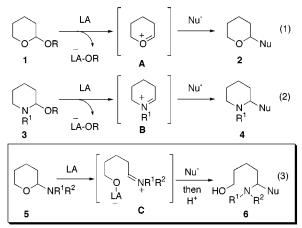
2001 Vol. 3, No. 3 477–480

## Lewis Acid-Catalyzed Ring-Opening Reactions of Semicyclic *N,O*-Acetals

## Masaharu Sugiura and Shū Kobayashi\*

Graduate School of Pharmaceutical Sciences, The University of Tokyo, CREST, Japan Science and Technology Corporation (JST), Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

skobayas@mol.f.u-tokyo.ac.jp


Received December 12, 2000

## **ABSTRACT**

OR<sup>1</sup> OSiMe<sub>3</sub> TMSOTf cat. HO OR<sup>1</sup> OR 
$$R^2$$
 R<sup>2</sup> R<sup>3</sup>  $R^2$  R<sup>2</sup> R<sup>2</sup>  $R^3$   $R^2$  R<sup>2</sup>  $R^2$   $R^3$ 

Ring-opening reactions of semicyclic *N,O*-acetals with various nucleophiles such as silyl enol ethers are effectively catalyzed by a Lewis acid (TMSOTf). Reactions of 3-substituted *N,O*-acetals showed high diastereoselectivities. Synthetic utility of this method has been demonstrated in the stereoselective synthesis of an *anti*-malarial agent, isofebrifugine.

In the presence of a Lewis acid, semicyclic acetals (1) such as O-glycosides are known to react with various nucleophiles to give cyclic ether products (2) via cyclic oxocarbenium ion intermediates **A** (eq 1). Similarly, reactions of semi-



LA: Lewis Acid, Nu : Nucleophile

cyclic<sup>2</sup> *N,O*-acetals (3) provide nitrogen-containing cyclic compounds (4) via cyclic iminium ion intermediates **B** (eq

2).<sup>3</sup> Meanwhile, reactions of *other* semicyclic *N*,*O*-acetals (**5**), where the positions of nitrogen and oxygen of **3** are inverted, are expected to proceed via formation of acyclic iminium ion intermediates **C** to afford ring-opened products (**6**) if an oxophilic Lewis acid is employed (eq 3). Although it has been reported that *N*,*N*-dialkylaminofuranosides or pyranosides reacted with excess Grignard reagents to give ring-opened alkylation products<sup>4</sup> and that *N*-galactosyl-*N*-homoallylamine undergoes aza-Cope rearrangement promoted by a stoichiometric amount of a Lewis acid,<sup>5</sup> this type of reaction has not been systematically explored. We have recently reported that the second-type reactions (eq 2) were effectively catalyzed by scandium trifluoromethanesulfonate.<sup>6</sup> Herein we report the third-type reactions shown in eq 3 using

<sup>(1)</sup> For a recent review on *C*-glycosides, see: Du, Y.; Linhardt, R. J.; Vlahov, I. R. *Tetrahedron* **1998**, *54*, 9913.

<sup>(2)</sup> Gabbutt, C. D.; Hepworth, J. D. In *Comprehensive Organic Functional Group Transformations*; Katritzky, A. R., Meth-Cohn, O., Rees, C. W., Eds.; Kirby, G. W., Volume Ed.; Pergamon: Oxford, 1995; Vol. 4, pp 293–349.

<sup>(3)</sup> For reviews, see: (a) Hiemstra, H.; Speckamp, W. N. In *Comprehensive Organic Synthesis*; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 2, pp 1047–1082. (b) Speckamp, W. N.; Moolenaar, M. J. *Tetrahedron* **2000**, 56, 3817.

<sup>(4) (</sup>a) Nagai, M.; Gaudino, J. J.; Wilcox, C. S. Synthesis 1992, 163. (b) Lay, L.; Nicotra, F.; Paganini, A.; Pangrazio, C.; Panza, L. Tetrahedron Lett. 1993, 34, 4555. (c) Cipolla, L.; Lay, L.; Nicotra, F.; Pangrazio, C.; Panza, L. Tetrahedron 1995, 51, 4679. (d) Cipolla, L.; La Ferla, B.; Peri, F.; Nicotra, F. Chem. Commun. 2000, 1289. (e) Bortolussi, M. Cinquin, C.; Bloch, R. Tetrahedron Lett. 1996, 37, 8729.

<sup>(5)</sup> Deloisy. S.; Kunz, H. Tetrahedron Lett. 1998, 39, 791.

