Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Synthesis of a tetraoxy-bis-nortaxadiene, en route to taxol, using a cascade radical cyclisation sequence

William P.D. Goldring, Gerald Pattenden*, Stuart L. Rimmington

School of Chemistry, The University of Nottingham, Nottingham NG7 2RD, UK

A R T I C L E I N F O

Article history: Received 26 February 2009 Received in revised form 3 April 2009 Accepted 6 April 2009 Available online 16 April 2009

Keywords: Taxanes Radical cascades Taxoids

ABSTRACT

Concise syntheses of the substituted enynediones **28a**, **33b** and **36** starting from the cyclohexenealdehyde **18**, corresponding to ring A in the taxanes, and the vinylstannane **24**, are described. Treatment of **36** with Bu₃SnH–AIBN did not lead to the oxy-substituted taxadiene **37** expected from a tandem radical macrocyclisation–radical transannulation sequence; instead, a mixture of unidentified products resulted. When the PMB ether **33b** corresponding to the alcohol **36** was treated with Bu₃SnH– AIBN under similar conditions, *p*-anisaldehyde was isolated, as a major by-product, but no evidence for the formation of a taxadiene could be observed. In contrast, the iododienynedione **41**, i.e., deoxy **36**, underwent a tandem radical macrocyclisation–transannulation sequence, when treated with Bu₃SnH– AIBN, leading to the tetraoxy-bis-nortaxadiene **42** in 44% yield. Attempts to synthesise the alcohol **28b** from the silyl ether **28a** en route to the iodide **28c** instead gave the substituted tetrahydrofuran **29** via an intramolecular oxy-Michael reaction.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The natural product taxol (paclitaxel or Taxol[™]) **1**, isolated from the Pacific yew tree *Taxus brevifolia*,¹ has been the focus of intense interest amongst chemists and biologists ever since its pronounced anti-cancer properties were revealed some 30 years ago.² After a further period of research studying its mode of action, followed by chemical trials, Taxol and its semi-synthetic analogue Taxotere 2 entered the clinic in the early 1990s as drugs for the treatment of ovarian and breast cancer.³ With its availability from natural sources very limited, taxol became one of the most challenging targets for total synthesis throughout the late 1980s and the early 1990s. These efforts culminated in two independent syntheses of taxol, published simultaneously by the research groups led by Holton⁴ and by Nicolaou⁵ in 1994, closely followed by distinctly different total syntheses by Danishefsky et al. (1996),⁶ Wender et al. (1997),⁷ Kuwajima et al. (1998)⁸ and by Mukaiyama et al. (1999).⁹ Needless to say, however, over the past 20 years, a wide range of ingenious synthetic designs towards the unique tricyclic ring system in taxol have emerged, some of which may also yet lead to further total syntheses.^{10,11}

Nature elaborates the 6,8,6-tricyclic ring system in taxanes using a sequence of electrophilic macrocyclisation followed by two transannular cyclisations from geranylgeranylpyrophosphate (GGPP) **3**.¹² A series of cytochrome P450-mediated oxidations then enter the arena to decorate the taxadiene hydrocarbon **5** with its oxygenation pattern.¹³ In 1984, and before taxol became such a revered compound, we synthesised the 6,12-bicyclic hydrocarbon **4**, known as verticillene, which was a purported biosynthetic intermediate between GGPP and taxadiene.¹⁴ We also examined electrophilic transannular cyclisations from verticillene **4** but, unfortunately, we were not able to convert it into the 6,8,6-tricyclic taxadiene **5** when verticillene **4** was added to incubations containing the taxadiene synthase enzyme.¹⁶

^{*} Corresponding author. Tel.: +44 (0)115 951 3530; fax: +44 (0)115 951 3535. *E-mail address*: gerald.pattenden@nottingham.ac.uk (G. Pattenden).

^{0040-4020/\$ -} see front matter s 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2009.04.021

Over the past decade and more, our research group has examined a range of carbon-centred radical-mediated cascade cyclisations to access a variety of ring-fused systems found in natural products.¹⁷ These studies also included a synthetic approach to the taxane ring system,¹⁸ which distinguished itself from all other approaches, whereby the 8,6-(BC) fused ring system in the natural product was elaborated in a single step via a tandem radical cascade sequence from a substituted A-ring precursor, viz. $\mathbf{6} \rightarrow \mathbf{7}$.¹⁹ We have now investigated this approach to taxanes using a more oxygensubstituted ring A precursor, i.e., **8**, with the aim of producing an advanced taxadiene, viz. **9**, towards taxol itself.

2. Results and discussion

An important limitation in the radical cascade sequence, $6 \rightarrow 7$, to the tricyclic ring system in the taxanes was found when precursors carrying methyl group substitutions at C8 on their C8–C9 alkene bonds were used, i.e., **6c**. In these instances, only the products **11** resulting from intramolecular 1,5-H abstraction involving the first-formed alkyl radical centre and the vinyl methyl group, via **10**, were isolated, rather than the anticipated angular methyl substituted tricycles **12**.¹⁹ Accordingly, our synthesis design towards taxol necessitated that we introduce the (angular) C8methyl group after elaborating any oxygenated taxane tricycle.

