	Α	70	+0.39	_	_	S, R
R*SiMe ₂ Cl	Α	?	+24.09			
R*SiMeCl ₂	A, C	148	+35.56	+	_	R
R*SiHPhCl	Α	76	-1.97	+	-	R
R*SiPh ₂ Cl [a]	Α	?	+6.45	-	-	-
$R*SiPhCl_2[c]$	Α	105	+9.70	-	-	R
Br-haltig						
R*SiH ₂ Br	С	?	-42.39	+	+	(S)
R*SiHBr ₂	С	?	-7.63	-	-	(R)
R*SiBr ₃	С	232 [h]	-9.83	-	+	R
R*SiMeBr ₂	C, D	128	+3.44	-	+	R
R*SiPhBr ₂	С	136	+12.32	-	+	R

die Edukte R*SiX₃ in R*SiX'₃ über (in ersterem Falle unter H/Hal-Ersatz und Erniedrigung des Halogenierungsgrades, in letzterem Falle unter H/Halbzw. R*/Hal-Ersatz und Erhöhung des Halogenierungsgrades).

Auf diese Weise konnten etwa $R*SiH_2Cl$, R*SiHMeCl sowie R*SiHPhCl (durch Silanidierung aus SiH_2Cl_2 , $MeSiHCl_2$, $PhSiHCl_2$ zugänglich) glatt zu $R*SiH_3$, $R*SiH_2Me$ sowie $R*SiH_2Ph$ hydriert oder in $R*SiBr_2Cl$, R*SiMeBrCl sowie R*SiPhBrCl ungewandelt werden. Auch verwandeln Cl_2 , Br_2 und I_2 das Supersilylsilan $R*SiH_3$ über $R*SiH_2Hal$ und $R*SiHHal_2$ in $R*SiHal_3$ und die Supersilylsilane $R*SiH_2R$ (R = Me, Ph) über R*SiHRHal in $R*SiRHal_2$. Da die Überführung von $R*SiH_3$ mit Iod in $R*SiI_3$ Schwierigkeiten bereitet, stellt man das Triiodsupersilylsilan mit Vor-

Tab. 1 (Fortsetzung).

Supersilyl-	Darst. Schmp.		$\delta(^{29}\text{Si})$	Reaktionen		
monosilane	Verf.	$[^{\circ}C]$	[SiX ₃]	[d]	[e]	[f]
I-haltig						
R*SiH ₂ I	С	[i]	-29.60	+	+	(S)
$R*SiHI_2$	[1]	[i]	-6.34	+	+	(R)
R*SiI ₃	D	330 [h]	-121.2	_	+	R
Hal/Hal'-haltig						
R*SiHBrCl	С	?	+3.13	_	+	R
R*SiMeBrCl	С	142	+3.76	_	+	R
R*SiPhBrCl	С	146	+17.27	_	+	R
R*SiBr ₂ Cl	С	151 [h]	+1.10	-	+	R
R*SiIBr ₂	D	[i]	-41.82	-	+	(R)
$R*SiBrI_2$	D	[i]	-79.18	-	+	(R)
O-haltig						
$(R*SiH_2)_2O$	F	?	-23.14	_	_	-
R*SiH ₂ OMe [b]	F	155 [h]	-15.66	_	_	?
$R*SiH(OMe)_2$	F	[i]	-1.49	-	-	?
$R*SiPh(OMe)_2$	F	81	-10.04	-	-	?
R*SiHMe(OMe)	F	93	5.40	_	_	?
$R*SiH_2(OTf)$	F	[i]	-3.53	+	_	?
$R*SiH(OTf)_2$	F	[i]	-4.17	+	_	?
$R*Si(OTf)_3$	F	[i]	?	+	_	?

[a] Gemeinsam mit W. Hochmuth. – [b] Gemeinsam mit Ch. M.M. Finger. – [c] Gemeinsam mit T. Passler. – [d] Hydrolyseempfindlichkeit (bzw. Methanolyseempfindlichkeit). – [e] Oxidationsempfindlichkeit. – [f] Es bedeuten S/R: Silanidierung/Reduktion mit NaR* (Angaben in Klammern beziehen sich auf vorläufige Ergebnisse). – [g] Sblp. – [h] Zersetzung. – [i] Nicht isoliert. – [k] Durch Oxidation von R*Na mit TCNE bzw. Ag⁺. – [I] Durch Reaktion von R*SiI₃ in THF zunächst mit NaR* (\rightarrow R*SiI₂Na), dann mit HBr oder MeOH.

teil durch Iodierung von $R^*_2SiH_2$ dar. Ein spezifischer wirkendes Halogenierungsmittel stellt GaCl₃ dar [9], mit dem etwa R^*SiH_2Cl quantitativ in R^*SiHCl_2 verwandelt werden kann, was mit anderen Halogenierungsmitteln wie CCl₄, CBr₂Cl₂ oder PdCl₂ nicht gelingt.

Verwandt mit dem Verfahren **B** sind die im Sinne der Gleichungen (5) bzw. (6) erfolgenden *nucleophilen Substitutionen* von Hal⁻ gegen andere Anionen Nu⁻ und von H⁻ gegen Anionen OAc⁻ starker Säuren HOAc:

$$R^{*}-S_{i}^{\dagger}-Hal+Nu^{-} \xrightarrow{\mathbf{E}} R^{*}-S_{i}^{\dagger}-Nu \quad (5)$$

$$R^{*}-S_{i}^{\dagger}-H +HOAc \xrightarrow{\mathbf{F}} R^{*}-S_{i}^{\dagger}-OAc \quad (6)$$

Beispielsweise reagieren die Verbindungen R*SiH₂Hal sowie R*SiHHal₂ (Hal = Cl, Br) mit dem Nucleophil MeOH unter Bildung von R*SiH₂(OMe) sowie R*SiH(OMe)₂, die Verbindung R*SiMeCl₂ mit dem Nucleophil F⁻ (aus KHF₂) unter Bildung von R*SiMeF₂ und die Verbindung R*SiH₃ mit CF₃SO₃H = TfOH unter Bildung von R*SiH_n(OTf)_{3-n} (n = 0 - 2).

Die von uns gewonnenen Supersilylsilane R*SiX₃ sind in Tab. 1 zusammen mit den genutzten Syntheseverfahren (**A** bis **F**) aufgeführt. In diesem Zusammenhang sei noch erwähnt, daß auch eine Reihe von Supersilylgermanen, -stannanen und -plumbanen des Typs R*ER_nX_{3-n} (E = Ge, Sn, Pb; R = Me, Ph; X = Cl, Br) synthetisiert werden konnten [10]. Bezüglich einiger Supersilylmethane R*CH_nX_{3-n} vgl. Lit. [8] und [11], bezüglich Supersilylbenzol R*C₆H₅ [12].

3. Charakterisierung der Supersilylsilane R*SiX₃ (R = SitBu₃)

Einige **Kenndaten** der Supersilylsilane $R*SiX_3$ sind der Tab. 1 zu entnehmen (vgl. auch Exp. Teil). Alle Verbindungen stellen *farblose Feststoffe* dar, die bei Vorliegen von SiH-, SiH₂- oder SiH₃-Gruppen eine bzw. zwei starke *IR-Absorptionen* im Wellenzahlenbereich um 2100 cm⁻¹ aufweisen. Die ²⁹Si-NMR-Signallagen der SiX₃-Gruppen (Tab. 1) hängen stark, die ¹H-NMR-Signallagen der SiX₃-Gruppen sowie die ²⁹Si-NMR-Signallagen der SitBu₃-Gruppe weniger auffallend von der Verbindungsart ab (vgl. Exp. Teil).

Beim Übergang $R*SiF_3 \rightarrow R*SiCl_3 \rightarrow R*SiBr_3$ \rightarrow R*SiI₃ beobachtet man für das ²⁹Si-NMR-Signal der SiHal₃-Gruppe zunächst bis R*SiCl₃ eine Tieffeld-, dann eine Hochfeldverschiebung (Tab. 1). Einen entsprechenden Gang des ²⁹Si-NMR-Signals findet man auch in Richtung SiF₄ (-113.7), SiCl₄ (-19.6), SiBr₄ (-93.6), SiI₄ (-351.7) [13]. Der Ersatz eines Halogens in SiHal₄ durch Supersilyl führt in jedem Falle zu einer Tieffeldverschiebung des ²⁹Si-NMR-Signals. In diesem Zusammenhang deutet die beachtliche ²⁹Si-NMR-Signal-Tieffeldverschiebung beim Übergang SiI₄ \rightarrow R*SiI₃ auf besondere Bindungsverhältnisse im Triiodsupersilylsilan (s. unten; vgl. hierzu auch den Gang der ²⁹Si-NMR-Supersilylsignale der Verbindungen R*SiHal₃, Exp. Teil). Interessanterweise bewirkt der Ersatz aller F-Atome in SiF_4 und $R*SiF_3$ gegen H im ersten Fall eine Tieffeld-, im letzten eine Hochfeldverschiebung des ²⁹Si-NMR-Signals von SiF₄ bzw. SiF₃, wobei SiH₄ bezüglich seiner ²⁹Si-Resonanz (–95.6) mit SiBr₄ [13], R*SiH₃ eher mit R*SiI₃ (Tab. 1) vergleichbar ist. Der Ersatz von einem oder zwei H-Atomen in R*SiH₃ gegen Halogen-Atome oder Organylgruppen führt in den untersuchten Fällen zu einer mehr oder weniger deutlichen Tieffeldverschiebung des ²⁹Si-NMR-Signals der SiX₃-Gruppe.

Die vergleichsweise sperrige Supersilylgruppe behindert naturgemäß in Verbindungen $R*SiX_3 = tBu_3Si-SiX_3$ die Gruppenrotationen um die Si-Si- und Si-C-Bindungen. Aus Festkörper-NMR-Spektren von Superdisilan $tBu_3Si-SitBu_3$, dessen innere Rotationen wegen des hohen Raumbedarfs der tBu-Gruppen deutlich gehemmt sind, konnte der angesprochene Sachverhalt experimentell abgeleitet werden [14].

Tab. 1 informiert darüber hinaus über die Reaktivität der Supersilylsilane R*SiX₃ hinsichtlich Wärme, Wasser und Luft. Wie aus den zum Teil sehr hohen Schmelzpunkten der Verbindungen hervorgeht, sind die betreffenden Supersilylsilane vergleichsweise thermostabil – z.B. gegen Spaltung nach $R*SiX_3 \rightarrow R*X + SiX_2$ ($R*SiI_3$ zerfällt erst um 330 °C). Die Reaktivität von R*SiX₃ gegen Wasser und Luft hängt von der Art der Substituenten X ab. So hydrolysieren und methanolysieren R*SiH₂Hal, R*SiHHal₂ und R*SiHRHal im Unterschied zu R*SiHal₃ und R*SiRHal₂ (Ausnahme R*SiF₃, R*SiMeF₂) gemäß Tab. 1 bei Raumtemperatur rasch (vgl. das analoge Verhalten SiH-haltiger und -freier Trisylhalogensilane (Me₃Si)₃CSiX₃ [7]). Bei entsprechend hoher Temperatur lassen sich allerdings auch in R*SiHal₃ und R*SiRHal₂ die Halogenatome durch OH- oder OMe-Gruppen ersetzen. Die Substitution von H-Atomen in R*SiH₃ und R*SiH₂R gegen OMe ist durch Reaktion der Edukte mit NaOMe in MeOH möglich. Oxidationen mit Luft (wohl nur in Anwesenheit von Wasserspuren) erfolgen im Falle aller brom- und iodhaltigen Supersilylsilane R*SiX3 und $R*SiRX_2$ (langsame Bildung von Br_2 , I_2), wogegen entsprechende fluor- und chlorhaltige Spezies luftunempfindlich sind.

Weitere Beispiele für den Ersatz von Wasserstoff oder Halogen gegen andere Gruppen (z. B. Halogen, Wasserstoff, Supersilyl) wurden bereits im Zusammenhang mit der Darstellung von $R*SiX_3$ besprochen (vgl. Gl. (3) - (6)). Wie dort angedeutet

Abb. 1a. Struktur des Moleküls $tBu_3Si-SitBu_3$ und verwendete Atomnumerierung (Lokalsymmetrie $\approx D_3$; ORTEP-Plot; thermische Schwingungsellipsoide 25%; H-Atome unberücksichtigt). Ausgewählte Bindungslängen [Å] und -winkel [°] mit Standardabweichungen: Si1-Si1A 2.686(1), Si1-C1 / C5 / C9 1.991(2) / 1.991(2) / 1.993(2). – C1 / C5 / C9-Si1-Si1A 111.42(6) / 112.09(6) / 111.63(7), C1-Si1-C5/C1-Si1-C9/C5-Si1-C9 107.24 / 106.90(8) / 107.28(9). – Bezüglich der Torsionswinkel vgl. Abb. 1b.