<sup>(6)</sup> Okitsu, O.; Suzuki, R.; Kobayashi, S. Synlett 2000, 989.

a catalytic amount of a Lewis acid, and their synthetic utility and high stereoselectivity are described.

At the outset, we chose benzyl *N*-(tetrahydropyran-2-yl)-carbamate (**5a**) as one of the simplest semicyclic *N*,*O*-acetals and the silyl enol ether derived from acetophenone as a nucleophile (Table 1). Pyran **5a** was readily prepared via

Table 1. Effect of Lewis Acids<sup>a</sup>

OSiMe<sub>3</sub> LA cat.

Ph 
$$CH_2Cl_2$$
 ZHN

Sa (1.2 equiv.) 0 °C

 $Z = CO_2Bn$ 

| run   | LA (equiv)                              | time   | yield of <b>6a</b> /% |
|-------|-----------------------------------------|--------|-----------------------|
| 1     | TMSOTf (0.2)                            | 20 min | 90                    |
| $2^b$ | TMSOTf (0.2)                            | 20 min | 94                    |
| 3     | SnCl <sub>4</sub> (0.2)                 | 7 h    | 33                    |
| 4     | BF <sub>3</sub> ·OEt <sub>2</sub> (0.2) | 11 h   | 4                     |
| 5     | TfOH (0.1)                              | 20 min | 31                    |
| 6     | TMSCl-AgClO <sub>4</sub> (0.2)          | 15 min | 48                    |
| 7     | SnCl <sub>4</sub> -AgClO <sub>4</sub>   | 15 min | 71                    |

<sup>a</sup> Reactions were carried out using **5a** (0.2 mmol), the silyl enol ether (1.2 equiv), and a Lewis acid (0.1 or 0.2 equiv) in dichloromethane at 0 °C, unless otherwise noted. <sup>b</sup> Two equivalents of the silyl enol ether were used.

acid-catalyzed addition of benzyl carbamate to 3,4-dihydro-2H-pyran. The reactions were carried out using a catalytic amount of a Lewis acid (0.1-0.2 equiv) at 0 °C in dichloromethane. Among the various Lewis acids tested (runs 1-5), trimethylsilyl trifluoromethanesulfonate (TMSOTf) was found to be the most effective (runs 1 and 2), and ring-opened alcohol **6a** was obtained in high yields. A combination of chlorotrimethylsilane or tin tetrachloride and silver perchlorate<sup>8</sup> was also effective (runs 6 and 7).

Under these optimal conditions for **5a**, reactions with various nucleophiles were also investigated (Table 2). Allyltrimethylsilane, trimethylsilyl cyanide, and other silyl enolates reacted smoothly to afford the desired adducts **6b**—**e** in excellent yields.

**Table 2.** Reactions with Various Nucleophiles<sup>a</sup>

| NuSiMe <sub>3</sub> (equiv)                          | time/<br>min | product ( <b>6</b> )              | yield/<br>% |
|------------------------------------------------------|--------------|-----------------------------------|-------------|
| TVUSHVIE3 (EQUIV)                                    | 111111       | product ( <b>b</b> )              | /0          |
| CH <sub>2</sub> =CHCH <sub>2</sub> SiMe <sub>3</sub> | 120          | <b>6b</b> (R = $CH_2CH=CH_2$ )    | 91          |
| Me <sub>3</sub> SiCN (2)                             | 15           | 6c (R = CN)                       | 99          |
| $CH_2=C(t-Bu)(OSiMe_3)$ (1.5)                        | 20           | <b>6d</b> (R = $CH_2COt$ -Bu)     | 89          |
| $Me_2C=C(OMe)OSiMe_3)$ (1.5)                         | 20           | $\mathbf{6e} \ (R = CMe_2CO_2Me)$ | 99          |

 $<sup>^</sup>a$  All reactions were carried out using 5a (0.2 mmol), a nucleophile, and TMSOTf (0.2 equiv) in dichloromethane at 0  $^{\circ}\text{C}.$ 

Furthermore, five-membered analogue **5b** was also shown to provide the ring-opened product **6f** in high yield (Scheme 1).

We next focused on the elucidation of the stereochemical aspect of this reaction. For this purpose, 3-substituted semi-cyclic *N*,*O*-acetals **5c** and **5d** were prepared via TMSOTf-promoted substitution of ester **7** or ether **8** with benzyl carbamate (Scheme 2). Since benzyl carbamate is a weak

Scheme 2. Preparations of 3-Substituted THP Substrates

nucleophile, an addition of 4 Å molecular sieves was essential to prevent the formation of the hydrolyzed products.

