Rhodium-catalyzed approach to Mannich-type products using aldimine, α , β -unsaturated ester, and hydrosilane[†]

Takako Muraoka, Shin-ichi Kamiya, Isamu Matsuda* and Kenji Itoh

Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan. E-mail: matsudai@apchem.nagoya-u.ac.jp; Fax: 81-52-789-3205; Tel: 81-52-789-5113

Received (in Cambridge, UK) 20th March 2002, Accepted 1st May 2002 First published as an Advance Article on the web 16th May 2002

A rhodium-catalyzed method for the synthesis of β -amino esters was accomplished in a one-pot procedure from aldimine, α , β -unsaturated ester and hydrosilane.

Mannich-type reactions of an aldimine with an enolate component are some of the most important and versatile tools to construct β -amino carbonyl compounds. These reactions provide useful routes for the synthesis of β -amino esters which are useful as the immediate precursors of β -lactams and β -amino acids.¹ Recent patterns of these reactions are categorized as the combination of aldimines and enoxysilanes with the assistance of some types of Lewis acid,^{2,3} though some exceptions have been reported.⁴ The advantages for the use of enoxysilanes as a nucleophile are widely accepted, however, some troublesome procedures are required for their isolation in sufficient purity.⁵

On the other hand, the transition-metal-catalyzed carboncarbon bond forming reaction is regarded as one of the most convenient and facile tools for constructing a designed molecule in the past decades.⁶ In particular, it is fascinating that several bonds are formed in an orderly manner in a one-pot reaction of more than three starting substrates under almost neutral conditions.7 We have found that some types of rhodium complex enable multi-component couplings including a hydrosilane as a starting component.8 In these reactions, some have indicated that rhodium enolate plays an important role as a key intermediate in these multi-component couplings. The formation of a rhodium enolate is elucidated by the insertion of an α,β -unsaturated carbonyl compound into the Rh-H bond generated by the oxidative addition of a hydrosilane to a low valent rhodium metal. The resultant enolate possesses sufficient nucleophilicity to attack an appropriate electrophile.8a,b,o Along this line, we attempted to design a facile route to β -amino esters (Scheme 1). We report herein a rhodium-catalyzed method to give a Mannich-type product from the reaction of an aldimine with an α , β -unsaturated ester and a hydrosilane.

First of all, a CH₂Cl₂ solution containing aldimine **1a**, methyl acrylate **(2)**, diethylmethylsilane **(3)**, and 1 mol% of [Rh(cod)(PPh₃)₂]OTf **(4a**, cod = cycloocta-1,5-diene) was heated for 5 h at 45 °C to afford the *N*-diethylmethylsilyl- β -amino ester, **5a**, corresponding to **6a**. Protodesilylation of **5a** in acidic aqueous EtOH afforded the β -amino ester **6a** in 81% yield as a mixture of two diastereomers (*syn:anti* = 46:54, entry 1 in Table 1). The structure of **6a** was assigned on the basis of its ¹H and ¹³C NMR, IR, and combustion analysis. This three-component coupling of **1a**, **2**, and **3** proceeded incompletely

† Electronic supplementary information (ESI) available: experimental details. See http://www.rsc.org/suppdata/cc/b2/b202773a/

even in the presence of 1 mol% of 4a when the reaction was conducted for 24 h at 25 °C (entry 2 in Table 1). In addition to 6a (31%), TsNH₂ was obtained in 40% yield after chromatographic purification of the crude mixture. Since an aldimine 1a is immediately hydrolyzed in aqueous EtOH to afford TsNH₂ and benzaldehyde, the concomitant formation of TsNH2 reflects the relative quantity of aldimine 1a remaining intact under the given reaction conditions. A neutral and zero-valent rhodium complex, $Rh_4(CO)_{12}$ (4b), also showed a similar catalytic efficiency for this Mannich-type reaction, though more vigorous conditions were required for the complete conversion of 1a (entry 3 in Table 1). The yield of **6a** increased dramatically in the reaction catalyzed by $[Rh(cod){P(OPh)_3}_2]OTf(4c)$ under conditions similar to the reaction using 4a (entry 5 in Table 1). The solvent used for this reaction significantly affected both the rate and the product yield (entries 5, 7, and 8 in Table 1). These results suggest that CH₂Cl₂ is the solvent of choice in the reactions using 4c as the catalyst precursor. In contrast, this coupling reaction gave a sluggish result when a mixture of $[Rh(dppe)Cl]_2$ and AgOTf (4d, dppe = 1,2-bis(diphenylphosphino)ethane) was used as a catalyst precursor instead of 4c (entry 9 in Table 1). Thus, it is deduced that the best result for this Mannich-type transformation is obtained by the combination of 4c as the catalyst precursor and CH_2Cl_2 as the solvent.