Abb. 1b. Newman-Projektion des Moleküls $tBu_3Si-SitBu_3$ (vgl. Abb. 1a).

wurde, beschränkt sich die Möglichkeit der *Super-silanidierung* (1) auf Supersilylhalogensilane mit räumlich kleinen Substituenten und elektronegativem Halogen (vgl. hierzu Tab. 1). Die Einwirkung von Supersilylnatrium auf andere Supersilylhalogensilane führt häufig zu *Reduktionen* (*Dehaloge*-

Abb. 2a. Struktur des Moleküls tBu₃Si-SiPh₃ im Kristall und verwendete Atomnumerierung (Lokalsymmetrie $\approx C_3$; 2 unabhängige Moleküle in der Elementarzelle; ORTEP-Plot eines Moleküls; thermische Schwingungsellipsoide 25%; H-Atome unberücksichtigt). Ausgewählte Bindungslängen [Å] und -winkel [°] mit Standardabweichungen (Werte in eckigen Klammern beziehen sich auf das zweite unabhängige Molekül): Si1-Si2 2.450(2) [2.450(2)], Si1-C13 / C19 / C25 1.907(3) / 1.899(3) / 1.906(4) [1.901(4) / 1.905(4) / 1.900(4)], Si2-C1 / C5 / C9 1.949(3) / 1.957(3) / 1.957(3) [1.957(4) / 1.953(4) / 1.952(4)]. - C13 / C19 / C25-Si1-Si2 112.8(1) / 115.1(1) / 112.0(1) [113.7(1) / 112.2(1) / 111.3(1))], C1 / C5 / C9-Si2-Si1 107.6(1)/109.0(1)/109.0(1) [109.4(1)/107.1(1) / 109.4(1)], C13-Si1-C19 / C13-Si1-C25 / C19-Si1-C25 104.8(2) / 106.4(2) / 105.1(2) [105.5(2) / 106.0(2) / 107.7(2)], C1-Si2-C5 / C1-Si2-C9 / C5-Si2-C9 110.5(2) / 110.6(2) / 110.0(2) [110.6(2) / 110.3(2) / 110.1(2)]. -Bezüglich der Torsionswinkel vgl. Abb. 2b.

nierungen) der Verbindungen $R*SiX_3$, auf die in einer nachstehenden Publikation [6] eingegangen wird.

4. Strukturen einiger Supersilylsilane R*SiX₃ (R* = SitBu₃)

Die Supersilylsilane R*SiX₃ bilden – sieht man von phenylhaltigen Verbindungen ab – meist wachsartige Kristalle, die sich nicht für röntgenstrukturanalytische Studien eignen. Demgemäß wurden bisher nur nachfolgende vier der in Tab. 1 aufgeführten Verbindungen strukturell geklärt. Mit Vorteil beschreibt man dabei die Supersilylsilane im Sinne der wiedergegebenen Formel als Disilane *t*Bu₃Si-SiX₃.

tBu	<i>t</i> Bu	tBu	Ph	<i>t</i> Bu	Ι	<i>t</i> Bu	Cl
tBu Si-	-Si tBu	tBu Si-	Si Ph	tBu Si-	-Si I	tBu Si-	Si Ph
tBu	tBu	tBu	Ph	tBu	Ι	<i>t</i> Bu	Cl

Abb. 2b. Newman-Projektion des Moleküls *t*Bu₃Si-SiPh₃ (vgl. Abb. 2a).

Abb. 3a. Struktur des Moleküls $tBu_3Si-SiI_3$ im Kristall und verwendete Atomnumerierung (Lokalsymmetrie $\approx C_3$; ORTEP-Plot; thermische Schwingungsellipsoide 25%; H-Atome unberücksichtigt). Ausgewählte Bindungslängen [Å] und -winkel [°] mit Standardabweichungen: Si1-Si2 2.433(2), Si1-C1 / C5 / C9 1.941(4) / 1.947(4) / 1.939/4), Si2-I1 / I2 / I3 2.472(1) / 2.469(1) / 2.481(1). – C1 / C5 / C9-Si1-Si2 105.5(1) / 105.7(1) / 106.0(1), C1-Si1-C5 / C1-Si1-C9 / C5-Si1-C9 112.9(2) / 113.0(2), Si1-Si2-I1 / I2 / I3 115.58(5) / 113.17(5) / 115.31(5), I1-Si2-I2 / I1-Si2-I3 / I2-Si2-I3 104.21(4), 103.40(4) / 103.75(4). – Bezüglich der Torsionswinkel vgl. Abb. 3b.

Über die Molekülstrukturen von 1,1,1,2,2,2,-Hexa-tert-butyldisilan tBu₃Si-SitBu₃ (farblose Pris-

Abb. 3b. Newman-Projektion des Moleküls *t*Bu₃Si-SiI₃ (vgl. Abb. 3a).

Abb. 3c. Raumerfüllungsmodell des Moleküls *t*Bu₃Si-SiI₃ (vgl. Abb. 3a).

men aus Pentan, orthorhombisch, Ibca), 1,1,1,. *Tri-tert-butyl-2,2,2,-triphenyldisilan* $tBu_3Si-SiPh_3$ (farblose Prismen aus Benzol; monoklin; P2(1)/m), 1,1,1-*Tri-tert-butyl-2,2,2-triioddisilan* $tBu_3Si-SiI_3$ (farblose Quader aus CH₂Cl₂, monoklin, P2(1)/c) und 1,1,1-*Tri-tert-butyl-2-phenyl-2,2-dichlordisilan* $tBu_3Si-SiPhCl_2$ (farblose Platten aus Benzol; monoklin, P2(1)/n) informieren die Abb. 1a, 2a, 3a und 4a zusammen mit ausgewählten Bindungslängen und -winkeln (über die Struktur von $tBu_3Si-SitBu_3$ haben wir vor Jahren bereits

Abb. 4a. Struktur des Moleküls tBu₃Si-SiPhCl₂ im Kristall und verwendete Atomnumerierung (ORTEP-Plot eines Moleküls; thermische Schwingungsellipsoide 25%; H-Atome unberücksichtigt). Ausgewählte Bindungslängen [Å] und -winkel [°] mit Standardabweichungen: Si1-Si2 2.399(1) Si1-C1 / C5 / C9 1.935(2) / 1.938(2) 1.934(2), Si2-C13 1.867(2), Si2-Cl1 Cl2 2.070(1) / 2.067(1). - Cl1-Si2-Cl2 104.55(5), Cl1 / Cl2-Si2-Cl3 104.98(8) / 104.60(8), Cl1 / Cl2-Si2-Si1 / 110.16(4) / 110.70(4), C13-Si2-Si1 120.55(7), C1 / C5 / C9-Si1-Si2 104.78(7) / 106.53(8) / 107.88(9), C1-Si1-C5 / C1-Si1-C9 / C5-Si1-C9 112.3(1) / 112.4(1) / 112.4(1). -Bezüglich der Torsionswinkel vgl. Abb. 4b.

Abb. 4b. Newman-Projektion des Moleküls *t*Bu₃Si-SiPhCl₂ (vgl. Abb. 4a).

vorläufig berichtet [14]; sie wurde von uns in der Folgezeit nochmals – anhand sehr gut ausgebildeter Kristalle – bestimmt). Die Abb. 1b, 2b, 3b und 4b geben die Disilane in Newman-Projektion wieder, die Abb. 3c veranschaulicht das Kalottenmodell von $tBu_3Si-SiI_3$, aus dem zugleich die Raumerfüllung (Sperrigkeit) der Supersilylgruppe hervorgeht.

Von Interesse ist zunächst der *SiSi-Abstand*, der wesentlich durch **sterische Effekte** der Substituenten bestimmt wird. Er wächst für die untersuchten Disilane R*SiX₃ in Richtung R*SiPhCl₂, R*SiI₃, R*SiPh₃, R*Si*T*Bu₃ an (2.399 / 2.433 / 2.450 / 2.686 Å; Abb. 4a, 3a, 2a, 1a) und übertrifft in jedem Falle den SiSi-Normalabstand (2.32 - 2.34 Å) [15]. Der aufgefundene Gang spricht für zunehmende Sperrigkeit der SiX₃-Gruppe in gleicher Richtung und – als Folge hiervon – für einen wachsenden Raumbedarf der Gruppen X in Richtung Cl < I < Ph < *t*Bu. Wegen des nicht allzu großen Raumbe-

darfs der Iodatome liegt der SiSi-Abstand in Hexaioddisilan I₃Si-SiI₃ (2.323 Å [16]) noch im Normalbereich, während der SiSi-Abstand in Hexaphenyldisilan Ph₃Si-SiPh₃ mit den etwas sperrigeren Phenylsubstituenten zwischen 2.32 und 2.41 Å liegen soll [17] und somit den SiSi-Abstand in tBu₃Si-SiPhCl₂ (2.399 Å) nicht erreicht, aber den SiSi-Normalabstand übertrifft. Aus den SiSi-Abständen von Hexakis(trimethylsilyl)disilan (Hyperdisilan) $(Me_3Si)_3Si-Si(SiMe_3)_3$ (2.388 A) [18] und Hexa-tert-butyldisilan (Superdisilan) (Me₃C)₃Si-Si(CMe₃)₃ (2.686 Å) läßt sich der SiSi-Abstand in (Me₃C)₃Si-Si(SiMe₃)₂ (Tab. 1) zu ca. 2.54 Å abschätzen, wonach Si(SiMe₃)₃ zwar überladener als SiPh₃, aber weniger sperrig als Si(CMe₃)₃ ist: Raumbedarf Ph < SiMe₃ < CMe₃.

Trotz des besonders langen SiSi-Abstands in Hexa-*tert*-butyldisilan (2.686 Å; bis heute die längste aufgefundene SiSi-Bindung eines Disilans) verhält sich tBu₃Si-SitBu₃ bei Raumtemperatur chemisch vergleichsweise inert und dissoziiert nicht in zwei Supersilylradikale (kein ESR-Signal; keine Reaktion mit Cl_2 im Dunkeln [3]). Zur Erklärung der Dissoziationsstabilität des Disilans kann man annehmen, daß die sterisch bedingte Schwächung der SiSi-Bindung teilweise durch vander-Waals-Wechselwirkungen peripherer Methylgruppen kompensiert wird [3]. Tatsächlich erzwingen die zusätzlichen Attraktionen eine Erniedrigung der erwarteten D_{3d} -Molekül-Symmetrie nach $\approx D_3$ (s. unten). Erst deutlich oberhalb Raumtemperatur (ab ca. 60 °C) erwacht die Reaktivität des Disilans mit der Bildung von Supersilyl-Radikalen gemäß $tBu_3Si-SitBu_3 \rightleftharpoons 2tBu_3Si^{\bullet}$, welche sich dann unter H-Aufnahme aus der chemischen Umgebung stabilisieren (Bildung von *t*Bu₃SiH [3]). Anders als das Disilan tBu₃SiSitBu₃ dissoziiert das Hexamesityldisilan Mes₃SiSiMes₃ deutlich unterhalb Raumtemperatur (ab. ca. -60 °C) reversibel in Trimesitylsilyl-Radikale Mes₃Si[•], die sich ab *ca.* –20 °C irreversibel unter H-Aufnahme aus der chemischen Umgebung stabilisieren (Bildung von Mes₃SiH [19]). Offensichtlich ist hiernach die Mes₃Si-Gruppe noch sperriger als die tBu₃Si-Gruppe (eine Röntgenstrukturanalyse von Mes₃Si-SiMes₃ fehlt bisher): Sperrigkeit *t*Bu < Mes.

Als Folge wachsender Sperrigkeit der SiX₃-Gruppen in tBu₃Si-SiX₃ erwartet man eine Vergrößerung der SitBu-Abstände und Verkleinerung der tBuSitBu-Winkel. Experimentell ergaben sich für R*SiPhCl₂ / R*SiI₃ / R*SiPh₃ / R*SitBu₃ im Mittel SiC-Abstände von 1.936 / 1.942 / 1.954 / 1.992 A und CSiC-Winkel von 112.4 / 112.9 / 110.4 / 107.14° (Normalbereiche 1.94 - 1.95 A und 110 -112° [3]). Der vergleichsweise große Winkel CSiC in tBu₃Si-SiI₃ überrascht. Möglicherweise beruht er auf elektronischen Effekten wie etwa einer ungewöhnlichen Polarisierung der SiSi-Bindung mit positiviertem SitBu₃- und negativiertem SiI₃-Ende (im Grenzfall ginge tBu₃Si-SiI₃ mit den Oxidationsstufen III beider Si-Atome in $tBu_3Si^+SiI_3^-$ mit den Oxidationsstufen IV sowie II der Si-Atome und einem planaren tBu₃Si-Kation über; vgl. in diesem Zusammenhang die Verbindung tBu₃Si-SnBr₃, für die der SiC-Abstand und CSiC-Winkel im Mittel zu 1.918 Å bzw. 115.3° bestimmt wurde [10]). Als Folge der großen CSiC-Winkel in tBu₃Si-SiI₃ sind die SiI-Abstände (im Mittel 2.474 A), verglichen mit denen in I_3 Si-Si I_3 (im Mittel 2.426 Å [16]),

groβ, die ISiI-Winkel (im Mittel 103.8°), verglichen mit denen in I_3 Si-Si I_3 (im Mittel 112.5° [16]), klein.

