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ABSTRACT

A new synthesis of enantiopure 3,3-disubstituted oxindoles by stereoselective Mukaiyama aldol reaction of 3-substituted 2-siloxyindoles and
chiral, enantiopure aldehydes having nitrogen or oxygen substituents at the r carbon is described. When the C3 substituent of the prochiral
nucleophile is aryl or heteroaryl, stereoselectivity is high (10 −80:1).

The asymmetric construction of quaternary carbon stereo-
centers presents a substantial challenge because of severe
steric congestion about such carbons and the requirement
that a C-C bond-forming reaction be employed.1 In the
context of ongoing total synthesis programs in our labora-
tories directed at complex antitumor pyrrolidinoindoline
alkaloids such as leptosins D (1)2 and K (2) (Figure 1),3 we
became interested in the possibility of simultaneously

constructing the all-carbon quaternary and adjacent secondary
alcohol stereocenters of these alkaloids by Mukaiyama aldol
condensation of prochiral 2-siloxyindoles3 and chiral,
enantiopureR-aminoaldehydes4 (eq 1). Despite their ready
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Figure 1. Representative leptosins.
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generation from oxindoles,4 few 2-siloxyindoles are docu-
mented in the literature, and to the best of our knowledge
only two reactions of these species have been described.5

Moreover, Mukaiyama aldol reactions of prochiral enoxysi-
lanes or silyl ketene acetals have been employed rarely for
stereoselective construction of quaternary carbon stereo-
centers,6 perhaps a result of the low selectivities described
in the inaugural disclosure of this chemistry.7 In this
communication, we report that a variety of enantiopure 3,3-
disubstituted oxindoles can be prepared in high yield and
high diastereoselectivity by Mukaiyama aldol reactions of
2-siloxyindoles and chiral, enantiopure aldehydes having
nitrogen or oxygen substituents at theR carbon.8

Our investigations began by examining the reaction of
siloxyindole 7 and tert-butyl (R)-4-formyl-2,2-dimethyl-3-
oxazolinecarboxylate (8, Garner’s aldehyde),9 with the R
enantiomer being chosen on the expectation that Felkin
stereoselection would predominate and lead to the secondary
alcohol configuration found in leptosin D (Scheme 1).
Oxindole6, which is available in high yield in three steps
from isatin,10 was converted to siloxyindole7 by reaction at
room temperature withtert-butyldimethylsilyl triflate (TB-
DMS-OTf) and Et3N. Several Lewis acids commonly used
in Mukaiyama aldol reactions [LiClO4, Sc(OTf)3, and ZnI2]6

did not promote the reaction of7 and aldehyde8.11 However,
aldol condensation did take place in CH2Cl2 in the presence
of BF3‚Et2O at temperatures between-78 and-50 °C. This
reaction was slow in the presence of 1 equiv of this Lewis
acid; however, it proceeded in high yield at a useful rate in
the presence of excess BF3‚Et2O as long as 2,6-di-tert-butyl-
4-methylpyridine (DTBMP) was added to prevent desilyla-

tion of the siloxy nucleophile. Under optimum conditions
(3.5 equiv of BF3‚Et2O, 1.5 equiv DTBMP,-78 °C),
crystalline aldol adduct9 was formed in 89% yield.12,13

HPLC-MS analysis of the crude reaction product showed
that diastereoselectivity was at least 80:1.14 Acidic cleavage
of the Boc and oxazolidine units of adduct9 gave amino
diol 10, which after conversion to 1,3-dioxane derivative11
and Fmoc protection provided crystalline12 suitable for
X-ray analysis.15

The scope of the Mukaiyama aldol reaction of Garner’s
aldehyde with siloxyindoles having various carbon substit-
uents at C3 is illustrated by the data summarized in Table 1.
The relative and absolute configuration ofent-915 and14e
was secured by single-crystal X-ray analysis, whereas the
absolute configuration of14b-d at C3 was determined by
CD analysis. As expected, the major products have theanti
relationship of the hydroxy andN-acyloxyamino substituents.
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(14) (a) Adduct9 and related Mukaiyama aldol products having aryl
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2796 Org. Lett., Vol. 7, No. 13, 2005



Stereoinduction at the new quaternary stereocenter (C3) was
>50:1 when R was an electron-rich aryl substituent (entries
1-4), 9:1 for 1-isopropenyl (entry 6), and low when this
substituent was an alkyl group (entry 5).

