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Abstract—A novel glycocluster periphery functionalized by globotriaose (Galal-4Galf1-4GlcB1-) possessing a silole moiety as a
luminophor was synthesized. The photoluminescence spectrum of the glycocluster in pure water showed extremely strong emission
at 475 nm. Analogous intense emission of the silole dendrimer was also observed in a lower water fraction of water/acetone mixture.
The water fraction of the silole dendrimer solution strongly affected the emission intensity; however, these luminescences were con-

stantly detected at around 475 nm.
© 2007 Elsevier Ltd. All rights reserved.

Carbohydrate—protein interactions are of paramount
importance in the cell adhesion process. It is known that
the clustering effect of carbohydrates increases the indi-
vidual interactions between carbohydrates and pro-
teins.! Today, the effect has been often applied for the
molecular design of artificial inhibitors of toxins, bacte-
ria, and viruses, and several forms of glycoclusters have
been developed.> We recently reported syntheses of
glycoclusters in which carbosilane dendrimers were
employed as the scaffolds of carbohydrates® and the
biological activities of some of these glycoclusters.*
For example, a carbosilane dendrimer having peripheral
globotriaose (Gb;: Galal-4 Galp1-4Glcpl-) neutral-
ized Vero toxins produced by Escherichia coli O157:H7
with high affinity in in vivo experiments using mice.’
In the course of our investigation on glycoclusters, we
became interested in the synthesis of a novel carbo-
hydrate scaffold possessing a luminophor.

Much interest has recently been shown in siloles (sila-
cyclopentadienes) because of their unique optical and
electronic properties and their potential applications in
organic electroluminescent devices.® These properties
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can be attributed to the low-lying LUMO level associ-
ated with the 6™—r" conjugation arising from the inter-
action between the ¢ orbital of the silicon atom and
n* orbital of the butadiene moiety.” In this Letter, we
report the first synthesis of a luminescent glycocluster
containing a silole moiety as a luminophor and its
unique optical properties in aqueous solution.

The silole core 2, 1,1-diallyl-2,3,4,5-tetraphenylsilole,
was synthesized via a known intermediate 1% in 50%
overall yield from 1,2-diphenylacetylene as shown in
Scheme 1. Hydrosilation of 2 with trichlorosilane using
H,PtClg - 6H,O as a catalyst and the succeeding Grig-
nard reaction with allyl magnesium bromide provided
the first generation of silole-core dendrimer 3 in 74%
yield. The resulting dendrimer 3 was treated with di-
cyclohexylborane followed by hydrolysis with hydrogen
peroxide in alkaline solution to afford a hexahydroxy
derivative 4 (64%), which further underwent successively
O-mesylation and replacement with bromo anions, giv-
ing 5 in 67% yield (2 steps). Although hydrosilation
and hydroboration of the butadiene moieties in 2 and
3, respectively, were suspected in this synthetic strategy,
these reactions regioselectively took place at the ex-
pected terminal olefins under such reaction conditions
Scheme 2.

Coupling reaction between the silole-core dendrimer 5
and a peracetylated globotriaose derivative 63 was
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achieved by nucleophilic substitution of the terminal
bromide on the dendrimer 5 with a thiolate anion gener-
ated from 6 by treatment with sodium methoxide in
methanol.” Since a part of the acetyl protecting group
was deprotected under such reaction conditions, the
resulting products were re-protected by the reaction with
acetic anhydride in pyridine for purification. After puri-
fication by means of recycling GPC, the silole-core
glycocluster 7 fully substituted by globotriaose was
obtained in 47% yield. Then the glycocluster 7 was
deprotected by a combination of Zemplén’s condition
and saponification to afford the corresponding silole-
core dendrimer 8 (83%), the structure of which was con-
firmed by NMR, UV-vis, and PL spectra, and MALDI-
TOF mass spectrometry.'? It should be noted that the
glycocluster 8 obtained is not only the first glycocluster
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possessing a luminophor but also the first hydrophilic
silole derivative.'!

A photoluminescence spectrum of the synthesized silole-
dendrimer 8 measured in water is shown in Figure 1 to-
gether with photoluminescence spectra of representative
hydrophobic silole-dendrimers 5 and 7 for comparison.
Although all of these silole dendrimers have an emission
band at around 475 nm from the silole moieties, the
hydrophilic dendrimer 8 displayed remarkably strong
emission in sharp contrast to hydrophobic dendrimers
5 and 7 measured in chloroform. Extremely bright blue
luminescence from dendrimer 8 in water is shown in
Figure 2. The difference between the emission intensity
of hydrophilic dendrimer 8 and emission intensities of
hydrophobic dendrimers 5 and 7 might be attributable



K. Hatano et al. | Tetrahedron Letters 48 (2007) 4365-4368 4367

10000

8000

6000 [

4000

2000

Relative Intensity (arb. units)

0 T T y ¥
380 400 420 440 460 480 500 520
Wavelength / nm

Figure 1. PL spectra of silole-dendrimers 5 and 7 (in chloroform), and
8 (in water) at room temperature. Concentration: 10 pM; excitation:
360 nm.