Die Substituenten an den beiden Si-Atomen der untersuchten Disilane nehmen eine gestaffelte Konformation zueinander ein. Allerdings stehen die Gruppen als Folge von van-der-Waals Effekten nicht exakt auf Lücke, wie dies etwa für Hexaioddisilan [16] oder Hexaphenyldisilan [17] der Fall ist (ISiSiI- oder CSiSiC-Winkel 60 °C). Hierbei nimmt die Verdrillung in Richtung einer ekliptischen Konformation und damit die van-der-Waals-Wechselwirkung zwischen den tBu- und X-Substituenten für die betreffenden Disilane wie folgt zu (vgl. Abb. 3b, 1b, 4b, 2b; in Klammern ist nachfolgend jeweils der kleine/große Diederwinkel CSiSiX wiedergegeben; Mittelwerte für tBu₃Si-SiPhCl₂): tBu₃Si-SiI₂ (49.9/70.1°), tBu₃Si-SitBu₃ (45.5/75.5°), tBu₃Si-SiPhCl₂ (*ca*. 41/79°), *t*Bu₃Si-SiPh₃ (27.9/92.1°). Im Falle der Verbindung tBu₃Si-SiI₃, für welche die Abweichungen von der idealen Gruppenstaffelung noch am kleinsten sind, weisen die Iodatome auf der einer Seite in den Raum zwischen zwei Methylgruppen und auf der anderen Seite in Richtung einer Methylgruppe der Supersilylgruppe, wobei erstere Anordnung zum größeren, letztere zum kleineren Diederwinkel führt (vgl. Abb. 3c; Wasserstoffbrücken C-H…I ?). Besonders auffallende Abweichungen von der idealen Gruppenstaffelung findet man für das Disilan tBu₃Si-SiPh₃; dieser Sachverhalt spricht für starke Kontakte zwischen den tBuund Ph-Gruppen der Verbindung.

5. Experimenteller Teil

Alle Untersuchungen wurden unter strengem Ausschluß von Wasser und Sauerstoff durchgeführt. Ölpumpenvakuum = ÖV. Zur Verfügung standen Cl₂, Br₂, I₂, KHF₂, MeOH, CF₃SO₃H (TfOH), PCl₅, CBr₂F₂, SiF₄, SiCl₄, SiBr₄, Si₂Cl₆, SiH₃Cl, SiH₂Cl₂, SiHCl₃, MeSiHCl₂, MeSiCl₃, Me₂SiCl₂, Me₃SiCl, PhSiHCl₂, MeSiCl₃, Me₂SiCl₂, Me₃SiCl, PhSiHCl₂, PhSiCl₃, Ph₂SiCl₂, Ph₃SiCl, Ph₂MeSiCl, *t*Bu₂MeSiCl, Et₃SiH, SnCl₄, GaCl₃, LiAlH₄, LiH, AgNO₃. Nach Literaturvorschriften wurden synthetisiert: NaSi*t*Bu₃×2THF [12], (*t*Bu₃Si)₂Mg×2THF [20], (*t*Bu₃Si)₂Zn [21], (Me₃Si)₃SiCl [22]. Die Lösungsmittel (Pentan, Benzol, Toluol, Diethylether (Et₂O), Dibutylether (Bu₂O), *t*Butylmethylether (TBME), Tetrahydrofuran (THF), Dimethoxyethan (DME), Methylenchlorid, Tetrachlorkohlenstoff) wurden vor Gebrauch getrocknet.

Durch Komproportionierung äquimolarer Mengen SiCl₄ und SiBr₄ in Anwesenheit von GaCl₃ als Katalysator bei höheren Temperaturen wurden ClSiBr₃, Cl₂SiBr₂ und Cl₃SiBr gewonnen (ohne GaCl₃ kein Umsatz selbst bei 210°C). % SiCl₄ / SiClBr₃ / SiCl₂Br₂ / SiClBr₃ / SiBr₄ (²⁹Si-NMR, eTMS: $\delta = -19.60 / -33.28 / -50.40 / -69.14$ / -93.60): 1 h bei 190 °C 40 / 10 / 0 / 10 / 40%; 48 h bei 190 °C 5 / 25 / 40 / 25 / 5%.

Für *NMR-Spektren* standen Multikerninstrumente zur Verfügung: Jeol FX-90Q (¹H / ¹³C / ²⁹Si / ¹⁹F: 89.55 / 22.49 / 17.75 / 84.27 MHz), Jeol GSX-270 (¹H / ¹³C / ²⁹Si: 270.17 / 67.94 / 53.67 MHz) und Jeol EX-400 (¹H / ¹³C /²⁹Si / ¹⁹F: 399.78 / 100.54 / 79.43 / 375.97 MHz). Die ²⁹Si-NMR-Spektren wurden mit Hilfe eines INEPT- bzw. DEPT-Pulsprogramms mit energetisch optimierten Parametern für die jeweiligen Substituenten aufgenommen. -Für *Massenspektren* diente ein Gerät Varian CH7. – Die *Produkttrennungen* erfolgten mit einem HPLC-Gerät der Firma Waters (Säule 21.2 mm × 250 mm; Füllung Zorbax C18; Fluß 21 ml/min⁻¹; Detektion UV bei 223 nm, Refraktometrie).

5.1. Darstellung halogenfreier Supersilylsilane R*SiX₃ (vgl. Tab. 1)

a) Supersilylsilan R*SiH₃: (i) Zu 0.077 g (1.14 mmol) SiH₃Cl in 15 ml THF (-78 °C) werden 1.08 mmol NaR* in 2.3 ml THF getropft. Laut NMR quantitative Bildung von R*SiH₃. Nach Abkondensation aller flüchtigen Anteile im ÖV, Lösen des Rückstands in Pentan, Abfiltrieren unlöslicher Anteile (NaCl), Abkondensieren von Pentan liefert die Sublimation des Rückstands bei 40 °C/ÖV 0.198 g (0.860 mmol; 80%) R*SiH₃. - Farbloser, wachsartiger Feststoff, Schmp. 134 - 137 °C. – ¹H-NMR (C₆D₆, iTMS): $\delta = 1.115$ (s; SitBu₃), 3.316 (s; SiH₃); (CDCl₃, *i*TMS): $\delta = 1.142$ (s; Si*t*Bu₃), 3.019 (s; SiH₃). $-{}^{13}C{}^{1}H{}$ -NMR (C_6D_6 , *i*TMS): $\delta = 22.87 / 30.93 (3CMe_3 / 3CMe_3)$. $-{}^{29}\text{Si}\{{}^{1}\text{H}\}\text{-NMR}$ (C₆D₆, eTMS): $\delta = -107.1$ (SiH₃; bei ¹H-Kopplung: q; ¹ J_{SiH} = 182.2 Hz), 12.10 (SitBu₃). – MS: m/z = 230 (M⁺; 5%), 199 (M⁺-SiH₃; 86%), 173 $(M^+-tBu; 100\%)$. – (ii) Man setzt 0.143 g (0.540 mmol) R*SiH₂Cl (vgl. 5.3a) in 15 ml THF 12 h bei R.T. mit 0.118 g (3.11 mmol) LiAlH₄ um. Laut NMR vollständige Bildung von R*SiH₃. Nach Zugabe von MeOH/H₂O (Zersetzung von LiAlH₄), Abkondensieren aller flüchtigen Anteile im ÖV, Lösen des Rückstands in 5 ml Pentan, Abfiltrieren unlöslicher Anteile und Abkondensieren von Pentan liefern die Sublimation des Rückstands bei 40 °C/ÖV 0.114 g (0.494 mmol; 92%) R*SiH₃. - Charakterisierung: Vgl. (i).

b) Methylsupersilylsilan $R*SiH_2Me$: Man setzt 0.086 g (0.31 mmol) R*SiHMeCl (vgl. 5.7 b) in 5 ml THF bei R. T. 12 h mit 0.067 g (1.8 mmol) LiAlH₄ um. Laut NMR quantitative Bildung von $R*SiH_2Me$. Nach Zugabe von etwas H₂O/MeOH (Zersetzung von LiAlH₄), Abkondensieren aller flüchtigen Anteile im ÖV, Lösen des Rückstands in 5 ml Pentan, Abfiltrieren unlöslicher Anteile und Abkondensieren von Pentan verbleiben 0.068 g (0.28 mmol; 90%) R*SiH₂Me. – Farbloser, wachsartiger Feststoff, Schmp. 58 - 59 °C. – ¹H-NMR (C₆D₆, *i*TMS): δ = 0.291 (t; ³J_{HH} = 5.0 Hz; SiMe), 1.142 (s; SitBu₃), 3.812 (q; ³J_{HH} = 5.0 Hz; SiH₂). – ¹³C{¹H}-NMR (C₆D₆, *i*TMS): δ = –8.92 (SiMe), 23.18/31.12 (3*C*Me₃/3*CMe*₃). – ²⁹Si{¹H}-NMR (C₆D₆, *e*TMS): δ = –71.75 (SiH₂; bei ¹H-Kopplung: t von q; ¹J_{SiH} = 174.9 Hz, ²J_{SiH} = 6.8 Hz), 7.39 (SitBu₃). – IR(KBr): ν = 2102 cm⁻¹ (SiH). – MS: *m/z* = 244 (M⁺; 9%), 229 (M⁺-Me; 3%), 199 (M⁺-SiH₂Me; 100%), 187 (M⁺-tBu; 100%). – C₁₃H₃₂Si₂ (244.6): Ber. C 63.84, H 13.19. Gef. C 62.67, H 13.08%).

c) Phenylsupersilylsilan R*SiH₂Ph: Man setzt 0.362 g (1.06 mmol) R*SiHPhCl (vgl. 5.8b) in 14 ml THF bei R. T. 12 h mit 0.068 g (1.8 mmol) LiAlH₄ um. Laut NMR quantitative Bildung von R*SiH₂Ph. Nach Zugabe von etwas H₂O/MeOH (Zersetzung von LiAlH₄), Abkondensieren aller flüchtigen Anteile im ÖV, Lösen des Rückstands in 5 ml Pentan, Abfiltrieren unlöslicher Anteile und Abkondensieren von Pentan erhält man durch Sublimation des Rückstands bei 80 °C/HV 0.304 g (0.990 mmol; 93%) R*SiH₂Ph. - Farblose, wachsartige Festsubstanz, Schmp. 66 - 67 °C. – ¹H-NMR (C₆D₆, *i*TMS): δ = 1.160 (s; SitBu₃), 4.529 (s; SiH₂), 7.09 - 7.13/7.70 - 7.73 (m/m; *m*-H, *o*, *p*-H von Ph). $-{}^{13}C{}^{1}H{}$ -NMR (C₆D₆, *i*TMS): $\delta = 23.49/31.25 (3CMe_3 / 3CMe_3), 128.2 / 129.1 / 133.1$ / 137.1 (*m*-/*p*-/*o*-/*i*-C von Ph). $-{}^{29}$ Si{ 1 H}-NMR (C₆D₆, eTMS): $\delta = -61.71$ (SiH₂; bei ¹H-Kopplung: t von t; ${}^{1}J_{\text{SiH}} = 179.9 \text{ Hz}, {}^{3}J_{\text{SiH}} = 5.8 \text{ Hz}), 9.40 \text{ (SitBu}_3). - \text{MS}:$ $m/z = 306 (M^+; 8\%), 249 (M^+ - tBu; 100\%) - IR(KBr): \nu =$ 2096 cm⁻¹ (SiH). – $C_{18}H_{34}Si_2$ (306.6): Ber. C 70.51, H 11.18. Gef. C 69.75. H 11.03%.

d) Trimethylsilylsupersilylsilan R^*SiMe_3 [12]:/ Zu 0.218 g (2.00 mmol) Me₃SiCl in 10 ml Pentan werden 2.00 mmol NaR* in 5 ml THF getropft. Nach Abkondensieren aller im ÖV flüchtigen Anteile, Lösen des Rückstands in Pentan, Abfiltrieren unlöslicher Bestandteile (NaCl) und Abkondensieren von Pentan erhält man nach Sublimation bei 90 °C/ÖV 0.49 g (1.8 mmol; 90%) R*SiMe₃ – Farbloser Feststoff. – ¹H-NMR (C₆D₆, *i*TMS): δ = 0.293 (s; SiMe₃), 1.162 (s; SitBu₃). – ¹³C{¹H}-NMR (C₆D₆, *i*TMS): δ = 3.29 (SiMe₃), 23.70/31.53 (3CMe₃ / 3CMe₃), – ²⁹Si{¹H}-NMR (C₆D₆, *e*TMS): δ = –19.23 (SiMe₃), 2.31 (SitBu₃). – C₁₅H₃₆Si₂ (272.6): Ber. C 66.08, H 13.31. Gef. C 65.94, H 13.36%.

e) Supersilyltri-tert-butylsilan R^*SitBu_3 (Superdisilan $tBu_3Si-SitBu_3$) [12]: Zu 3.77 g (22.2 mmol) AgNO₃ (wasserfrei) in 10 ml THF werden 22.2 mmol NaR* in 60 ml THF getropft. Nach Abkondensieren aller flüchtigen Anteile im ÖV, Extraktion des Rückstands mit 20 ml konz. HNO₃ (Lösen von gebildetem Ag), dann

40 ml Pentan, dreimaligem Waschen der organischen Phase mit H₂O verbleiben nach Abkondensieren von Pentan 3.12 g (7.82 mmol; 70%) *t*Bu₃Si-Si*t*Bu₃. – Farblose Kristalle, Schmp. 198 °C. – ¹H-NMR (C₆D₆, *i*TMS): δ = 1.379 (s; 2Si*t*Bu₃). – ¹³C{¹H}-NMR (C₆D₆, *i*TMS): δ = 27.28/34.63 (6CMe₃ / 6CMe₃). – ²⁹Si{¹H}-NMR (C₆D₆, *e*TMS): δ = 35.35. – MS: *m/z* = 341 (M⁺-*t*Bu; 3%), 199 (M⁺-Si*t*Bu₃; 6%). – C₂₄H₅₄Si₂ (398.8): Ber. C 72.46, H 13.65. Gef. C 72.08, H 13.91%. – Röntgenstrukturanalyse: Vgl. Abb. 1.