We then investigated the reaction of **5c** with the silyl enol ether derived from acetophenone (Table 3). Unlike **5a**, **5c** 

Table 3. Reactions of 3-Substituted Substrates<sup>a</sup>

OR<sup>1</sup> OSiMe<sub>3</sub> TMSOTf 
$$(0.2 \text{ equiv.})$$
 HO OR<sup>1</sup> OR<sup>1</sup> O ONHZ R<sup>2</sup> R<sup>3</sup> CH<sub>3</sub>CN ZHN  $R^2$  R<sup>3</sup> Syn-6g-I

| run   | $\mathbb{R}^1$ | $\mathbb{R}^2$ | $\mathbb{R}^3$ | products<br>(6) | conditions     | yield/<br>% | syn/<br>anti |
|-------|----------------|----------------|----------------|-----------------|----------------|-------------|--------------|
| $1^b$ | Ac             | Н              | Ph             | 6g              | 0 °C, 2 h      | 60          | 58/42        |
| $2^c$ |                |                |                |                 | 0 °C, 2 h      | 77          | 82/18        |
| 3     |                |                |                |                 | 0 °C, 2 h      | 76          | 91/9         |
| 4     |                |                |                |                 | −23 °C, 2 h    | 45          | 93/7         |
| 5     |                | Н              | t-Bu           | 6h              | 0 °C, 5 h      | 61          | 94/6         |
| 6     |                | Me             | MeO            | 6i              | 0 °C, 30 min   | 87          | 94/6         |
| 7     | Bn             | Н              | Ph             | <b>6</b> j      | −23 °C, 1 h    | 67          | 94/6         |
| 8     |                | Н              | t-Bu           | 6k              | 0 °C, 3 h      | 59          | 94/6         |
| 9     |                | Me             | MeO            | <b>61</b>       | -23 °C, 40 min | 94          | 94/6         |

 $^a$  Reactions were carried out using **5c** or **5d** (0.1 mmol), a nucleophile (2 equiv), and TMSOTf (0.2 equiv) in acetonitrile, unless otherwise noted.  $^b$  One equivalent of TMSOTf was used in dichloromethane as a solvent. $^c$  Nitromethane was used as a solvent.

478 Org. Lett., Vol. 3, No. 3, 2001

required a stoichiometric amount of TMSOTf for complete consumption in dichloromethane, giving a ca. 1:1 diastereomeric mixture of product **6g** (run 1). A polar solvent such as acetonitrile or nitromethane, which was presumed to stabilize the iminium ion intermediate, was found to promote a catalytic reaction and to improve the yield and stereoselectivity (runs 2–4). Using the conditions in acetonitrile, reactions of **5c** with other silyl enolates provided alcohols **6h** and **6i** with high *syn*-diastereoselectivities (runs 5 and 6). In addition, reactions of 3-benzyloxypyran **5d** also proceeded catalytically in acetonitrile to give ring-opened products **6j–1** with high *syn*-diastereoselectivities (runs 7–9).

The configuration of the major diastereomers of  $\mathbf{6g}$  and  $\mathbf{6j}$  were determined, respectively, as *syn* after converting to *cis*-piperidines  $\mathbf{9}$  or  $\mathbf{10}^6$  via PCC-oxidation and reductive cyclization (Scheme 3).

<sup>1</sup>H NMR analysis of the TMSOTf-catalyzed reaction of **5a** in CDCl<sub>3</sub> showed that the initial product formed was *O*-trimethylsilylated ether **11** which was easily hydrolyzed to the alcohol **6a** by the addition of water (Scheme 4). <sup>9</sup> This

result strongly suggests a mechanism of this reaction involving coordination of the Lewis acid to the ring-oxygen followed by ring-opening activation to form an acyclic iminium ion intermediate (see, eq 3).

