

# Competition between $\pi$ -Arene and Lone-Pair Halogen Coordination of Silylium lons?

Paola Romanato, Simon Duttwyler, Anthony Linden, Kim K. Baldridge,\* and Jay S. Siegel\*

Organic Chemistry Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland

Supporting Information

**ABSTRACT:** In 2,6-diarylphenylSiR<sub>2</sub> cations, the 2,6diarylphenyl (*m*-terphenyl) scaffold blocks incoming nucleophiles and stabilizes the positive charge at silicon by lateral ring interactions. Direct ortho-halogen and  $\pi$ -electronrich face coordination to silicon has been seen. For a series of cations bearing 2,6-difluoro-2',6'-dimethyl-X<sub>n</sub>-substituted rings, the relative contribution of these two modes of stabilization has been assessed. Direct coordination from an aryl fluoride is found to be comparable to that from the mesityl  $\pi$ -face.

The quest for stable silylium ions, R<sub>3</sub>Si<sup>+,1</sup> has led to the use of the 2,6-diarylphenyl (*m*-terphenyl) scaffold as a substituent, which can block incoming nucleophiles and stabilize the positive charge at silicon by lateral ring interactions. When the lateral rings are  $\pi$ -electron-rich because of methyl groups, single  $\eta^{1} \pi$  coordination to the silicon center dominates.<sup>1c</sup> In contrast, halogen $\rightarrow$ Si interactions dominate when chlorine or fluorine atoms are at the ortho positions of the flanking rings (I and II in Figure 1).<sup>2,3</sup> Are the energetic details of these two modes of stabilization comparable? Would  $\pi$  effects compete or cooperate with the halogen $\rightarrow$ Si interactions? This study of a series of cations 1 bearing 2,6difluoro- and 2,6-dimethyl-X<sub>n</sub>-substituted rings indicates a "friendly" competition between the two modes of stabilization: lowerbasicity xylyl and mesityl rings (1a, 1b) contribute less than the  $F \rightarrow Si$  interactions, whereas higher-basicity duryl and pentamethylphenyl rings (1c, 1d) contribute more than the  $F \rightarrow Si$ interactions.



Single Negishi coupling of triazene  $3^4$  followed by treatment of 4 with iodine afforded biphenyl 5. Hart-type coupling<sup>5</sup> of 5 and subsequent lithiation/silylation furnished silanes 7. Cations 1 were prepared by hydride abstraction using  $[Ph_3C][B(C_6F_5)_4]$ (Scheme 1).

NMR spectroscopy studies suggest analogies between 1a/1b and IIa and between 1c/1d and Ia (Figure 1). The experimental and calculated <sup>29</sup>Si NMR shift data (Table 1) show 1a and 1b ( $\delta \approx 100$  ppm) to be more deshielded than 1c and 1d ( $\delta \approx 60$  ppm). In 1a and 1b, the signal multiplicity for the SiMe<sub>2</sub> fragment (<sup>1</sup>H, <sup>13</sup>C, <sup>29</sup>Si) indicates a dynamic equilibrium of



**Figure 1.** <sup>29</sup>Si NMR shifts of different terphenylsilylium ions: (black) molecules with preferential  $\pi$ -arene $\rightarrow$ Si interactions; (blue) molecules with preferential halogen $\rightarrow$ Si interactions. Solvent, C<sub>6</sub>D<sub>6</sub>; anion, B(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub><sup>-</sup>.

Scheme 1



tautomers in which Si–F coupling is detectable (Figure 2). The unresolved signals of 1c and 1d imply weak interactions with the ortho fluorine atoms, whereas an analysis of the <sup>13</sup>C NMR shifts of the lateral rings in these cations is consistent with  $\eta^1 \pi$  coordination by the C<sub>ortho</sub> atoms of the methylated rings.<sup>6</sup> Thus evolves a picture for 1a–d in which, among structures of an equilibrium that is fast on the NMR time scale, F→Si interactions contribute demonstrably in 1a and 1b but to a lesser extent in 1c and 1d.

M06-2X/Def2-TZVPP calculations predicted cations 1 to adopt a  $C_1$ -symmetric geometry with a low barrier to dynamic exchange of silicon among the preferential coordination sites.<sup>7</sup> In the specific cases, two minima were predicted for 1a and 1b, with halogen $\rightarrow$ Si preferred over  $\pi$ -arene $\rightarrow$ Si, whereas only a single  $\pi$ -arene $\rightarrow$ Si conformation was predicted for 1c and 1d.

Computational structural predictions fully matched the solidstate structures of 1a and 1d (Figure 3), which were obtained as

Received:
 May 11, 2011

 Published:
 July 18, 2011

 Table 1. M06-L/Def2-TZVPP//M06-2X/Def2-TZVPP CSGT

 <sup>29</sup>Si NMR (ppm) Predictions for 1a, 1b, 1c, and 1d in Toluene

|       | 1a    | 1b   | 1c   | 1d   |
|-------|-------|------|------|------|
| exptl | 101.3 | 95.5 | 60.1 | 57.3 |
| calcd | 98.9  | 97.6 | 61.6 | 56.2 |



**Figure 2.** NMR analysis of **1a**, **1b**, **1c**, and **1d**: signals for methyl groups at silicon are shown in blue, signals for silicon in red, and signals for fluorine in green, each in the fast-exchange limit. Solvent,  $C_6D_6$ ; anion,  $B(C_6F_5)_4^{-1}$ .