On the basis of the preliminary information, several types of aldimines (1) were subjected to the present three-component coupling in the presence of 1 mol% of the rhodium(1) catalyst. Selected results are summarized in Table 2. The reactivity of 1 for this reaction was significantly affected by the structure and electronic properties of both R¹ and R². The 4-methylbenzene-sulfonyl group on the imino-nitrogen showed a remarkable influence on increasing the yield of **6** in comparison with the

Table 1 Rhodium-catalyzed Mannich-type reaction of aldimine 1a with 2and 3^a

Pr	$\begin{array}{c} \begin{array}{c} H \\ H $	OMe + Et₂N 2	MeSiH i) 4 (1 mo ii) H ⁺ / H ₂	1%) O TsHN O 6a	_OMe
Entry	Catalyst precursor ^b	Solvent	Conditions °C/h	Yield of 6a ^{cd} (syn:anti)	TsNH ₂ (%) ^e
1	4a	CH ₂ Cl ₂	45/5	81 (46:54)	
2	4a	CH_2Cl_2	25/24	31 (48:52)	40
3	4b	C_6H_6	85/88	82 (65:35)	_
4	4b	C_6H_6	25/24	40 (53:47)	49
5	4c	CH_2Cl_2	45/6	96 (32:68)	_
6	4c	CH_2Cl_2	25/21	69 (44:56)	_
7	4c	THF	70/28	78 (39:61)	_
8	4c	C_6H_6	85/69	92 (47:53)	_
9	4d	CH_2Cl_2	25/24	28 (60:40)	27

^{*a*} A mixture of **1a** (1 mmol), **2a** (2 mmol) and **3** (2 mmol) in 2 ml of solvent was added to a solution (4 ml) of **4** (1 mol% for **1a**) and the resulting mixture was then stirred under the conditions shown above. ^{*b*} **4a**: Rh(cod)(P-Ph₃)₂]OTf, **4b**: Rh₄(CO)₁₂, **4c**: [Rh(cod){P(OPh₃}]₂]OTf, **4d**: [Rh(dppe)Cl]₂ + 2 AgOTf. ^{*c*} The ratio of the two diastereoisomers was determined by ¹H NMR analysis. ^{*d*} Isolated yield. ^{*e*} The yield of recovered TsNH₂ after chromatographic purification.

DOI: 10.1039/b202773a

other aldimines derived from benzaldehyde (Table 1 and entries 1-5 in Table 2). β-Amino esters (**6b**-e) were obtained in modest yields from the corresponding aldimine (entries 2–5 in Table 2). N-Benzyl-N-2-methoxyphenylamine (7e, 15% based on the starting 1e) was isolated in addition to the expected product 6e (60%) when 1e was reacted with 2 and 3 even in the presence of the less active catalyst, 4a (entry 5 in Table 2). The formation of 7e suggests that there is another path catalyzed by 4, *i.e.*, hydrosilylation, to consume 1e in a one-pot reaction of 1e, 2 and 3. Furthermore, a similar three-component coupling was tested using several aldimines derived from the condensation between $T_{s}NH_{2}$ and other aldehydes (entries 6–10 in Table 2). The presence of a methoxy group at the *ortho*-position on the phenyl ring of R^1 affects the reaction rate to form 6. The reaction of N-(2-methoxybenzylidene)-4-methylbenzenesulfonamide (1h)completed within 4 h afforded the corresponding β -amino ester (6h) in 93% yield (entry 8 in Table 2). A similar effect was expected when an aldimine possessing an ortho-hydroxy group on the phenyl ring of R^1 is employed in place of **1h**, though a longer reaction time was required for the complete consumption of 1i (entry 9 in Table 2). It is noteworthy that nucleophilic attack on 1j selectively proceeds in a 1,2-fashion to give 6j in 56% yield (entry 10 in Table 2). In contrast to these observations, the corresponding $\mathbf{6}$ was not obtained at all in the reaction of an aldimine bearing an aliphatic substituent on the imino-nitrogen. For example, N-cyclohexyl aldimine 1k could not be converted into the β -amino esters under similar reaction conditions, but 1k remained intact (entry 11 in Table 2).