Figure 2. Photoluminescence of silole-dendrimer 8 in pure water at
room temperature. Concentration: 1 mM; excitation: 360 nm.

to their molecular aggregation form in each solvent.
Tang and co-workers recently reported aggregation-
induced emission (AIE) phenomena of a hydrophobic
simple silole molecule in an ethanol/water mixture whose
emission intensity was significantly enhanced by increas-
ing the water fraction above 50%.!?> Analogous AIE
phenomena of some hydrophobic siloles also have been
observed in aqueous solutions.'3

Next, we examined the dependence of the emission
intensity of the hydrophilic dendrimer 8 on solvent com-
position using water/acetone mixture. The PL spectra of
8 are shown in Figure 3a (water fractions of 100-70%)
and Figure 3b (20-1%), and these emission intensities
vs water fraction in the solutions are plotted in Figure
4. In the range of 70 to 100% of water fraction, emission
intensity was enhanced by increasing the water fraction
in analogy with cases of previously reported hydropho-
bic siloles (Fig. 3a). Surprisingly, similar strong emission
from 8 was also observed in the case of water fraction of
less than 20%, and the intensity increased in inverse pro-
portion to the water content in the solution as shown in
Figure 3b. Consequently, silole 8 showed extremely in-
tense emission in 100 and 1% water fractions, the highest
and lowest water contents under the experimental condi-
tions (Fig. 4). The fluorescence quantum yields (@gy ) in
100%, 50%, and 2% water fractions were estimated to be
0.65, 0.059, and 0.37, respectively. These results reveal
that the water fraction of the solution has a significant
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Figure 3a. PL spectra of silole-dendrimer 8 in water and water/acetone
mixture with 90%, 80%, 70%, and 60% water fractions. Concentration:
1 uM; excitation: 360 nm.
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Figure 3b. PL spectra of silole-dendrimer 8 in water/acetone mixture
with 1%, 6%, 8%, 10%, 15%, and 20% water fractions. Concentration:
1 uM; excitation: 360 nm.

influence on the emission intensity of 8. Interestingly,
however, the water fraction had little effect on lumines-
cence wavelength from silole 8, and PL spectra of silole
8 were constantly detected at around 475 nm (Fig. 3a
and 3b). The hydrophilic silole 8 in water/acetone mix-
ture showed different emission behavior than the behav-
ior of hydrophobic siloles previously reported AIE
effect.!>13

In the "H NMR spectrum of 8 in D,O at 298 K broad
signals were observed, whereas in a mixture of D,O/ace-
tone-dg (50/50) the relatively sharp signals compared
with the signals in D,O were detected at the same tem-
perature. In general, NMR spectrum of a compound
aggregated in a solution shows broadening signal due
to sluggish exchange on NMR time scale and increasing
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Figure 4. Emission intensity of 8 vs solvent composition of the water/
acetone mixture.



4368 K. Hatano et al. | Tetrahedron Letters 48 (2007) 4365-4368

333K

308 K

298 K

I T I I I
7.0 6.5

Figure 5. Variable temperature '"H NMR spectra of 8 in D,O.

of the measurement temperature transform the peak
shape from broad to sharp.

The aromatic proton signals of 8 measured in D,O at
between 298 K and 333 K are shown in Figure 5. The
broadening signals observed at 298 K progressively lead
to sharp signals with increasing of the temperature.
These NMR studies reveal that faster exchange of sil-
ole-dendrimer 8 in the state of aggregation is caused
by raising temperature. Analogous NMR experiment
of 8 in lower water fraction of D,O/acetone-ds (2/98)
mixture failed because of the poor solubility.

Although account for the intense emission of 8 in the
lower water fraction solutions has remained uncertain
so far, we speculate that the silole moieties of 8 aggre-
gate in a solution with the higher water fractions from
the results of variable temperature 'H NMR studies.
Further investigations on elucidation of intense lumines-
cence of 8 in the lower water fractions and the applica-
tion to a visualization of pathogens are currently in
progress.
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