**Figure 3.** X-ray structures of (left)  $[1a][CB_{11}H_6Cl_6]$  and (right)  $[1d][CB_{11}H_6Cl_6]$  with 35% probability ellipsoids; anions and hydrogen atoms have been omitted. Dashed lines show the F $\rightarrow$ Si and  $\pi$ -arene $\rightarrow$ Si interactions.

solvent-free salts with the carborane anion  $CB_{11}H_6Cl_6^{-.8}$  1a exhibits fluorine coordination with a Si1–F1 distance of 1.8658(8) Å, which is longer than the Si–F bond length of 1.600(1) Å in Me<sub>3</sub>SiF (Table 2).<sup>9</sup> X-ray analysis of 1d revealed  $\pi$  coordination via  $C_{ortho}$  with a Si1–C16 distance of 2.089(2) Å, which is longer than the Si–C bond length of 1.875(2) Å in Me<sub>4</sub>Si.<sup>9</sup> In both cations, the dihedral angle between the coordinating ring and the central ring deviates significantly from 90°, whereas the noninteracting ring adopts an almost perpendicular conformation relative to the central ring.

Aspirations to obtain a truly tricoordinate silylium ion led to the synthesis of cations **2** (Scheme 2). Hydride abstraction from **8a** with different trityl salts  $[Y = B(C_6F_5)_4^-, CB_{11}H_6Cl_6^-]$ showed the formation of Ph<sub>3</sub>CH; however, cation **2a** was not observed. Instead, several decomposition products, including fluorosilane **2a**–F, were formed.<sup>10,11</sup> In contrast, **2b** was generated cleanly. <sup>13</sup>C NMR analysis<sup>6</sup> of [**2b** $][B(C_6F_5)_4]$  revealed a

COMMUNICATION

| Table 2. Selected Bond Lengths (Å) and Angles (deg) for the            |
|------------------------------------------------------------------------|
| Single-Crystal X-ray Structures and the Calculated C <sub>1</sub> Con- |
| formers of 1a and 1d                                                   |

| la                          |               |        | 1d                          |             |        |
|-----------------------------|---------------|--------|-----------------------------|-------------|--------|
| parameter                   | exptl         | calcd  | parameter                   | exptl       | calcd  |
| F1→Si1                      | 1.8658(8)     | 1.8880 | C16→Si1                     | 2.089(2)    | 2.1703 |
| C10-F1                      | 1.448(2)      | 1.4246 | C16-C21                     | 1.546(2)    | 1.5355 |
| C14-F2                      | 1.346(2)      | 1.3327 | C20-C25                     | 1.508(3)    | 1.5048 |
| $\Sigma C-Si-C$             | 356.8(1)      | 356.58 | $\Sigma C-Si-C$             | 345.5(2)    | 349.94 |
| dfp-Si <sup>a</sup>         | 0.190(1)      | 0.198  | dfp-Si <sup>a</sup>         | 0.413(1)    | 0.344  |
| dihedral angle <sup>b</sup> | $29.4(1)^{c}$ | 29.90  | dihedral angle <sup>b</sup> | $45.3(1)^d$ | 50.54  |

<sup>*a*</sup> Distance between the Si atom and the plane defined by the three C atoms bound to Si. <sup>*b*</sup> Angle between the least-squares planes of a flanking ring and the central ring. <sup>*c*</sup> Between the ring containing F1 and the central ring. <sup>*d*</sup> Between the ring containing C16 and the central ring.

Scheme 2





Figure 4. X-ray structure of  $2b-CB_{11}H_6Cl_6$  with 35% probability ellipsoids; hydrogen atoms have been omitted.

 $C_{ortho}$ –Si  $\pi$  coordination comparable in strength to that of Ib, although their  $\delta$ (<sup>29</sup>Si) signals differed by ~15 ppm.

Crystals of **2b** were obtained with the carborane anion  $CB_{11}H_6Cl_6^-$ . The X-ray analysis revealed an interaction between a lower-belt chlorine atom of the carborane and silicon (Figure 4). The Si1–Cl1 distance is 2.3130(5) Å, which is almost identical to that in  $iPr_3-CB_{11}H_6Cl_6$ ;<sup>12</sup> coordination of **2b** by the anion causes a pyramidalization of the silicon center, as shown by the sum of angles around silicon [ $\Sigma C-Si-C = 351.40(12)^\circ$ ] and by the corresponding out-of-plane distance [dfp-Si = 0.3154(4) Å].<sup>13</sup>

Electron-rich arenes and aryl halides are donors for silylium ions. A delicate balance between these two coordination modes in silylium ions and a clear break point between mesityl- and duryl-substituted cations have been found. Arenes with reduced  $\pi$  basicity and no possible halogen—Si interactions (2) poorly accommodate the avidity of Si<sup>+</sup> for electron density, allowing coordination by anions as weakly basic as carborane (CB<sub>11</sub>H<sub>6</sub>Cl<sub>6</sub><sup>-</sup>) to be observed in the crystal.

