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A novel technique for minimization of simultaneous switching noise is presented. Dual
Layer Power Line (DLPL) structure is newly proposed for a possible silicon realization
of a mutual inductor, with which an instant large current in the power line is half-
divided flowing through two different, but closely coupled, layers in opposite directions.
This mutual inductance between two power layers enables us to significantly minimize
the switching noise. SPICE simulations show that with a mutual coupling coefficient
higher than 0.8, the switching noise reduces by 63% compared to the previously
reported solutions. This DLPL technique can also be applied to PCB artworks.
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1. INTRODUCTION

In today’s CMOS VLSI, more and more high-
density and high-speed I/O buffers are required to
switch large number of drivers at the same time.
As a result, simultaneous switching noise (SSN) or
‘supply bouncing’, which comes from a parasitic
inductance of power lines, is also becoming
significant [1-7]. The output pad buffers are the
main contributors of the SSN because of large
switching currents that change very fast flow

through the parasitic inductance at the bonding
wire and packages [1-2].

A typical output stage of a pad driver is shown
in Figure 1. There are the parasitic inductor,
resistor and capacitor along the power line, pad,
bonding wire and pin package path. Generally, the
parasitic resistor is neglected because it’s compar-
ably small [1]. In the worst scenario, if the peak
magnitude of SSN exceeds the threshold voltage of
the transistors, then it causes malfunction of the
circuit. Therefore, it is necessary to estimate SSN
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FIGURE 1 Typical output drivers and parastics.

more accurately and, more importantly, to mini-
mize SSN in the output drivers [1,2].

There have been a number of formulae
proposed for modeling and minimizing the SSN
[1-4]. Yang [1] and Jou [3] presented optimized
output buffer circuit in constraint of SSN magni-
tude or transition time. Song [2] presented a new
modeling for the SSN. Spurlin [4] proposed a
serpentine transistor layout technique to reduce
current variation with respect to time at cost of
silicon area for extra switching circuits.

In this paper, we propose a new solution for the
SSN, Dual Layer Power Line (DLPL) technique
that can be implemented by adopting a simple
power line strategy without causing any extra cost
either in layer number or in silicon area. In Section
2, a brief description of the SSN is given and an
analytical expression of the DLPL dynamics is
derived. In Section 3, DLPL mutual inductor
implementation technique on silicon is illustrated.
Finally, conclusions along with future works are
given in Section 4.

2. SSN MINIMIZATION THEORY

Figure 2 depicts two power line parasitic inductors
of the typical CMOS output drivers. Suppose

inputs V;, switch simultaneously, then a sudden
current change will be induced in the power line
generating the SSN.
The switching noise (V) at node A is defined
as [1]
di

Vi = nLyg 'Jt' ( 1)

where #n is the number of simultaneously switching
drivers and [ is the current flowing through one
buffer. Here we only consider the Vgg power line
case and the SSN of the Vpp can be explained in
the same way.

Figure 3 shows the SPICE simulation of the
SSN in Eq. (1). As can be seen the SSN peaks at
t=1ns with the highest of 2 volts with n=100
case. Note here the SSN level is considerably high
enough to disrupt the chip function.

Basically, the proposed technique Dual Layer
Power Line (DLPL) adopts well-known mutual
inductor dynamics into power lines on silicon.
Figure 4 shows the schematic of the DLPL with
mutual inductors, here functionally same as
transformers. Lygs and Ly represent primary
and secondary inductors, respectively.

Figure 5 shows this mutual inductor model in
the ground line. Power line (Vpp) can also be
modeled in the same way and not dealt in this
work. Here I represents a time-varying current in
Eq. (1), which is same as ig.
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FIGURE 2 CMOS representation of the output drivers.
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FIGURE 3 SSN simulation results with various driver

numbers(n). (Vpp=3.3V, 0.5pm N-well CMOS, Pull-down
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FIGURE 4 The proposed SSN minimization drivers with
mutual inductors.

Two inductors, Lygs and Ljg, are electro-
magnetically coupled being separated by a very
thin insulator such as silicon-nitride or silicon-
dioxide. In this scheme, we know that

di di
Vo= LVSSF?"‘MF; (2)
di; dig
! ! hast B hatod
Vo = Lygg a M a (3)
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FIGURE 5 Mutual inductor model in the ground(Vgs)
line.

The coupling coefficient, &, indicates the degree of
coupling between two inductors, which is defined
as,

== ()

\/Lyss Ly

where M is mutual inductance [6]. If ideally, Lygg
and Ly are perfectly coupled and same size, k
equals 1. That means that Eq. (4) becomes

M = Lygs = L,VSS‘ (5)
In Figure 5, if node A and node C connects with

D and B, respectively, then we have V, = V.
Combining Egs. (2) and (3) now yields,

dis diy
Vu+ V= |Lyss— +M—
+V, ( vSs s + dt)

diy _, dis
4 _— _— =
+< Vssdt+Mdt) 0 (6)

Putting Eq. (5) into Eq. (6), we have

dis | diy

i E—O. (7)

Therefore, i;is to be —ig, resulting, Egs. (2) and
(3) be as follows,

Vo=V, =0 (8)
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So, when k=1, the SSN can theoretically be
eliminated as an ideal case. In reality, however, k&
cannot be ‘one’, but we know this will minimize
the SSN, ¥, and V.