f) Triphenylsupersilylsilan R*SiPh3: Zu 0.405 g (1.37 mmol) Ph₃SiCl in 10 ml THF (0 °C) werden 1.37 mmol NaR* in 2.5 ml THF getropft. Nach einstündiger Reaktion bei R. T., Abkondensieren aller flüchtigen Anteile im ÖV, Lösen des Rückstands in Pentan, Abfiltrieren unlöslicher Anteile und Abkondensieren von Pentan verbleiben 0.591 g (1.29 mmol; 94%) R*SiPh3. -Farbloser Feststoff, Schmp. 195 °C. – ¹H-NMR (C₆D₆, *i*TMS): $\delta = 1.255$ (s; Si*t*Bu₃), 7.11 - 7.98 (m; SiPh₃). - $^{13}C{^{1}H}$ -NMR (C₆D₆, *i*TMS): $\delta = 24.16/31.90$ (3*C*Me₃) / 3CMe3), 127.9 / 129.3 / 136.6 / 137.5 (m-/p-/o-/i-C von 3Ph). $-{}^{29}$ Si{ 1 H}-NMR (C₆D₆, *e*TMS): $\delta = -18.53$ $(SiPh_3)$, 10.53 $(SitBu_3)$. – MS: m/z = 457 (M⁺; 5%), 401 (M⁺-*t*Bu; 86%), 259 (M⁺-Si*t*Bu₃; 100%), 199 (M⁺-SiPh₃; 55%). - C₃₀H₄₂Si₂ (458.8): Ber. C 78.53, H 9.23. Gef. C 74.75, H 8.81%. - Röntgenstrukturanalyse: Vgl. Abb. 3.

g) Methyldiphenylsupersilan R*SiMePh₂: Zu 0.168 g (0.850 mmol) Ph2MeSiCl in 1 ml THF werden 0.850 mmol NaR* in 1.6 ml THF getropft. Nach fünfstündiger Reaktion, Zugabe von MeOH (Zersetzung von überschüssigem NaR*), Abkondensieren aller flüchtigen Anteile im ÖV, Lösen des Rückstands in Pentan, Abfiltrieren unlöslicher Anteile und Abkondensieren des Pentans verbleiben 0.290 g (0.731 mmol; 86%) $R*SiMePh_2$. – Farbloser Feststoff. – ¹H-NMR (C₆D₆, *i*TMS): $\delta = 0.513$ (s; SiMe), 1.162 (s; Si*t*Bu₃), 7.10 - 7.90 (m; SiPh₂). $-{}^{13}C{}^{1}H$ -NMR (C₆D₆, *i*TMS): $\delta = -0.63$ (SiMe), 24.11/31.71 (3CMe₃ / 3CMe₃), 129.6 / 134.1 / 137.6 / 139.0 (m-/p-/o-/i-C von 2Ph). – ²⁹Si{¹H}-NMR $(C_6D_6, eTMS): \delta = -9.19 (SiMePh_2), 7.22 (SitBu_3). -$ MS: $m/z = 396 (M^+; 4\%), 339 (M^+ - tBu; 20\%), 197 (M^+ - tBu; 2$ SitBu3; 26%).

h) Di-tert-butylmethylsupersilylsilan R*SiMetBu₂: Zu 0.287 g (1.70 mmol) tBu₂MeSiCl in 10 ml THF (– 78 °C) werden 1.72 mmol NaR* in 10 ml THF getropft. Nach fünfstündiger Reaktion bei R. T., Abkondensieren aller flüchtigen Anteile im ÖV, Lösen des Rückstands in Pentan, Abfiltrieren unlöslicher Anteile und Abkondensieren von Pentan verbleiben 0.422 g (1.34 mmol; 79%) R*SiMetBu₂. – Farbloser Feststoff. – ¹H-NMR (C₆D₆, iTMS): δ = 0.316 (s; SiMe₂), 1.068 (s; SitBu), 1.208 (s; SitBu₃). – ¹³C{¹H}-NMR (C₆D₆, *i*TMS): δ = 0.13 (SiMe₂), 20.69/30.14 (CMe₃/CMe₃), 23.94/32.23 $(3CMe_3 / 3CMe_3) - {}^{29}Si\{{}^{1}H\}$ -NMR $(C_6D_6, eTMS)$: $\delta = -7.84$ $(SiMe_2tBu)$, 11.41 $(SitBu_3)$. – MS: m/z = 314 $(M^+; 1\%)$, 299 $(M^+$ -Me; 5%), 257 $(M^+$ -tBu; 100%). – $C_{18}H_{42}Si_2$ (314.7): Ber. C 68.70, H 13.45. Gef. C 66.23, H 13.31%.

i) Supersilyltris(trimethylsilyl)silan $R^*Si(SiMe_3)_3$: Zu 0.533 g (1.88 mmol) (Me₃Si)₃SiCl in 10 ml THF werden 1.90 mmol NaR* in 13.5 ml THF getropft. Nach zehnstündiger Reaktion, Abkondensieren aller flüchtigen Anteile im ÖV, Lösen der Rückstands in Pentan, Abfiltrieren unlöslicher Anteile und Abkondensieren von Pentan verbleiben 0.881 g (1.81 mmol; 96%) R*Si(SiMe₃)₃. – Farbloser Feststoff. – ¹H-NMR (C₆D₆, *i*TMS): δ = 0.297 (s; 3SiMe₃), 1.176 (s; SitBu₃). – ¹³C{¹H}-NMR (C₆D₆, *i*TMS): δ = 3.43 (3SiMe₃), 23.81/31.61 (3*C*Me₃/3*CMe₃*), –8.78 (Si), 2.57 (SitBu₃).

5.2. Darstellung fluorhaltiger Supersilylsilane R*SiX₃ (vgl. Tab. 1)

a) Trifluorsupersilylsilan R*SiF3: Zu 0.170 g (1.63 mmol) SiF₄ in 40 ml THF (-96 °C) werden 1.43 mmol NaR* in 23 ml THF getropft. Laut NMR quantitative Bildung von R*SiF₃. Nach Abkondensieren aller flüchtigen Anteile im ÖV, Lösen des Rückstands in 15 ml Pentan, Abfiltrieren unlöslicher Anteile (NaF) und Abkondensieren von Pentan verbleiben 0.382 g (1.34 mmol; 94%) R*SiF₃. – Farblose Kristalle, Schmp. 190 °C. – ¹H-NMR (C₆D₆, *i*TMS): $\delta = 1.081$ (s; SitBu₃). $-{}^{13}C{}^{1}H{}$ -NMR (C_6D_6 , *i*TMS): $\delta = 21.94/30.57 (3CMe_3 / 3CMe_3)$. $-{}^{29}\text{Si}\{{}^{1}\text{H}\}\text{-NMR} (C_6D_6, e\text{TMS}): \delta = -55.67 (q; {}^{1}J_{\text{SiF}} =$ 388.5 Hz; SiF₃), 7.36 (q; ${}^{2}J_{SiF}$ = 17.6 Hz; SitBu₃). – ${}^{19}F$ -NMR (C₆D₆, eCFCl₃ in (CD₃)₂CO): $\delta = -104.12$ (SiF₃). - MS: m/z = 284 (M⁺; 9%), 227 (M⁺-tBu; 45%), 199 $(M^+-SiF_3; 4\%)$. – $C_{12}H_{27}F_3Si_2$ (284.5): Ber. C 50.66, H 9.57. Gef. C 49.92, H 9.48%.

b) Difluormethylsupersilylsilan R^*SiMeF_2 : Man erwärmt 0.980 g (3.13 mmol) $R^*MeSiCl_2$ (vgl. 5.7c) und 0.512 g (6.56 mmol) KHF₂/0.114 g (1.96 mmol) KF 24 h in 20 ml Heptan auf 70 °C. Laut NMR quantitative Bildung von R^*SiMeF_2 . Nach Abfiltrieren unlöslicher Anteile und Abkondensieren aller flüchtigen Anteile im ÖV verbleiben 0.823 g (2.93 mmol; 94%) R^*SiMeF_2 – Farbloser Feststoff, Sblp. 218 °C/ÖV. – ¹H-NMR (C₆D₆, *i*TMS): δ = 0.346 (t; ³J_{HF} = 8.5 Hz; SiMe), 1.132 (t; ⁵J_{HF} = 0.3 Hz; (SitBu₃). – ¹³C{¹H}-NMR (C₆D₆, *i*TMS): δ = 4.71 (t; ²J_{CF} = 10.6 Hz; SiMe), 22.38 (t; ³J_{CF} = 1.5 Hz; 3 CMe₃), 31.09 (t; ⁴J_{CF} = 0.8 Hz; 3 CMe₃) – ²⁹Si{¹H}-NMR (C₆D₆, *e*TMS): = 2.23 (t; ²J_{SiF} = 18.6 Hz; SitBu₃), 17.96 (t; ¹J_{SiF} = 352.8 Hz; SiF₂). – ¹⁹F-NMR (C₆D₆, *e*CFCl₃ in (CD₃)₂CO): δ = 121.9 (q; ³J_{FH} = 8.5 Hz; SiF₂). – MS: *m*/z = 280 (M⁺; 5%), 265 (M⁺-Me; 2%), 223 (M⁺-tBu; 100%), 82 (M⁺-SiMeF₂; 36%. – C₁₃H₃₀F₂Si₂ (280.6): Ber. C 55.66, H 10.78. Gef. C 55.01, H 10.85%. – Anmerkung: Nach 7stündiger Reaktion von $R^{*}MeSiCl_{2}$ und KHF_{2} in Heptan erkennt man NMR-spektroskopisch sowohl $R^{*}MeSiCl_{2}$ als auch $R^{*}MeSiF_{2}$, aber nicht $R^{*}MeSiClF$.

5.3. Darstellung chlorhaltiger Supersilylsilane R*SiX₃ (vgl. Tab. 1)

a) Chlorsupersilvlsilan R*SiH₂Cl: Zu 0.682 g (6.75 mmol) SiH₂Cl₂ in 2.5 ml Toluol (-78 °C) werden 5.0 mmol NaR* in 10 ml THF getropft. Laut NMR quantitative Bildung von R*SiH2Cl. Nach Abkondensieren aller flüchtigen Anteile im ÖV. Lösen des Rückstands in Pentan, Abfiltrieren unlöslicher Anteile (NaCl), Abkondensieren von Pentan verbleiben 1.17 g (4.43 mmol, 89%) R*SiH₂Cl und nach Sublimation des Rückstands bei 90 °C/ÖV 1.01 g (3.82 mmol, 77%) R*SiH₂Cl. -Farbloser wachsartiger Feststoff, Sblp. 90 °C/ÖV. – ¹H-NMR (C₆D₆, *i*TMS): $\delta = 1.113$ (s; SitBu₃), 4.989 (s; SiH₂); (CDCl₃; *i*TMS): $\delta = 1.205$ (s; SitBu₃), 4.828 (s; SiH₂). $-{}^{13}C{}^{1}H{-}NMR$ (C₆D₆, *i*TMS): $\delta = 23.64/30.97$ $(3CMe_3 / 3CMe_3)$. $-{}^{29}Si\{{}^{1}H\}$ -NMR (C₆D₆, eTMS): $\delta =$ -28.57 (SiH₂; bei ¹H-Kopplung: t; ¹J_{SiH} = 204.0 Hz), 5.20 $(SitBu_3)$. – MS: $m/z = 264/266 (M^+; 46\%), 207/209 (M^+:$ 90%), 199 (M⁺-SiH₂Cl; 10%).

b) Dichlorsupersilvlsilan R*SiHCl₂: (i) Zu 0.203 g (1.50 mmol) SiHCl₃ in 15 ml Pentan (-78 °C) werden 1.02 mmol NaR* in 2.0 ml THF getropft. Nach Erwärmen auf R. T. enthält die Lösung laut ¹H- und ²⁹Si{1H}-NMR (C₆D₆) neben R*SiHCl₂ (ca. 12%; s.u.) hauptsächlich Supersilan R*H (50% [3]), darüber hinaus R*-R* (23% [3]), unbekannt (5%), - (ii) Zu 0.223 g (0.842 mmol) R*SiH₂Cl (vgl. 5.3a) in 10 ml Benzol werden 0.851 mmol (0.45 ml) wasserfreies GaCl₂ in 5 ml Benzol getropft. Laut NMR quantitative Bildung von R*SiHCl₂. Nach Abkondensieren aller flüchtigen Anteile im ÖV, Lösen des Rückstands in Pentan, Abfiltrieren unlöslicher Anteile (GaHCl₂) und Abkondensieren von Pentan verbleiben 0.228 g (0.761 mmol, 90%) R*SiHCl2. - Farbloser Feststoff, Schmp. 189 - 191 °C. – ¹H-NMR (C₆D₆, *i*TMS): δ = 1.153 (s; SitBu₃), 5.951 (s; SiH). $-{}^{13}C{}^{1}H$ -NMR (C₆D₆, *i*TMS): $\delta = 23.60/30.58 (3CMe_3 / 3CMe_3) - {}^{29}Si{}^{1}H{}$ -NMR (C₆D₆, eTMS): $\delta = -0.89$ (SiH), 4.19 (SitBu₃). -MS: m/z = 241/243/245 (M⁺-*t*Bu; 67%), 199 (M⁺-SiHCl₂; 100%). - Anmerkungen: - 1) SiHCl₃ reagiert mit NaR* (Molverhältnis 1:3) in THF hauptsächlich zu Supersilan R*H, darüber hinaus zu R*Cl und R*-R*. - 2) Beim Zutropfen von NEt₃ in THF zu einer Lösung von R*H (bzw. R*Br) in THF bei 60 °C bildet sich nicht R*SiHCl₂ (bzw. R*SiBrCl₂). - 3) R*SiCl₃ (vgl. 5.3c) reagiert nicht mit Bu₃SnH in Benzol bei 130 °C und nicht mit LiH in THF bei 70 °C zu R*SiHCl₂. – 4) R*SiH₂Cl (vgl. 5.3a) reagiert nicht mit SnCl₄ bei 120 °C und nicht mit PCl₅ in Benzol

bei 130 °C zu R*SiHCl₂. Reaktion erfolgt aber mit PdCl₂ in Pentan bei –78 °C (Bildung von R*SiCl₃, vgl. 5.3c), mit CBr₂F₂ bei 130 °C (Bildung von R*SiHBrCl und R*SiBr₂Cl; vgl. 5.6a und 5.6d; keine Reaktion bis 70 °C) und mit CCl₄ bei 65 °C (Bildung von R*SiHCl₂ und R*SiCl₃; vgl. 5.3b und 5.3c).