As summarized in Table 2, high stereoselection was seen
also in the reaction of siloxyindoles13 with (R)-glyceral-
dehyde acetonide (15). In this series, the relative and absolute
configuration of four products (16b-d and16f) was secured
by single-crystal X-ray analysis, whereas the absolute
configuration of16aat C3 was determined by CD measure-
ments. As in similar condensations with Garner’s aldehyde,
the C3 and hydroxyl substituents aresyn16 and the oxygen
substituents areanti in the major product.17 In this series,
stereoselection was high only when the siloxyindole C3
substituent was 3-(1-benzylindolyl) and was moderate (∼10:
1) when this substituent was an aryl group or isopropyl; no
stereoselection was seen when this group was benzyl.

In conclusion, enantiopure 3,3-disubstituted oxindoles can
be prepared in convenient fashion by Mukaiyama aldol
reactions of 3-substituted 2-siloxyindoles and chiral, enan-
tiopure aldehydes having nitrogen or oxygen substituents at
the R carbon. When the C3 substituent of the prochiral
nucleophile is aryl or heteroaryl, stereoselectivity is excellent
(10-80:1). These results suggest that a reexamination of the
potential utility of the versatile Mukaiyama aldol reaction
for the asymmetric construction of quaternary carbon ste-
reocenters is warranted.
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(16) A preference for forming thesynstereoisomer is observed also in
condensations of13 with achiral aldehydes such as 4-phenylbutanal.
Stereoselection is substantial (15-40:1) when R) 3-(1-benzylindolyl)
[relative configuration by X-ray analysis] and modest (3-4:1) when R)
3,4-dimethoxyphenyl.

(17) A diversity of models involving both open, extended and closed,
cyclic transition structures have been considered for Mukaiyama aldol
reactions.6 Further studies will be needed before a model for the stereose-
lective reactions reported herein can be advanced.

Table 1. Mukaiyama Aldol Reaction of Siloxyindoles13 and
Enantiopure Aldehydeent-8a

entry compd R
yield,

%b diastereoselc

1 ent-9 3-(1-benzylindolyl) 92 >80:1
2 14b 4-methoxyphenyl 73 64:1
3 14c 3,4-dimethoxyphenyl 64 80:1
4 14d 3,4-(methylenedioxy)phenyl 93 55:1
5 14e Bn 86 3:1d

6 14f 1-isopropenyl 92 9:1e

a Conditions: ent-8 (2 equiv), BF3‚Et2O (7 equiv), DTBMP (8 equiv),
CH2Cl2, -78 to -50 °C. b Of the mixture of isomers after purification by
flash chromatography.c Major isomer:∑other isomers; determined by HPLC
analysis of duplicate experiments.dOne minor isomer that was epimeric at
the quaternary stereocenter was formed.eConfiguration unassigned.

Table 2. Mukaiyama Aldol Reaction of Siloxyindoles13 and
(R)-glyceraldehyde Acetonide (15)a

entry compd R
yield,

%b diastereoselc

1 16a 3-(1-benzylindolyl) 82 36:1
2 16b 4-methoxyphenyl 83 11:1
3 16c 3,4-dimethoxyphenyl 61 11:1
4 16d 3,4-(methylenedioxy)phenyl 91 13:1
5 16e Bn 57 1:1d

6 16f i-Pr 70 14:1e

a Conditions: 15 (2 equiv), BF3‚Et2O (5 equiv), DTBMP (6 equiv),
CH2Cl2, -78 to -50 °C. bOf the mixture of isomers after purification by
flash chromatography.c Major isomer:∑other isomers; determined by HPLC
analysis of duplicate experiments.d Three isomers were formed in a 7:6:1
ratio; these isomers have, respectively. theS, R, andR configurations at
C3. e By 1H NMR analysis.
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