In all the examples presented here, the reaction path was generally controlled to afford a β -amino ester, whereas the diastereoselectivity of the products is moderate and both diastereomers are inseparable through column chromatography at this stage (Table 1 and 2). Although numerous examples of the Mannich-type reaction for aldimines with enoxysilanes are reported, the general procedure for controlling the diastereochemistry has not been established.³ Therefore, the present three-component coupling retains a sufficient usefulness in synthetic organic chemistry despite this defect. It discloses a

Table 2 Rhodium-catalyzed Mannich-type reaction of aldimine 1 with 2 and 3^a

R ¹	H + OMe		+ Et ₂ MeSiH 3	i) 4c (1 mol %) CH ₂ CI ₂ ,45 °C ii) H ⁺ / H ₂ O		R ¹	OMe
						Υ R²HN Ο	
	1	2				6	
Entry		R ¹	R ²		Time/h	Product (%) ^b	syn:anti ^c
1	1a	Ph	p-Ts	p-Ts		6a (96)	32:68
2	1b	Ph	$p-ClC_e$	p-ClC ₆ H ₄		6b (87)	51:49
3	1c	Ph	Ph	Ph		6c (82)	54:46
4	1d	Ph	p-MeC	p-MeOC ₆ H ₄		6d (71)	51:49
5	1e	Ph	o-MeC	C_6H_4	4	6e (60) ^{de}	42:58
6	1f	$p-ClC_6H_4$	<i>p</i> -Ts		5	6f (76)	29:71
7	1g	p-MeOC ₆ H ₄	<i>p</i> -Ts		30	6g (95) ^e	41:59
8	1h	o-MeOC ₆ H ₄	<i>p</i> -Ts		4	6h (93)	50:50
9	1i	$o-HOC_6H_4$	<i>p</i> -Ts		8	6i (75)	38:62
10	1j	(E)-PhCH=CH	<i>p</i> -Ts		48	6j (56)f	37:63
11	1k	Ph	Cvclob	lexvl	24	6k (0)	

^{*a*} A mixture of **1** (1 mmol), **2** (2 mmol) and **3** (2 mmol) in 2 ml of solvent was added to a 4 ml solution of **4c** (1 mol% for **1**) and the resulting mixture was then refluxed for the period shown above. ^{*b*} Isolated yield. ^{*c*} The ratio of the two diastereoisomers was determined by ¹H NMR analysis. ^{*d*} Another product, *N*-benzyl-*N*-2-methoxyphenylamine (**7e**), was concomitantly obtained in 15% yield with **6e**. ^{*e*} **4a** was used for catalyst precursor instead of **4c**. ^{*f*} TsNH₂ was recovered in 32% yield. new route to design certain types of β -amino carbonyl compounds under almost neutral conditions.

In summary, a useful method for the synthesis of β -amino esters has been developed. This methodology provides a convenient route for Mannich-type transformation of the aldimines with an α , β -unsaturated ester and a hydrosilane in the catalysis of a cationic rhodium(1) complex. In this reaction, the rhodium enolate plays an important role in the nucleophilic attack on the sp² carbon of the aldimine. Since only a few examples have been reported for Mannich-type transformation catalyzed by a transition metal complex,⁹ this article describes good examples for the application of transition metals as catalysts of Mannich-type reactions.