c) Trichlorsupersilvlsilan R*SiCl₃: (i) Zu 0.356 g (2.10 mmol) SiCl₄ in 20 ml THF werden 1.94 mmol NaR* in 5 ml THF (-78 °C) getropft. Laut NMR quantitative Bildung von R*SiCl₃. Nach Abkondensieren flüchtiger Anteile im ÖV. Lösen des Rückstands in Pentan, Abfiltrieren unlöslicher Anteile (NaCl) und Abkondensieren von Pentan verbleiben 0.627 g (1.88 mmol; 97%) R*SiCl₃. - Farbloser Feststoff, Sblp. 100 °C/ÖV. - ¹H-NMR (C₆D₆, *i*TMS): $\delta = 1.182$ (s; SitBu₃); (CDCl₃, *i*TMS): $\delta = 1.330$ (s; Si*t*Bu₃). $-{}^{13}C{}^{1}H{}-NMR$ (C₆D₆, *i*TMS): $\delta = 24.03/30.84 (3CMe_3 / 3CMe_3) - {}^{29}Si{}^{1}H{}$ -NMR (C_6D_6 , *e*TMS): $\delta = 9.83$ (SitBu₃); 18.04 (SiCl₃). - MS: $m/z = 332 / 334 / 336 / 338 (M^+; 1\%), 275 /$ 277 / 279 / 281 (M⁺-tBu; 13%), 199 (M⁺-SiCl₃; 30%). - C12H27Cl3Si2 (333.9): Ber. C 43.17, H 8.15. Gef. C 43.29. H 8.38%). - (ii) Zu 0.394 g (1.71 mmol) R*SiH₃ (vgl. 5.1a) in 20 ml CCl₄ (0 °C) werden 5.31 mmol Cl₂ in 23.1 ml CCl₄ (0 °C) getropft. Laut NMR quantitative Bildung von R*SiCl₃. Nach Abkondensieren aller flüchtigen Anteile im ÖV verbleiben 0.561 g (1.68 mmol; 98%) R*SiCl₃. - Charakterisierung: Vgl. (i). - Anmerkung: R*SiCl₂ entsteht auch als Folge der Einwirkung von NaR* auf Si₂Cl₆ in THF bei -30 °C neben R*Cl (gemeinsam mit Ch. M. M. Finger).

d) Chlormethylsupersilylsilan R*SiHMeCl: Zu 0.354 g (3.08 mmol) MeSiHCl₂ in 10 ml THF (-78 °C) werden 3.0 mmol NaR* in 4.5 ml THF getropft. Laut NMR quantitative Bildung von R*SiHMeCl. Nach Abkondensieren aller flüchtigen Anteile im ÖV, Lösen des Rückstands in Pentan, Abfiltrieren unlöslicher Anteile (NaCl) und Abkondensieren von Pentan verbleiben 0.804 g (2.88 mmol; 96%) R*SiHMeCl. - Farbloser Feststoff, Schmp. 68 -70 °C. – ¹H-NMR (C₆D₆, *i*TMS): δ = 0.663 (d, ³J_{HH} = 4.4 Hz; SiMe), 1.149 (s; SitBu₃), 5.130 (q, ${}^{3}J_{HH} = 4.4$ Hz; SiHCl). $-{}^{13}C{}^{1}H$ -NMR (C₆D₆, *i*TMS): $\delta = 3.14$ (Si-Me), 23.85/31.33 (3CMe₃ / 3CMe₃). $-{}^{29}$ Si{ 1 H}-NMR $(C_6D_6, eTMS)$: $\delta = 0.39$ (SiHCl; bei ¹H-Kopplung: d von q; ${}^{1}J_{\text{SiH}} = 195.0 \text{ Hz}$, ${}^{2}J_{\text{SiH}} = 6.4 \text{ Hz}$), 2.63 (SitBu₃). – IR(KBr): $\nu = 2115 \text{ cm}^{-1}$ (SiH). – MS: m/z = 278/280(M⁺; 32%), 263/265 (M⁺-Me; 9%), 243 (M⁺-Cl; 2%), 221/223 (M⁺-tBu; 100%), 199 (M⁺-SiMeHCl; 14%). -C₁₃H₃₁ClSi₂ (279.0): Ber. C 55.96, H 11.20. Gef. C 55.27, H 11.06%.

e) Chlordimethylsupersilylsilan R^*SiMe_2Cl : Zu 0.033 g (0.26 mmol) Me₂SiCl₂ in 10 ml Pentan (-78 °C) werden 0.23 mmol NaR* in 0.5 ml THF getropft. Nach Erwärmen und Abkondensieren aller flüchtigen Antei-

le im ÖV, Lösen des Rückstands in Pentan, Abfiltrieren unlöslicher Bestandteile (NaCl) und Abkondensieren von Pentan verbleiben 0.064 g (0.22 mmol; 94%) R*SiMe₂Cl. – Farbloser Feststoff. – ¹H-NMR (C₆D₆, *i*TMS): δ = 0.599 (s; SiMe₂), 1.167 (s; SitBu₃). – ¹³C{¹H}-NMR (C₆D₆, *i*TMS): δ = 8.01 (SiMe₂Cl), 23.78/31.43 (3CMe₃) / 3CMe₃). – ²⁹Si{¹H}-NMR (C₆D₆, *e*TMS): δ = 1.80 (SitBu₃), 24.09 (SiMe₂Cl).

f) Dichlormethylsupersilylsilan R*SiMeCl₂:

 $Zu 0.770 g (5.15 mmol) MeSiCl_3 in 20 ml Pentan (-78 °C)$ werden 5.18 mmol NaR* in 89 ml THF getropft. Laut NMR quantitative Bildung von R*SiMeCl₂. Nach Abkondensieren aller flüchtigen Anteile im ÖV, Lösen des Rückstands in Pentan, Abfiltrieren unlöslicher Anteile (NaCl) und Abkondensieren von Pentan verbleiben 1.59 g (5.09 mmol; 99%) R*SiMeCl₂. - Farbloser Feststoff, Schmp. 146 - 148 °C. – ¹H-NMR (C_6D_6 , *i*TMS): $\delta = 0.855$ (s; SiMe), 1.176 (SitBu₃). - ${}^{13}C{}^{1}H$ -NMR $(C_6D_6, iTMS): \delta = 12.91$ (SiMe), 23.78/31.11 (3CMe₃) $/ 3CMe_3$). $- {}^{29}Si{}^{1}H$ -NMR (C₆D₆, eTMS): $\delta = 4.18$ $(SitBu_3)$, 35.56 $(SiCl_2)$. – MS: m/z = 312/314/316 $(M^+;$ 2%), 297/299/301 (M⁺-Me; 3%), 255/257/259 (M⁺-tBu; 100%). - C₁₃H₃₀Cl₂Si₂ (313.5): Ber. C 49.81, H 9.65. Gef. C 48.96, H 9.72%. - Anmerkung: R*SiMeCl₂ entsteht auch aus R*SiH₂Me (vgl. 5.1b) und Cl₂ in CH₂Cl₂.

g) Chlorphenylsupersilylsilan R*SiHPhCl: Zu 0.940 g (5.31 mmol) PhSiHCl₂ in 30 ml THF (-78 °C) werden 5.31 mmol NaR* in 12 ml THF getropft. Laut NMR quantitative Bildung von R*SiHPhCl nach Erwärmen auf R.T.. Nach Abkondensieren aller flüchtigen Anteile im OV, Lösen des Rückstands in wenig Pentan, Abfiltrieren unlöslicher Anteile (NaCl) und Abkondensieren von Pentan verbleiben 1.75 g (5.14 mmol; 97%) R*SiHPhCl. -Farbloser, wachsartiger Feststoff, Schmp. 75 - 76 °C. -¹H-NMR (C₆D₆, *i*TMS): $\delta = 1.185$ (s; SitBu₃), 5.691 (s; SiHCl), 7.07 - 7.14/7.76 - 7.80 (m/m; p-,o-/m-H von Ph). $-{}^{13}C{}^{1}H$ -NMR (C₆D₆, *i*TMS): $\delta = 23.88/31.25$ (3*C*Me₃) / 3CMe₃), 128.3 / 130.2 / 135.8 / 135.9 (m-/p-/o-/i-C von Ph). $-{}^{29}\text{Si}\{{}^{1}\text{H}\}\text{-NMR}$ (C₆D₆, eTMS): $\delta = -1.97$ (SiH-Cl; bei ¹H-Kopplung: d von t; ¹ $J_{SiH} = 199.5$ Hz, ³ $J_{SiH} =$ 6.1 Hz), 5.63 (SitBu₃). – IR (KBr): $\nu = 2109 \text{ cm}^{-1}$ (SiH). – MS: m/z = 340/342 (M⁺; 19%), 283/285 (M⁺-tBu; 100%). -C₁₈H₃₃ClSi₂ (341.1): Ber. C 63.39, H 9.75. Gef. C 63.14, H 9.81%.

h) Chlordiphenylsupersilylsilan R*SiPh₂Cl:

Zu 0.215 g (0.850 mmol) Ph₂SiCl₂ in 1 ml THF werden 0.860 mmol NaR* in 1.6 ml THF getropft. Nach Abkondensieren aller flüchtigen Anteile im ÖV, Lösen des Rückstands in wenig Pentan, Abfiltrieren unlöslicher Anteile und Abkondensieren des Pentans verbleiben 0.315 g (0.839 mmol; 98%) R*SiPhCl₂. – Farbloser Feststoff. – ¹H-NMR (C₆D₆, iTMS): δ = 1.223 (s; SitBu₃), 7.8 - 8.1 (m; SiPh₂). – ¹³C{¹H}-NMR (C₆D₆, *i*TMS): $\delta = 24.24/31.54$ (3*C*Me₃ / 3*C*Me₃), 127.9 / 129.6 / 135.4 / 136.8 (*m/p-/o-/i*-C von Ph). - ²⁹Si{¹H}-NMR (C₆D₆, *e*TMS): $\delta = 6.45$ (SiPh₂Cl), 8.48 (Si*t*Bu₃). - MS: *m/z* = 416/418 (M⁺; 2%), 383 (M⁺-Cl; 4%), 359 (M⁺-*t*Bu; 100%), 217 (M⁺-*t*Bu; 14%). - C₂₄H₃₇ClSi₂ (417.2): Ber. C 69.10, H 8.94. Gef. C 68.07, H 9.09%.

i) Dichlorphenylsupersilylsilan R*SiPhCl₂: Zu 0.102 g (0.480 mmol) PhSiCl₃ in 15 ml Pentan (-78 °C) werden 0.480 mmol NaR* in 1 ml THF getropft. Laut NMR quantitative Bildung von R*SiPhCl2 nach Erwärmen auf R. T.. Nach Abkondensieren aller flüchtigen Anteile im ÖV und Lösen des Rückstands in wenig Pentan verbleiben 0.157 g (0.420 mmol; 93%) R*SiPhCl₂. - Farbloser Feststoff, Schmp. 103 - 105 °C. – ¹H-NMR (C₆D₆, *i*TMS): δ = 1.204 (s; SitBu₃), 6.94 - 7.25/7.61 - 7.98 (m/m; o-, p-/m-H von Ph). $-{}^{13}C{}^{1}H$ -NMR (C₆D₆, *i*TMS): $\delta = 24.20/31.25$ (3CMe₃ / 3CMe₃), 127.9 / 130.5 / 134.7 / 137.5 (m/p-/o*i*-C von Ph). $-{}^{29}$ Si{¹H}-NMR (C₆D₆, eTMS): $\delta = 7.44$ $(SitBu_3)$, 9.70 $(SiCl_2)$. – MS: $m/z = 374 / 376 / 378 (M^+;$ 1%), 317 / 319 / 321 (M⁺-tBu; 13%), 199 (M⁺-SiCl₂Ph; 30%). - C₁₈H₃₂Cl₂Si₂ (375.5): Ber. C 57.57, H 8.59. Gef. C 57.31, H 8.16% - Röntgenstrukturanalyse: Abb. 4. -Anmerkung: R*SiPhCl₂ reagiert bei hohen Temperaturen mit MeOH zu R*SiPh(OMe)₂ (vgl. 5.7d).