In order to prove DLPL technique, SPICE
simulations are used with a 150pF Cioap, 2nH
inductance, and with 1ns rise time input. Figure 6
shows the SPICE simulation result, which is
compared with [2] (noted as ‘SONG’) and ‘SPICFE’
with a conventional power line scheme. As seen,
about 63% SSN reduction was obtained.

Table I summarizes results comparing TI’s
solution [4] and DLPL (mutual inductor) method.

Figure 7 shows the cases of the values of k with
0.8, 0.9 and 0.999 for 36 drivers. ‘SSN’ in the figure
presents the switching noise of conventional power
scheme.

These mutual inductors, or transformers, in
power lines are very easily realized by dual layer
power line (DLPL) technique, that will be
explained in the following Section 3.
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FIGURE 6 Comparison of natural SSN and DLPL SSN with

50 drivers. (VDD =3.3V, k=0.9, 0.5pum CMOS, Driver size:
325/1 ym).

TABLE I Comparison of TI’s solution [4] and DLPL

No. of Drivers Vn, max(V)
TI’s solution 36 0.9
(CroADp = 50pF)
DLPL 36 k=0.999 0.018
(Croap = 150pF) k=0.38 0.796
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FIGURE 7 Minimized SSN simulation results according to
coefficient k.

3. DUAL LAYER POWER LINE MUTUAL
INDUCTOR

Figure 8(a) shows geometrical power line structure
for the DLPL mutual inductor, and Figure 8(b)
depicts lateral view of the DLPL.

It consists of two stacked power lines. Insulator
such as silicon-dioxide, silicon-nitride or others
(larger dielectric material is preferable for a larger
k) fills the space between DLPL. It was reported in
[7] that with a reasonably feasible thin insulator
thickness in current CMOS technology, the
coupling coefficient, k can be increased more than
0.88.
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FIGURE 8 (a) Dual layer power line(DLPL) mutual inductor
for Vgs and Vpp and (b) lateral view of the DLPL.
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FIGURE 9 The proposed output driver structure with DLPL for mutual inductors.

For DLPL structure, there is no need to use
special fabrication process. This DLPL is realized
by a standard CMOS double metal process. Using
a double metal process it should not be too
difficult to make dual layer mutual inductors.

In order to realize this mutual inductor com-
posed by DLPL, we need to apply a new power
line strategy as shown in Figure 9. Drivers are
divided, thus without any size overload, in two
same half-sized buffers. Such as, dotted box in the
Figure 9 corresponds to one buffer with channel
width W =600 pum that is composed of two same-
sized W =300 um buffers. Here, one power line is
connected at “1ST Line” and the other is
connected at “2ND Line” of the DLPL.

Now, the buffer composed of two half-sized
small buffers handles two opposite-direction in-
stant currents of same amount at the same time.
Here we assume probability density functions of
switchings, at individual buffers of the dual power
lines, are same, which is reasonably acceptable
with a large number of I/O drivers in current high-
speed digital logic. This is because SSN only
occurs when many output buffers are simulta-
neously switching. Therefore, with our assump-
tion, we can apply that two currents in DLPL are
almost same with only opposite direction, satisfy-

ing Bq. (7).

One driver layout using the proposed DLPL is
shown in Figure 10. Notice here that this structure
occupies the same size as the typical conventional
driver.

In Figure 10, sources of transistor M1 and M2
(or M3 and M4) are connected to metal 1 and

Metal 2 for Metal 1 for
"2ND VDD Line" "1ST VDD Line"

M1

M3

Metal 2 for Metal 1 for
"2ND VSS Line" "18T VSS Line"

FIGURE 10 Driver layout with proposed DLPL technique.



454 Y. LEE et al.

Dual Layexr
Power Lines
Mutual Inductox

vDD2

1/0 Buffers with

DLPL structure
vDD1

Dofoyoooo

Vss1

0Ooo0oo0oooon

<
»
b2
N

OooCOoOoooog

v8$1

FIGURE 11 Overall view DLPL structure for the two metal processes.

metal 2, respectively. All gates and drains of M1,
M2, M3 and M4 are connected.

One simple example for pad frame configuration
is shown in Figure 11. Power pads are located at
the corner of die. Each corner has one VDD and
VSS pads that are separated using different metal
lines.

4. CONCLUSIONS

A novel technique for minimization of simulta-
neous switching noise is presented. Dual Layer
Power Line (DLPL) technique is newly proposed

for a possible silicon realization of a mutual
inductor, with which an instant large current in
the power line is half-divided flowing through two
different, but closely coupled, layers in opposite
directions. Although we still need to take into
account of the stray effect of the pad, bonding wire
and the pin in the package, this technique gives us
a new perspective of minimizing the SSN from an
IC designer’s point of view. This mutual induct-
ance between two power layers enables us to
significantly minimize the switching noise without
overload of silicon estate. SPICE simulations show
that with a mutual coupling coefficient higher than
0.8, the switching noise reduces more than 63%
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compared to the previously reported solutions.
Notice that this technique can also be adopted for
the PCB power line art-works. Layout for the
DLPL technique and test from silicon are under
way. Research works are currently on going and
more works will be included in the final paper.
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