Notes and references

- E. F. Kleinman, in *Comprehensive Organic Synthesis*, eds. B. M. Trost and I. Fleming, Pergamon Press, Oxford, 1991, vol. 2, p. 893; M. Arend, B. Westermann and N. Risch, *Angew. Chem., Int. Ed.*, 1998, **37**, 1045.
- 2 For example, see: S. Kobayashi, H. Ishitani, Y. Yamashita, M. Ueno and H. Shimizu, Tetrahedron, 2001, 57, 861; H. Ishitani, M. Ueno and S. Kobayashi, J. Am. Chem. Soc., 2000, 122, 8180; D. Ferraris, B. Young, T. Dudding, W. J. Drury III and T. Lectka, Tetrahedron, 1999, 55, 8869; H. Ishitani, T. Kitazawa and S. Kobayashi, Tetrahedron Lett., 1999, 40, 2161; D. Ferraris, B. Young, T. Dudding and T. Lectka, J. Am. Chem. Soc., 1998, 120, 4548; H. Ishitani, M. Ueno and S. Kobayashi, J. Am. Chem. Soc., 1997, 119, 7153; M. Shimizu, K. Kume and T. Fujisawa, Tetrahedron Lett., 1995, 36, 5227; K. Ishihara, M. Miyata, K. Hattori, T. Tada and Y. Yamamaoto, J. Am. Chem. Soc., 1994, 116, 10520; R. A. Pilli and D. Russowsky, J. Chem. Soc., Chem. Commun., 1987, 1053; G. Guanti, E. Narisano and L. Banfi, Tetrahedron Lett., 1987, 28, 4331; J. -E. Dubois and G. Axiotis, Tetrahedron Lett., 1984, 25, 2143; K. Ikeda, K. Achiwa and M. Sekiya, Tetrahedron Lett., 1983, 24, 4707; I. Ojima, S. Inaba and M. Nagai, Synthesis, 1981, 545; I. Ojima, S. Inaba and K. Yoshida, Tetrahedron Lett., 1977, 3643.
- T. Akiyama, J. Takaya and H. Kagoshima, *Tetrahedron Lett.*, 2001, 42, 4025;
 R. Hayakawa and M. Shimizu, *Chem. Lett.*, 1999, 591;
 S. Kobayashi, H. Ishitani and M. Ueno, *J. Am. Chem. Soc.*, 1998, 120, 431;
 M. Shimizu, K. Kume and T. Fujisawa, *Chem. Lett.*, 1996, 545;
 K. Hattori and H. Yamamoto, *Tetrahedron*, 1994, 50, 2785;
 S. Shimada, K. Saigo, M. Abe, A. Sudo and M. Hasegawa, *Chem. Lett.*, 1992, 1445.
- 4 K. Miura, K. Tamaki, T. Nakagawa and A. Hosomi, Angew. Chem., Int. Ed. Engl., 2000, 39, 1958; S. Kobayashi and H. Ishitani, J. Chem. Soc., Chem. Commun., 1995, 1379; T. Mukaiyama, K. Kashiwagi and S. Matsui, Chem. Lett., 1989, 1397; N. Yamasaki, M. Murakami and T. Mukaiyama, Chem. Lett., 1986, 1013; See also: B. List, J. Am. Chem. Soc., 2000, 122, 9336.
- 5 I. Fleming, A. Barbero and D. Walter, *Chem. Rev.*, 1997, **97**, 2063; P. W. Weber, *Silicon Reagents for Organic Synthesis*, Springer-Verlag, Berlin, 1983; E. W. Colvin, *Silicon in Organic Synthesis*, Butterworth, London, 1981.
- 6 F. J. McQuillin, D. G. Parker and G. R. Stephenson, *Transition Metal Organometallics for Organic Synthesis*, Cambridge University Press, Cambridge, 1991; L. S. Hegedus, (Volume editor) in *Comprehensive Organometallic Chemistry II*, eds. E. W. Abel, F. G. A. Stone and G. Wilkinson, Pergamon Press, Oxford, 1995, vol. 12.
- 7 For recent review see: H.-W. Frühauf, Chem. Rev., 1997, 97, 523; M. Lautens, W. Klute and W. Tam, Chem. Rev., 1996, 96, 49; L. F. Tietze, Chem. Rev., 1996, 96, 115; E. Negishi, C. Copéret, S. Ma, S. Lion and F. Liu, Chem. Rev., 1996, 96, 365; I. Ojima, M. Tzamarioudaki, Z. Li and R. J. Donovan, Chem. Rev., 1996, 96, 635; L. F. Tietze and F. Haunert, in Stimulating Concepts in Chemistry, eds. M. Shibasaki, J. F. Stoddart, F. Vögtle, Wiley VCH, Weinheim, 2000, p. 39.
- 8 T. Muraoka, I. Matsuda and K. Itoh, *Organometallics*, 2001, **20**, 4676; T. Muraoka, I. Matsuda and K. Itoh, *J. Am. Chem. Soc.*, 2000, **122**, 9552; T. Muraoka, H. Asaji, Y. Yamamoto, I. Matsuda and K. Itoh, *Chem. Commun.*, 2000, 199; T. Muraoka, I. Matsuda and K. Itoh, *Tetrahedron Lett.*, 1998, **39**, 7325 and references cited therein.
- A. Fujii, E. Hagiwara and M. Sodeoka, J. Am. Chem. Soc., 1999, 121, 5450; E. Hagiwara, A. Fujii and M. Sodeoka, J. Am. Chem. Soc., 1998, 120, 2474; T. Soga, H. Takenoshita, M. Yamada and T. Mukaiyama, Bull. Chem. Soc. Jpn., 1990, 63, 3122.