5.4. Darstellung bromhaltiger Supersilylsilane R*SiX₃ (vgl. Tab. 1)

a) Monobrom- und Dibromsupersilylsilan R*SiH₂Br und R*SiHBr₂: Zu 0.252 g (1.09 mmol) R*SiH₃ (vgl. 5.1a) in 20 ml CH_2Cl_2 (-15 °C) werden 0.345 g (2.16 mmol) Br2 in 3 ml CH2Cl2 getropft. Laut NMR bildet sich ein Gemisch von R*SiH2Br, R*SiHBr2 und R*SiBr₃ im Molverhältnis ca. 1 : 1 : 1, das nach Abkondensieren aller flüchtigen Anteile im ÖV als farbloser Feststoff verbleibt. Die Charakterisierung von R*SiH2Br und R*SiHBr2 erfolgte im Gemisch mit den anderen Silanen R*SiH_nBr_{3-n} (n = 0, 1, 2); bezüglich R*SiBr₃ vgl. 5.4b. – (i) R*SiH₂Br: ¹H-NMR (C₆D₆, *i*TMS): δ = 1.113 (s; SitBu₃), 4.470 (s; SiH₂). $- {}^{13}C{}^{1}H$ -NMR $(C_6 D_6, iTMS): \delta = 23.72/30.84 (3CMe_3 / 3CMe_3). -$ ²⁹Si{¹H}-NMR (C₆D₆, *e*TMS): $\delta = -42.39$ (SiH₂Br; bei ¹H-Kopplung: t; ${}^{1}J_{SiH} = 204.3 \text{ Hz}$), 4.56 (SitBu₃). – (ii) $R*SiHBr_2$: ¹H-NMR (C₆D₆, *i*TMS): $\delta = 1.161$ (s; Si*t*Bu₃), 5.473 (s; SiH). $-{}^{13}C{}^{1}H$ -NMR (C₆D₆, *i*TMS): $\delta =$ $24.46/30.92 (3 CMe_3 / 3 CMe_3) - {}^{29}Si{}^{1}H{}-NMR (C_6D_6)$ eTMS): $\delta = -7.63$ (SiHBr₂; bei ¹H-Kopplung: d; ¹J_{SiH} = 227.3 Hz), 3.84 (SitBu₃).

b) TribromsupersilyIsilan R^*SiBr_3 : Zu 0.048 g (0.21 mmol) R^*SiH_3 (vgl. 5.1a) in 10 ml CH₂Cl₂ (0 °C) werden 0.102 g (0.638 mmol) Br₂ in 5 ml CH₂Cl₂ getropft. Laut NMR quantitative Bildung von R^*SiBr_3 . Nach Abkondensieren aller flüchtigen Anteile im ÖV verbleiben 0.096 g (0.20 mmol; 98%) R^*SiBr_3 . – Farbloses

Pulver, Schmp. 232 °C (Zers.). – ¹H-NMR (C_6D_6 , *i*TMS): $\delta = 1.234$ (s; SitBu₃). $-{}^{13}C{}^{1}H$ -NMR (C₆D₆, iTMS): $\delta =$ $25.02/30.89 (3CMe_3 / 3CMe_3) - {}^{29}Si{}^{1}H{}-NMR (C_6D_6)$ eTMS): $\delta = -9.83$ (SiBr₃), 9.96 (SitBu₃). – MS: m/z = 464 $/466/468/470 (M^{+}; 2\%), 407/409/411/413 (M^{+}-tBu;$ 31%), $199 (M^+-SiBr_3; 90\%) - C_{12}H_{27}Br_3Si_2 (467.2)$: Ber. C 30.85, H 5.82. Gef. C 30.06, H 5.78%. - Anmerkungen: 1) Zutropfen von 0.33 mmol NaR* in 0.65 ml THF zu 0.116 g (0.330 mmol) SiBr₄ in 2 ml THF (-78 °C) führt zu einem Substanzgemisch, das hauptsächlich R*Br [3] enthält, darüber hinaus R*-haltige Verbindungen mit $\delta(^{29}\text{Si}; C_6D_6, e\text{TMS}) = 13.53, 6.22, 5.78, 1.90$ (Flächenverhältnis ca. 1:1:1:2.5). - 2) Zutropfen von 0.076 g (0.22 mmol) SiBr4 in 2 ml THF zu 0.55 mmol NaR* in 5 ml THF (60 °C) führt – laut NMR – zu $R_{4}^{*}Si_{4}$ [2], R*Br [3] und (R*)₂ (vgl. 5.1e) als R*-haltige Substanzen im Molverhältnis von ca. 1:10:5.-3) Man setzt 0.124 g (0.41 mmol) R*MgBr [in Gleichgewicht mit R*2Mg und MgBr₂] mit 0.187 g (0.538 mol) SiBr₄ in 10 ml Lösungsmittel 12 h bei 65 °C (THF) oder 110 °C (Heptan bzw. Toluol) um. Laut NMR nur Bildung von R*Br [3] als R*haltige Verbindung. – 4) Man setzt 0.173 g (0.373 mmol) R*₂Zn mit 0.270 g (0.777 mmol) SiBr₄ in 0.5 ml Heptan 12 h bei 65 °C um. Laut NMR keine Reaktion. Nach zwölfstündiger Bestrahlung der Probe bei 25 °C bildet sich ein farbloser Niederschlag. Die Lösung enthält laut NMR - nunmehr R*Br [3]. - 5) Viertägiges Umsetzen von 0.181 g (0.295 mmol) R*₂SiBr₂ mit 0.156 g (0.449 mmol) SiBr₄ in 0.5 ml Heptan bei 180 °C führt - laut NMR - hauptsächlich zu R*Br, darüber hinaus zu weiteren R*-haltigen Substanzen mit δ ⁽²⁹Si) = 2.51 und 1.64.

c) Dibrommethylsupersilylsilan R*SiMeBr₂: Zu 0.042 g (0.17 mmol) R*SiH₂Me (vgl. 5.1b) in 5 ml CH_2Cl_2 (0 °C) werden 0.060 g (0.38 mmol) Br_2 in 2 ml CH₂Cl₂ getropft. Laut NMR quantitative Bildung von R*SiMeBr₂. Nach Abkondensieren aller flüchtigen Anteile im ÖV und Umkristallisation des Rückstands aus 5 ml Aceton erhält man 0.064 g (0.16 mmol; 93%) R*SiMeBr₂. - Farbloses Pulver, Schmp. 126 - 128 °C. - ¹H-NMR (C₆D₆, *i*TMS): $\delta = 0.280$ (s; SiMe), 1.199 (s; SitBu₃). $-{}^{13}C{}^{1}H$ -NMR (C₆D₆, *i*TMS): $\delta = 14.05$ (SiMe), 24.29/31.07 (3 CMe_3 / 3 CMe_3). – ²⁹Si{¹H}-NMR (C_6D_6 , *e*TMS): $\delta = 3.44$ (SiBr₂), 21.92 (SitBu₃). - MS: m/z = 400/402/404 (M⁺; 6%), 343/345/347 (M⁺tBu; 70%), 201/203/205 (M⁺-SitBu₃; 12%), 199 (M⁺-SiMeBr₂; 25%). – C₁₃H₃₀Br₂Si₂ (402.4): Ber. C 38.81, H 7.52. Gef. C 37.77, H 7.41%). - Anmerkung: R*SiMeBr₂ entsteht auch aus R*2SiHMe [23] und 2 Br2 in CH2Cl2 bei Raumtemperatur.

d) Dibromphenylsupersilylsilan $R^*SiPhBr_2$: Zu 0.321 g (1.05 mmol) R^*SiH_2Ph (vgl. 5.1c) in 15 ml Pentan (0 °C) werden 0.352 g (2.20 mmol) Br_2 in 3 ml Pentan

getropft. Laut NMR quantitative Bildung von R*SiPhBr₂. Nach Abkondensieren aller flüchtigen Anteile im ÖV und Umkristallisation des Rückstands aus 10 ml Aceton erhält man 0.468 g (1.01 mmol; 96%) R*SiPhBr₂. – Farbloser Feststoff, Schmp. 135 - 136 °C. – ¹H-NMR (C₆D₆, *i*TMS): δ = 1.130 (s; SitBu₃), 7.00 - 7.10/8.03 - 8.06 (m/m; *o*-, *p-/m*-H von Ph). – ¹³C{¹H}-NMR (C₆D₆, *i*TMS): δ = 24.72/31.29 (3CMe₃ / 3CMe₃), 128.1 / 130.7 / 135.8 / 136.4 (*p-/m-/o-/i*-C von Ph). – ²⁹Si{¹H}-NMR (C₆D₆, *e*TMS): δ = 7.48 (SitBu₃), 12.32 (SiBr₂). – MS: *m/z* = 462/464/466 (M⁺; 6%), 405/407/409 (M⁺-tBu; 100%), 199 (M⁺-SiPhBr₂; 55%). – C₁₆H₃₂Br₂Si₂ (464.4): Ber. C 46.55, H 6.94. Gef. C 45.68, H 7.12%.

5.5. Darstellung iodhaltiger Supersilylsilane R*SiX₃ (vgl. Tab. 1)

a) MonoiodsupersilyIsilan R^*SiH_2I : Zu 0.084 g (0.36 mmol) R^*SiH_3 (vgl. 5.1a) in 0.4 ml CH₂Cl₂ (R. T.) werden 0.263 g (1.04 mmol) I₂ gegeben. Laut NMR 30% Umsatz nach 7 d zu R^*SiH_2I neben geringen Mengen R^*I [3]. – ¹H-NMR (C₆D₆, *i*TMS): $\delta = 1.128$ (s; SitBu₃), 3.631 (s; SiH₂I). – ²⁹Si{¹H}-NMR (C₆D₆, *e*TMS): $\delta =$ –29.60 (SiH₂I; bei ¹H-Kopplung: t, ¹J_{SiH} = 193.5 Hz), 3.40 (SitBu₃).

b) Diiodsupersilylsilan R*SiH1₂: Zu 0.094 g (0.16 mol) R*SiI₃ (vgl. 5.5c) in 5 ml THF (-78 °C) tropft man 0.16 mmol R*Na in 1 ml THF. Nach Einkondensieren von 0.16 mmol HBr enthält die Reaktionslösung laut NMR R*SiHI₂ neben R*I [3] als supersilylhaltige Verbindungen. Nach Abkondensieren aller flüchtigen Bestandteile (einschließlich R*I) im ÖV und Abfiltrieren aller unlöslichen Anteile (NaBr) aus 15 ml Pentan erhält man 0.068 g (0.14 mmol; 91%) R*SiHI₂. – Farbloser Feststoff. – ¹H-NMR (C₆D₆, *i*TMS): δ = 1.254 (s; SitBu₃), 5.270 (s; SiH). – ¹³C{¹H}-NMR (C₆D₆, *i*TMS): δ = 23.13/31.39 (3*CM*e₃ / 3*CM*e₃). – ²⁹Si{¹H}-NMR (C₆D₆, *e*TMS): δ = -6.34 (SiH; bei ¹H-Kopplung: d; ¹J_{SiH} = 194.5 Hz), 0.43 (SitBu₃).

c) Triiodsupersilylsilan R*SiI₃: 2.04 g (4.75 mmol) R*₂SiH₂ [6] und 3.62 g (14.2 mmol) I₂ werden in 5 ml Benzol 1 d auf 40 °C erwärmt. Laut NMR quantitative Bildung von R*SiI₃ und R*I [3]. Nach Abkondensieren aller flüchtigen Anteile im ÖV und Umkristallisation des Rückstands aus Benzol erhält man 2.22 g (3.65 mmol; 77%) R*SiI₃. – Farblose Kristalle, Zers. > 330 °C. – ¹H-NMR (C₆D₆, *i*TMS): δ = 1.322 (s; SitBu₃); (CD₂Cl₂, *i*TMS): δ = 1.228 (s; SitBu₃). – ¹³C{¹H}-NMR (C₆D₆, *i*TMS): δ = 27.01/31.36 (3CMe₃ / 3CMe₃). – ²⁹Si{¹H}-NMR (C₆D₆, *e*TMS): δ = -121.23 (SiI₃), 1.22 (SitBu₃); (CD₂Cl₂, *e*TMS): δ = -117.13 (SiI₃), 3.46 (SitBu₃). – MS: *m/z* = 608 (M⁺; 3%), 593 (M⁺-Me; 2%), 551 (M⁺tBu; 100%), 481 (M⁺-I; 12%), 199 (M⁺-SiI₃; 40%). – $\begin{array}{l} C_{12}H_{27}I_{3}Si_{2} \ (608.2); \ Ber. \ C \ 23.70, \ H \ 4.47. \ Gef. \ C \ 23.02, \\ H. \ 4.41\%). \ - \ R\"{o}ntgenstrukturanalyse; \ Vgl. \ Abb. \ 2. \end{array}$

5.6. Gemischt-halogenhaltige Supersilylsilane $R*SiX_3$ (vgl. Tab. 1)

a) BromchlorsupersilyIsilan R*SiHBrCl: Vereinigt man äquimolare Mengen R*SiH₂Cl (vgl. 5.3a) und Br₂ in CH₂Cl₂ bei –5 °C, so bilden sich R*SiBr₂Cl (s. oben) und R*SiHBrCl im Molverhältnis 2 : 1. Die Charakterisierung der zweiten Substanz erfolgte im Gemisch. – ¹H-NMR (C₆D₆, *i*TMS): δ = 1.149 (s; SitBu₃), 5.770 (s; SiH-BrCl). – ¹³C{¹H}-NMR (C₆D₆, *i*TMS): δ = 24.16/30.90 (3*C*Me₃ / 3*C*Me₃). – ²⁹Si{¹H}-NMR (C₆D₆, *e*TMS): δ = 3.13 (SiHBrCl; bei ¹H-Kopplung: d; ¹J_{SiH} = 229.4 Hz), 4.06 (SitBu₃). – Anmerkung: R*SiHBrCl entsteht auch bei der Einwirkung von CBr₂F₂ auf R*SiH₂Cl bei 130 °C (vgl. 5.3a).