The stereochemical course of the present reaction can be rationalized as shown in Figure 1. In 3-acetoxy system  $\mathbf{5c}$ , five-membered dioxocarbenium ion intermediate  $TS_1$  could be involved in neighboring group participation of the 3-acetoxy group. This dioxocarbenium ion would have the *trans*-configuration due to steric reason, and then an  $S_N2$ -type attack of a nucleophile would provide the *syn*-product. This is a good contrast to the reaction of the 3-acetoxy cyclic piperidine system where the *cis*-fused bicyclic dioxocar-

$$5c \longrightarrow \begin{bmatrix} Me_3SiO & O \\ ZHN & O \\ Nu & TS_1 \end{bmatrix} \longrightarrow syn-6g-i$$

$$5d \longrightarrow \begin{bmatrix} H Z \\ H N^+ \\ Nu & TS_2 \end{bmatrix}$$

$$5d \longrightarrow \begin{bmatrix} ABO & AB$$

Figure 1.

benium ion intermediate could be involved, giving a *trans*-product preferentially.<sup>6</sup> While the 3-benzyloxy substituent of **5d** could not participate as an iminium ion intermediate, TS<sub>2</sub> would be favorable between the two competitive transition states TS<sub>2</sub> and TS<sub>3</sub>, since the conformation of TS<sub>3</sub> has a large allylic strain between the alkyl side chain and the proton bound to the iminium nitrogen.<sup>10</sup> It would be also possible that the hydrogen bonding between the proton bound to the iminium nitrogen and the 3-benzyloxy group could fix the conformation of the transition state (see, TS<sub>4</sub>) and a nucleophile would attack from the less hindered side to give the *syn*-product.

Synthetic utility of the present reaction has been demonstrated in a facile synthesis of an *anti*-malarial alkaloid, isofebrifugine<sup>11</sup> (Scheme 5). Using a quinazoline-containing

Org. Lett., Vol. 3, No. 3, 2001

<sup>(7)</sup> Related reactions of benzamides have been reported: Chen, J.; Crooks, P. A.; Hussain, A. *Int. J. Pharm.* **1995**, *123*, 95.

<sup>(8)</sup> For a leading reference: Mukaiyama, T.; Takashima, T.; Katsurada, M.; Aizawa, H. Chem. Lett. 1991, 533.

<sup>(9)</sup> Although the <sup>1</sup>H NMR spectra of **11** and **6a** are quite similar, the chemical shifts for the methylene proton adjacent to the silyloxy group or the hydroxyl group are distinguishable, i.e., 3.55 ppm (t) for **11** and 3.60 ppm (t) for **6a**.

silyl enol ether<sup>11a</sup> as a nucleophile, 3-benzyloxy *N,O*-acetal **5d** was converted to acyclic alcohol **6m** in good yield. A slight excess of TMSOTf was required presumably due to the basicity of the quinazoline nitrogen. Further transformations of **6m** accomplished a diastereoselective synthesis of isofebrifugine.

In summary, we have demonstrated that ring-opening reactions of semicyclic N,O-acetals 5 with silicon-based

nucleophiles were effectively catalyzed by a Lewis acid to afford acyclic alcohols **6** with high diastereoselectivities. The stereoselective synthesis of isofebrifugine provided an example of their synthetic utility. Further applications and mechanistic studies are now in progress.

**Acknowledgment.** This work was partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture, Japan.

**Supporting Information Available:** Experimental procedures and physical data of the products. This material is available free of charge via the Internet at http://pubs.acs.org.

OL006990A

480 Org. Lett., Vol. 3, No. 3, 2001

<sup>(10)</sup> Nagai et al. suggested a similar transition state model for  $\alpha$ -alkoxy-N,N-dibenzyliminium ion system (see, ref 4a).

<sup>(11)</sup> For recent syntheses of isofebrifugine and/or febrifugine, see: (a) Burgess, L. E.; Gross, E. K. M.; Jurka, J. *Tetrahedron Lett.* **1996**, *37*, 3255. (b) Kobayashi, S; Ueno, M.; Suzuki, R.; Ishitani, H. *Tetrahedron Lett.* **1999**, *40*, 2175. (c) Kobayashi, S; Ueno, M.; Suzuki, R.; Ishitani, H.; Kim, H.-S.; Wataya, Y. *J. Org. Chem.* **1999**, *64*, 6833. (d) Takeuchi, Y.; Abe, H.; Harayama, T. *Chem. Pharm. Bull.* **1999**, *47*, 905. (e) Takeuchi, Y.; Hattori, M.; Abe, H.; Harayama, T. *Synthesis* **1999**, 1814. (f) Takeuchi, Y.; Azuma, K.; Takakura, K.; Abe, H.; Harayama, T. *Chem. Commun.* **2000**, 1643. (g) Taniguchi, T.; Ogasawara, K. *Org. Lett.* **2000**, 2, 3193.