#### ASSOCIATED CONTENT

**Supporting Information.** Experimental procedures, computational details, and CIFs for  $[1a][CB_{11}H_6Cl_6]$ ,  $[1d][CB_{11}H_6Cl_6]$ , and  $2b-CB_{11}H_6Cl_6$ . This material is available free of charge via the Internet at http://pubs.acs.org.

## AUTHOR INFORMATION

**Corresponding Author** kimb@oci.uzh.ch; jss@oci.uzh.ch

## ACKNOWLEDGMENT

This work was supported by the Swiss National Science Foundation. K.K.B. gratefully acknowledges D. Truhlar for access to G03-mngfm41 at MSI.

## REFERENCES

(a) Kim, K.-C.; Reed, C. A.; Elliott, D. W.; Mueller, L. J.; Tham,
 F.; Lin, L.; Lambert, J. B. Science 2002, 297, 825.(b) Auner, N.; Müller,
 T.; Ostermeier, M. In Organosilicon Chemistry IV; Auner, N., Weis, J.,
 Eds.; Wiley-VCH: Weinheim, Germany, 2000; p 127. (c) Duttwyler, S.;
 Do, Q.-Q.; Linden, A.; Baldridge, K. K.; Siegel, J. S. Angew. Chem., Int. Ed.
 2008, 47, 1719. (d) Klare, H. F. T.; Bergander, K.; Oestreich, M. Angew.
 Chem., Int. Ed. 2009, 48, 9077. (e) Klis, T.; Powell, D. R.; Wojtas, L.;
 Wehmschulte, R. J. Organometallics 2011, 30, 2563.

(2) (a) Romanato, P.; Duttwyler, S.; Linden, A.; Baldridge, K. K.; Siegel, J. S. *J. Am. Chem. Soc.* **2010**, *132*, 7828. (b) For a review of related dative fluorine to transition-metal interactions, see: Kulawiec, R. J.; Crabtree, R. H. *Coord. Chem. Rev.* **1990**, *99*, 89. (c) For a recent example of dative fluorine to transition-metal interactions, see: Stanek, K.; Czarniecki, B.; Aardoom, R.; Ruegger, H.; Togni, A. *Organometallics* **2010**, *29*, 2540.

(3) Christe, K. O.; Zhang, X.; Bau, R.; Hegge, J.; Olah, G. A.; Prakash, G. K. S.; Sheehy, J. A. J. Am. Chem. Soc. **2000**, *122*, 481.

(4) Liu, C.-Y.; Knochel, P. Org. Lett. 2005, 7, 2543.

(5) Saednya, A.; Hart, H. Synthesis 1996, 1455.

(6) For comparison of the  $^{13}$ C NMR shifts for cations 1 and 2 with respect to the neutral silane precursors, see the Supporting Information.

(7) Details of the calculations are given in the Supporting Information.(8) Reed, C. A. Acc. Chem. Res. 1998, 31, 133.

(9) Rempfer, B.; Oberhammer, H.; Auner, N. J. Am. Chem. Soc. 1986, 108, 3893.

(10) Studies indicated that under the conditions given in Scheme 2, 2a abstracts fluoride from 8a (see the Supporting Information for details). 2a-F was identified by GC-MS and <sup>29</sup>Si NMR spectroscopy.

(11) For C<sub>aryl</sub>-F activation, see: (a) Duttwyler, S.; Douvris, C.;
Fackler, N. L.; Tham, F. S.; Reed, C. A.; Baldridge, K. K.; Siegel, J. S. Angew. Chem., Int. Ed. 2010, 49, 7519. (b) Allemann, O.; Duttwyler, S.;
Romanato, P.; Baldridge, K. K.; Siegel, J. S. Science 2011, 332, 574. (c) Douvris, C.; Ozerov, O. V. Science 2008, 321, 1188.(d) Kirk-Othmer Encyclopedia of Chemical Technology, 4th ed.; Wiley: New York, 1994;
Vol. 11. (e) Olah, G.; Tolgyesi, W. S.; Dear, R. E. A. J. Org. Chem. 1962, 27, 3441.

(12) For  $iPr_3Si-CB_{11}H_6Cl_6$  and  $[iPr_3Si-ODCB][CHB_{11}Cl_{11}]$ , respectively, see: (a) Xie, Z.; Manning, J.; Reed, R. W.; Mathur, R.; Boyd, P. D. W.; Benesi, A.; Reed, C. A. *J. Am. Chem. Soc.* **1996**, *118*, 2922. (b) Hoffmann, S. P.; Kato, T.; Tham, F. S.; Reed, C. A. *Chem. Commun.* **2006**, 767.

(13) Bond lengths and angles are listed in the Supporting Information.