b) Bromchlormethylsupersilylsilan R*SiMeBrCl: Zu 0.058 g (0.21 mmol) R*SiHMeCl (vgl. 5.3d) in 5 ml CH₂Cl₂ (0 °C) werden 0.035 g (0.22 mmol) Br₂ in 2 ml CH₂Cl₂ getropft. Laut NMR quantitative Bildung von R*SiMeBrCl. Nach Abkondensieren aller flüchtigen Anteile im ÖV und Umkristallisieren des Rückstands aus 5 ml Aceton erhält man 0.069 g (0.19 mmol; 93%) R*SiMeBrCl. – Farbloses Pulver, Schmp. 141 - 142 °C. – ¹H-NMR (C₆D₆, *i*TMS): δ = 1.030 (s; SiMe), 1.184 (s; Si*t*Bu₃). – ¹³C{¹H}-NMR (C₆D₆, *i*TMS): δ = 13.54 (Si-Me), 23.94/31.02 (3*C*Me₃ / 3*C*Me₃). – ²⁹Si{¹H}-NMR (C₆D₆, *e*TMS): δ = 3.76 (SiBrCl), 29.44 (Si*t*Bu₃). – MS: *m*/z = 356/358/360 (M⁺; 6%), 299/301/303 (M⁺*t*Bu; 54%), 199 (M⁺-SiMeBrCl; 13%). – C₁₃H₃₀BrClSi₂ (357.9): Ber. C 43.63, H 8.45. Gef. C 43.01, H 8.57%.

e) Bromchlorphenylsupersilylsilan R*SiPhBrCl: Zu 0.282 (0.830 mmol) R*SiHPhCl (vgl. 5.3g) in 10 ml (0 °C) werden 0.135 g (0.845 mmol) Br₂ getropft. Laut NMR quantitative Bildung von R*SiPhBrCl. Nach Abkondensieren aller flüchtigen Anteile im OV und Umkristallisieren aus 10 ml Aceton erhält man 0.331 g (0.790 mmol; 95%) R*SiPhBrCl. - Farblose Kristalle, Schmp. 145 - 146 °C. – ¹H-NMR (C₆D₆, *i*TMS): δ = 1.218 (s; SitBu₃), 7.03 - 7.13/7.96 - 8.00 (m/m; o-, p-/m-H von Ph). $-{}^{13}C{}^{1}H{-}NMR(C_6D_6, iTMS): \delta = 24.40/31.25$ (3CMe₃ / 3CMe₃), 128.1 / 130.8 / 135.4 / 137.4 (m-/p-/o*i*-C von Ph). $-{}^{29}$ Si{¹H}-NMR (C₆D₆, *e*TMS): δ = 7.52 $(SitBu_3)$, 17.27 (SiBrCl). – MS: m/z = 418/420/422 $(M^+;$ 8%), 361/363/365 (M⁺-*t*Bu; 100%), 199 (M⁺-SiPhBr₂; 29%). - C₁₈H₃₂BrClSi (420.0): Ber. C 51.48, H 7.68. Gef. C 51.15, H 7.78%.

d) Dibromchlorsupersilylsilan R*SiBr₂Cl: Zu 0.468 g (1.77 mmol R*SiH₂Cl (vgl. 5.3a) in 20 ml Methylenchlorid, Benzol oder Heptan (jeweils 0 °C) werden 3.50 mmol (0.18 ml) Br₂ getropft. Laut NMR quantitative Bildung von R*SiBr2Cl. Nach Abkondensieren aller flüchtigen Anteile im OV verbleiben 0.726 g (1.72 mmol; 97%) R*SiBr₂Cl. – Farbloser Feststoff, Schmp. 151 °C (Zers.). -¹H-NMR (C₆D₆, *i*TMS): δ = 1.213 (s; SitBu₃); (CDCl₃, *i*TMS): $\delta = 1.335$ (s; SitBu₃). $-{}^{13}C{}^{1}H{}-NMR$ (C₆D₆, *i*TMS): $\delta = 24.63/30.84 (3CMe_3 / 3CMe_3) - {}^{29}Si{}^{1}H{}$ -NMR (C_6D_6 , *e*TMS): $\delta = 1.10$ (SiBr₂Cl), 10.07 (SitBu₃). - MS: $m/z = 420 / 422 / 424 / 426 (M^+; 3\%), 363 /$ 365 / 367 / 369 (M⁺-*t*Bu; 19%), 199 (M⁺-SiBr₂Cl; 96%). - C₁₂H₂₇Br₂ClSi₂ (422.8): Ber. C 34.09, H 6.44. Gef. C 33.13, H 6.51%. - Anmerkungen: 1) R*SiBr₂Cl entsteht auch bei der Einwirkung von CBr₂F₂ auf R*SiH₂Cl (vgl. 5.3a) bei 130 °C und zwar nach 3 d in quantitativer Ausbeute. - 2) R*SiBrCl₂ und R*SiBr₂Cl entstehen nicht durch Einwirkung von NaR* auf SiBrCl₃ und SiBr₂Cl₂ in THF; es bildet sich jeweils R*Br (vgl. 5.4b).

e) DibromiodsupersilyIsilan R^*SiBr_2I und BromdiiodsupersilyIsilan R^*SiBrI_2 : 0.386 g (0.490 mmol) $R^*_2SiBr_2$ [23] und 0.271 g (1.07 mmol) I₂ werden in 0.4 ml Benzol auf 100 °C erwärmt. Laut NMR Bildung nahezu äquimolarer Mengen an R^*SiBr_2I , R^*I [3], R^*SiBrI_2 , R^*Br [3]. Die Charakterisierung des nach Abkondensieren verbleibenden farblosen Verbindungsgemischs erfolgte ohne Verbindungsisolierung: (i) R^*SiBr_2I : – ¹H-NMR (C₆D₆, *i*TMS): $\delta = 1.272$ (s; SitBu₃). – ¹³C{¹H}-NMR (C₆D₆, *i*TMS): $\delta = 26.40/31.21$ (3CMe₃ / 3CMe₃). – ²⁹Si{¹H}-NMR (C₆D₆, *e*TMS): $\delta = -41.82$ (SiBr₂I), 7.79 (SitBu₃). – (ii) R^*SiBrI_2 : ¹H-NMR (C₆D₆, *i*TMS): $\delta = 1.299$ (s; SitBu₃). – ¹³C{¹H}-NMR (C₆D₆, *i*TMS): $\delta = 27.62/31.33$ (3 CMe₃ / 3 CMe₃). – ²⁹Si{¹H}-NMR (C₆D₆, *e*TMS): $\delta = -79.18$ (SiBrI₂), 4.82 (SitBu₃).

5.7. Darstellung sauerstoffhaltiger Supersilylsilane $R*SiX_3$ (vgl. Tab. 1)

a) Disupersilyldisiloxan (R^*SiH_2)₂O: Nach Zugabe von etwas H₂O zu R *SiH_2 Cl (vgl. 5.3a) in Benzol bildet sich – laut NMR – rasch und quantitativ das Siloxan (R^*SiH_2)₂O. Es verbleibt nach Abkondensieren aller flüchtigen Anteile im ÖV als farbloser Feststoff. – ¹H-NMR (C_6D_6 , *i*TMS): $\delta = 1.183$ (s; 2 S*i*Bu₃), 5.260 (s; 2 SiH₂). – ¹³C{¹H}-NMR (C_6D_6 , *i*TMS): $\delta = 23.17/31.07$) (6CMe₃ / 6CMe₃). – ²⁹Si{¹H}-NMR (C_6D_6 , *e*TMS): $\delta =$ –23.14 (2SiH₂: bei ¹H-Kopplung: t; ¹J_{SiH} = 187.9 Hz), 2.55 (S*i*tBu₃). – MS: m/z = 474 (M⁺; 1%), 459 (M⁺-Me; 1%), 417 (M⁺-tBu; 19%). – $C_{24}H_{58}OSi_4$ (475.1): Ber. C 60.68, H 12.31. Gef. C 59.46, H 12.26%.

b) Methoxysupersilylsilan $R^*SiH_2(OMe)$: Nach Zugabe von etwas MeOH zu R^*SiH_2Cl (vgl. 5.3a) in Benzol bildet sich – laut NMR – rasch und quantitativ das Methoxysilan $R^*SiH_2(OMe)$. Es verbleibt nach Abkondensieren aller flüchtigen Anteile im ÖV als farbloser Feststoff, Zersetzung ab 155 °C. – ¹H-NMR (C₆D₆, *i*TMS): $\delta = 1.198$ (s; SitBu₃), 3.303 (s; OMe), 5.180 (s; SiH₂). –

	$R*SitBu_3$	R*SiI ₃	R*SiPh ₃	R*SiPhCl ₂
Formel	$C_{24}H_{54}Si_2$	C ₁₂ H ₂₇ I ₃ Si ₂	$C_{60}H_{84}Si_2$	$C_{18}H_{32}Cl_2Si_2$
$M_{\rm r}$	398.85	608.22	917.63	375.52
T[K]	163(2)	173(2)	163(3)	295(2)
$Mo-K_{\alpha}$ [Å]	0.71073	0.71073	0.71073	0.71073
System	orthorhomb.	monoklin	monoklin	monoklin
Raumgr.	Ibca	P2(1)/c	P2(1)/n	P2(1)/n
a [Å]	11.3070(2)	13.7375(1)	18.029(5)	8.845(2)
b [Å]	15.8460(2)	9.2200(1)	18.002(5)	27.264(6)
c [Å]	29.2561(4)	15.4897(1)	18.681(7)	8.882(2)
β [°]	90	90.427(1)	115.15(1)	91.76(2)
$V[Å^3]$	5241.8(1)	1961.87(3)	5488(3)	2140.9(8)
Z	8	4	4	4
ρ [Mg/m]	1.011	2.059	1.111	1.165
$\mu [{\rm mm}^{-1}]$	0.142	4.886	0.144	0.412
F(000)	1808	1144	2000	808
Bereiche	$-14 \le h \le 14, -20 \le k \le 20,$	$-16 \le h \le 16, -10 \le k \le 10,$	$-21 \le h \le 23, -23 \le k \le 23,$	$-9 \le h \le 9, 0 \le k \le 29,$
	$-36 \le l \le 36$	$-18 \le l \le 18$	$-24 \leq l \leq 24$	$0 \le l \le 9$
2Θ [°]	2.78 - 58.68	13.60 - 49.42	2.64 - 58.30	4.82 - 55.94
Reflexe	14347	9116	31496	3178
unabh.	2927	3165	11137	2966
(R_{int})	(0.0416)	(0.0275)	(0.0615)	(0.0213)
beob. ^a	2417	2890	5930	2674
x/y^{b}	0.0153/7.3998	0.0132/4.8665	0.0000/7.6976	0.0530/0.8213
GOOF	1.220	1.198	1.257	1.107
$R1^{a}$	0.0510	0.0253	0.0662	0.0376
wR2	0.0929	0.0548	0.1110	0.0985

Tab. 2. Ausgewählte Parameter zu den Röntgenstrukturanalysen der in Zeile 1 wiedergegebenen Verbindungen.

^a F > 4F(F). ^b Gewichtung: $w^{-1} = F^2 F_0^2 + (xP)^2 + yP$ mit $P = (F_0^2 + 2F_c^2)/3$. ^c Max./Min. Restelektonendichte [eÅ³].

0.310/-0.241

0.454/-0.453

¹³C{¹H}-NMR (C₆D₆, *i*TMS): δ = 23.03/31.26 (3*C*Me₃ / 3*CMe*₃), 56.25 (OMe). – ²⁹Si{¹H}-NMR (C₆D₆, *e*TMS): δ = -15.66 (SiH₂; bei ¹H-Kopplung: q von t; ¹J_{SiH} = 187.8 Hz, ³J_{SiH} = 4.7 Hz), 3.83 (SitBu₃). – MS: *m*/*z* = 260 (M⁺; 6%), 203 (M⁺-*t*Bu; 100%). – *Anmerkung*: R*SiH₂(OMe) erhält man auch durch Methanolyse von R*SiH₂Br (vgl. 5.4a).

0.310/-0.174

c) DimethoxysupersilyIsilan $R^*SiH(OMe)_2$: Nach Zugabe von etwas MeOH zu R^*SiHCl_2 (vgl. 5.3b) in Benzol bildet sich – laut NMR – rasch und quantitativ das Methoxysilan $R^*SiH(OMe)_2$. Es verbleibt nach Abkondensieren aller flüchtigen Anteile im ÖV als farbloser Feststoff. – ¹H-NMR (C₆D₆, *i*TMS): δ = 1.266 (s; Si*t*Bu₃), 3.449 (s; 2 OMe), 5.250 (s; SiH). – ¹³C{¹H}-NMR (C₆D₆, *i*TMS): δ = 23.03/31.06 (3*C*Me₃ / 3*C*Me₃), 54.11 (OMe). –²⁹Si{¹H}-NMR (C₆D₆, *e*TMS): δ = 0.22 (Si*t*Bu₃), –1.49 (SiH; bei ¹H-Kopplung: sept von d; ¹J_{SiH} = 194.1 Hz, ³J_{SiH} = 5.3 Hz). – Anmerkung: R*SiH(OMe)₂ erhält man auch durch Methanolyse von R*SiHBr₂ (vgl. 5.4a).

d) Dimethoxyphenylsupersilylsilan R*SiPh(OMe)₂: Erhitzt man R*SiPhCl₂ (vgl. 5.3i) in Benzol in Anwesenheit von MeOH längere Zeit auf 80 °C, so entsteht – laut NMR – quantitativ das Silan R*SiPh(OMe)₂, das nach Abkondensieren aller flüchtigen Anteile im ÖV als farbloser, bei 80 - 81 °C schmelzender Feststoff zurückbleibt. – ¹H-NMR (C₆D₆, *i*TMS): δ = 1.299 (s; SitBu₃), 3.435 (s; 2 OMe), 7.17 - 7.27/7.76 - 7.80 (m/m; *p*-, *o*-*/m*-H von Ph). – ¹³C{¹H}-NMR (C₆D₆, *i*TMS): δ = 23.06/31.51 (3*CM*e₃ / 3*CM*e₃), 51.45 (2 OMe), 127.9 / 129.8 / 135.9 / 137.0 (*m*-/*p*-/*o*-/*i*-C von Ph). – ²⁹Si{¹H}-NMR (C₆D₆, *e*TMS): δ = -10.04 (Si(OMe)₂; bei ¹H-Kopplung: sept; ³J_{SiH} = 4.1 Hz), 2.64 (SitBu₃). – MS: *m*/z = 366 (M⁺; 4%), 351 (M⁺-Me; 2%), 335 (M⁺-OMe; 2%), 309 (M⁺tBu; 100%), 289 (M⁺-Ph; 4%). – C₂₀H₃₈O₂Si₂₄ (366.7): Ber. C 65.74, H 10.58%. Gef. C 65.51, H 10.45%. – *Anmerkung:* Auch die Einwirkung von NaOMe in MeOH auf R*SiH₂Ph (vgl. 5.1c) führt zu R*SiPh(OMe)₂.

0.296/-0.324

e) Methoxymethylsupersilylsilan R*SiHMe(OMe): Zu 0.102 g (0.366 mmol) R*MeSiHCl (vgl. 5.3d) in 3 ml THF gibt man einen Tropfen MeOH. Nach Abkondensieren aller flüchtigen Bestandteile erhält man 0.097 g (0.354 mmol; 97%) R*MeSiH(OMe). – Farbloser Feststoff, Schmp. 93 °C. – ¹H-NMR (C₆D₆, *i*TMS): δ = 0.484 (d; ³J_{HH} = 3.8 Hz; SiMe), 1.225 (s; SitBu₃), 3.293 (s; OMe), 5.248 (q; ${}^{3}J_{\text{HH}} = 3.8 \text{ Hz}$; SiH). $-{}^{13}\text{C}{}^{1}\text{H}$ -NMR (C₆D₆, *i*TMS): $\delta = -0.45$ (SiMe), 23.34/31.43 (3*C*Me₃) / 3*CMe*₃), 53.54 (Si(OMe)). $-{}^{29}\text{Si}{}^{1}\text{H}$ -NMR (C₆D₆, *e*TMS): $\delta = 1.58$ (Si*t*Bu₃), 5.40 (SiH; bei ${}^{1}\text{H}$ -Kopplung: d von q von q (XAB₃C₃-Spinsystem), ${}^{1}J_{\text{SiH}} = 177.9 \text{ Hz}$, ${}^{2}J_{\text{SiH}} = 6.9$, ${}^{3}J_{\text{SiH}} = 5.5 \text{ Hz}$).

f) Supersilylmonotriflatsilan $R^*SiH_2(OTf)$: Zu 0.038 g (0.16 mmol) R^*SiH_3 (vgl. 5.1a) werden 0.14 g (0.96 mmol) TfOH getropft. Nach 2 d bei 25 °C hat sich laut NMR quantitativ das Silan $R^*SiH_2(OTf)$ gebildet, das nach Abkondensieren aller flüchtigen Anteile im ÖV als farbloser, hydrolyseempfindlicher Rückstand verbleibt. – ¹H-NMR (C₆D₆, *i*TMS): δ = 0.975 (s; SitBu₃), 5.181 (s; SiH₂(OTf)). – ¹³C{¹H}-NMR (C₆D₆, *i*TMS): δ = 22.60/30.19 (3CMe₃ / 3CMe₃), 118.5 (q; ¹J_{CF} = 319.4 Hz; CF₃). – ²⁹Si{¹H}-NMR (C₆D₆, *e*TMS): δ = -3.53 (SiH₂OTf; bei ¹H-Kopplung: t; ¹J_{SiH} = 209.2 Hz), 7.22 (SitBu₃).

g) Supersilylbistriflatsilan R*SiH(OTf)₂: Erwärmen des Reaktionsgemischs (5.7e) auf 40 °C führt laut NMR zum Silan R*SiH(OTf)₂, das nach Abkondensieren aller flüchtigen Anteile im ÖV als farbloser, hydrolyseempfindlicher Rückstand verbleibt. – ¹H-NMR (C₆D₆, *i*TMS): $\delta = 1.0.50$ (s; SitBu₃), 5.890 (s; SiH(OTf)₂). – ¹³C{¹H}-NMR (C₆D₆, *i*TMS): $\delta = 22.68/30.28$ (3*C*Me₃ / 3*C*Me₃), 118.7 (q; ¹J_{CF} = 318.6 Hz; 2 CF₃). – ²⁹Si{¹H}-NMR (C₆D₆, *e*TMS): $\delta = -4.17$ (SiH(OTf)₂; bei ¹H-Kopplung: d; ¹J_{SiH} = 239.0 Hz), 9.49 (SitBu₃).

h) Supersityltristriftatsilan $R^*Si(OTf)_3$: Erneutes Erwärmen des Reaktionsgemischs (5.7e) auf 60 °C führt laut NMR quantitativ zum Silan $R^*Si(OTf)_3$, das nach Abkondensieren aller flüchtigen Anteile als farbloser, hydrolyseempfindlicher Rückstand verbleibt. – ¹H-NMR (C₆D₆, *i*TMS): δ = 1.158 (s; SitBu₃). – ¹³C{¹H}-NMR

- 135. Mitteilung über Verbindungen des Siliciums. Zugleich 20. Mitteilung über sterisch überladene Verbindungen des Siliciums. 134. Mitteilung: T. Blank, W. Kaim, B. Schwederski, G. Linti, Eur. J. Inorg. Chem. XXX (2000). 19. Mitteilung: N. Wiberg, H.-W. Lerner, S. Wagner, H. Nöth, T. Seifert, Z. Naturforsch. 54b, 877 (1999).
- [2] N. Wiberg, Ch. M.M. Finger, K. Polborn, Angew. Chem. 105, 1140 (1993); Angew. Chem. Int. Ed. Engl. 32, 1034 (1993).
- [3] N. Wiberg, Coord. Chem. Rev. 163, 217 (1997).
- [4] N. Wiberg, W. Niedermayer, K. Polborn, H. Nöth, J. Knizek, D. Fenske, G. Baum, in N. Auner, J. Weis (Herausg.): Organosilicon Chemistry IV, S. 93, Wiley-VCH, Weinheim (1999).

 $(C_6D_6, iTMS): \delta = 23.10/30.40 (3CMe_3 / 3CMe_3), 119.2$ (q; ${}^{1}J_{CF} = 317.6$ Hz; 3 CF₃). $-{}^{29}Si{}^{1}H$ -NMR (C₆D₆, *e*TMS): $\delta = ?$ (Si(OTf)₃), 10.47 (SitBu₃).

5.8. Kristallstrukturen von tBu₃SiSitBu₃, tBu₃SiSiI₃, tBu₃SiSiPh₃, tBu₃SiSiPh₂, tBu₃SiSiPhCl₂

Für die Strukturbestimmungen von R*SiPhCl₂ wurde ein Mach 3 Gerät der Fa. Nonius, für die übrigen Verbindungen ein Siemens P4-Gerät mit CCD-Flächendetektor genutzt. Die Strukturlösungen und Verfeinerungen erfolgten im Falle von R*SiPhCl₂ mit SHELX86 und SHELXL93, im Falle der übrigen Verbindungen mit SHELXTL-Vers. 5, jeweils direkte Methoden mit voller Matrix gegen F². Die Lagen der Nichtwasserstoffatome sind in anisotroper Beschreibung verfeinert, H-Atome in berechneten Lagen und mit dem riding model in die Verfeinerung einbezogen. Die Strukturen der untersuchten Verbindungen geben die Abb. 1-4 wieder, kristallographische Details faßt Tab. 2 zusammen.

Die kristallographischen Daten (ohne Strukturfaktoren) der Verbindungen wurden als "supplementary publication" No. CCDC-139067 (R*SitBu₃), CCDC-139065 (R*SiI₃), CCDC-139066 (R*SiPh₃), CCDC-136838 (R*SiPhCl₂) beim Cambridge Crystallographic Data Centre hinterlegt. Kopien der Daten können kostenlos bei folgender Adresse angefordert werden: CCDC, 12 Union Road, Cambridge CB2 1EZ (Fax: (+44)1223-336-033; E-mail: deposit@ccdc.cam.ac.uk).

Dank

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die Unterstützung der Arbeiten mit Personal- und Sachmitteln.

- [5] N. Wiberg, in B. Marciniec, J. Chojnowski (Herausg.): Progress in Organosilicon Chemistry, S. 19, Gordon and Breach, Amsterdam (1995).
- [6] N. Wiberg, W. Niedermayer, Z. Naturforsch. 55b, 406 (2000), nachstehend.
- [7] S. S. Dua, C. Eaborn, D. A. R. Happer, S. P. Hopper, K. D. Safa, D. R. M. Walton, J. Organomet. Chem. 178, 75 (1979).
- [8] M. Weidenbruch, H. Peter, R. Streichen, J. Organomet. Chem. 141, 9 (1977); M. Weidenbruch, H. Flott, B. Ralle, Z. Naturforsch. 38b, 1962 (1983);
 M. Weidenbruch, H. Flott, Angew. Chem. 94, 384 (1982); Angew. Chem. Int. Ed. Engl. 21, 368 (1982).
- [9] H. Schmidbaur, W. Findeis, E. Gast, Angew. Chem. 77, 170 (1995); Angew. Chem. Int. Ed. Engl. 4, 152 (1995).

- [10] N. Wiberg, W. Hochmuth, T. Blank, K. Jaser, I. Prahl, unveröffentlicht.
- [11] N. Wiberg, T. Passler, K. Polborn, J. Organomet. Chem. 531, 47 (1997); N. Wiberg, Ch. M. M. Finger, T. Passler, S. Wagner, K. Polborn, Z. Naturforsch. 51b, 1744 (1996).
- [12] N. Wiberg, K. Amelunxen, H.-W. Lerner, H. Schuster, H. Nöth, I. Krossing, M. Schmidt-Amelunxen, T. Seifert, J. Organomet. Chem. 542, 1 (1997).
- [13] SiH₄: G. Gutekunst, A.G. Brook, J. Organomet. Chem. C225, 1 (1982); SiF₄: F. Uhlig, unveröffentlicht; SiCl₄: B.K. Hunter, L. W. Reeves, Can. J. Chem. 46, 1395 (1967) [die wiedergegebene Verschiebung von -63.0 ppm bezieht sich auf Si(OMe)₄ als Standard, das sind -19.60 bzgl. TMS]; SiBr₄: H.C. Marsmann, H.G. Horn, Chem. Z. 96, 456 (1972); SiI₄: V. Niemann, H. C. Marsmann, Z. Naturforsch. 30b, 202 (1975).
- [14] N. Wiberg, H. Schuster, A. Simon, K. Peters, Angew. Chem. 98, 100 (1986); Angew. Chem. Int. Ed. Engl. 25, 79 (1986) und dort zit. Lit.
- [15] W. S. Sheldrick, in S. Patai, Z. Rappoport (Herausg.): The Chemistry of Organic Silicon Compounds, Vol. 1, S. 227, Wiley, New York (1989); M. Kaftory, M. Kapon, M. Botoshansky, in S. Patai,

Z. Rappoport (Herausg.): The Chemistry of Organic Silicon Compounds, Vol. 1, S. 181, Wiley New York (1989).

- [16] M. Jansen, B. Friede, Acta Crystallogr. C52, 1333 (1996).
- [17] N. Kleiner, M. Dräger, J. Organomet. Chem. 279, 151 (1984).
- [18] F. R. Fronczek, P. D. Lickiss, Acta Crystallogr. C49, 331 (1993).
- [19] M. J. S. Guynane, M. F. Lappert, I. P. Riley. P. Riviere, M. Riviere-Bandet, J. Organomet. Chem. 201, 5 (1980); W. P. Neumann, R.-D. Schultz, J. Chem. Soc., Chem. Commun. 1, 43 (1982); W. P. Neumann, R.-D. Schultz, R. Vieler, J. Organomet. Chem. 264, 179 (1984).
- [20] N. Wiberg, H. Schuster, H.-W. Lerner, unveröffentlicht.
- [21] N. Wiberg, K. Amelunxen, H.-W. Lerner, H. Nöth, A. Appel, J. Knizek, K. Polborn, Z. Anorg. Allg. Chem. 623, 1861 (1997).
- [22] K. W. Klinkhammer, W. Schwarz, Z. Anorg. Allg. Chem. 619, 1777 (1993) und zit. Lit.
- [23] N. Wiberg, W. Niedermayer, D. Fenske, K. Polborn, Z. Anorg. Allg. Chem., in Vorbereitung.