A number of sequences were considered, however, whereby an angular methyl group could be introduced at C8 in an appropriately oxygenated taxadiene intermediate, i.e., **9**. These included using a C–H insertion reaction at C8 from a diazo ester intermediate associated with the C7 hydroxy group in **9**,²⁰ or by Michael addition of an appropriate methylcuprate to the conjugated enone **13** derived from **9**,²¹ and/or via cleavage of the cyclopropane ring in a cyclopropyl ketone intermediate viz. **14**.²² In spite of all these plausible considerations, however, we first needed to prepare the oxygenated taxadiene **9** from the radical cascade precursor **8**!

To achieve the aforementioned objective, we began by synthesising the fully oxygen-substituted chiral A-ring compound **15**, starting from 2,2-dimethyl-cyclohexan-1,3-dione using a sequence we had already developed and published in full.^{11a,23} Protection of the secondary and tertiary hydroxyl groups in **15** as their MOM ethers, followed by deprotection of the silyl ether group in the product **16** first gave the primary alcohol **17** (Scheme 1). Oxidation of **17** next gave the corresponding aldehyde **18** in readiness for coupling to the substituted vinylstannane **24**. The vinylstannane **24** was prepared in five steps from commercial (*S*)–1,2,4-butanetriol **19**. Thus, protection of the triol **19** as its *p*-methoxybenzylidene acetal followed by oxidation of the primary alcohol group in **20** using Swern conditions, first gave the aldehyde **21**. A modified Takai olefination reaction²⁴ next gave the *E*-vinylstannane **22**, which was then reduced, using DIBAL, leading to the primary alcohol **23**. Finally, treatment of **23** with TBS chloride gave the differentially protected 1,3-diol substituted vinylstannane **24**.

Addition of the cyclohexenealdehyde **18** to the vinyllithium species produced from the stannane **24**, using *n*-BuLi, followed by an aqueous work-up, gave a mixture of diastereoisomers of the adduct **25**, resulting from simultaneous removal of the benzoate group in **18** (Scheme 2). Oxidation of the primary and secondary hydroxyl groups in **25** next led to the ketoaldehyde **26**, which reacted

Scheme 1. Reagents and conditions: (a) TBAI, DIPEA, MOMCI, CH_2Cl_2 , 83%; (b) TBAF, THF, 60%; (c) Dess-Martin periodinane, NaHCO₃, CH_2Cl_2 , 82%; (d) *p*-methox-ybenzaldehyde dimethyl acetal, CH_2Cl_2 , 40 °C, 77%; (e) (COCl)₂, DMSO, then NEt₃, CH_2Cl_2 , -78 °C, 82%; (f) CrCl₂, DMF, Bu₃SnCHBr₂, Lil, THF, 48%; (g) DIBAL, CH₂Cl₂, 67%; (h) NEt₃, DMAP, TBSCI, 95%.

Scheme 2. Reagents and conditions: (a) 24, n-BuLi, THF, -78 °C, then 18, 92%; (b) Dess-Martin periodinane, NaHCO₃, CH₂Cl₂, 85%; (c) HCCMgBr, THF, 0 °C; (d) Dess-Martin periodinane, NaHCO₃, CH₂Cl₂, 98% (over two steps); (e) TBAF, THF, 55%.

selectively with acetylenemagnesium bromide producing the propargylic alcohol **27**. Oxidation of **27**, using Dess–Martin periodinane, then gave the ynone **28a** in 98% yield over two steps. Our plan now was to remove the silyl ether protecting group in **28a** and then convert the resulting alcohol **28b** into the corresponding iodide **28c**, in readiness for the proposed radical cascade to a taxane, viz. **9**. Unfortunately, when the silyl ether **28a** was treated with TBAF, the resulting alcohol **28b** underwent immediate intramolecular oxy-Michael cyclisation producing the tetrahydrofuran **29** instead.

To overcome the above problem, we first converted the diol 25 into its bis-p-nitrobenzyl derivative 30 and then removed the TBS protection producing the alcohol **31a** (Scheme 3). The alcohol **31a** was next converted into the bromide **31b**, via its mesylate. The ester groups in **31b** were saponified and the resulting diol was then oxidised to the ketoaldehyde 32. Finally, the ketoaldehyde 32 was converted into the enynone **33a** using procedures described earlier in the conversion of **26** into **28**. Interchange of bromide for iodide in **33a**, using Finkelstein conditions, then gave the radical precursor **33b**. Much to our chagrin, when the iodide **33b** was treated with Bu₃SnH–AIBN, the only 'product' isolated was *p*-anisaldehyde. We believe the *p*-anisaldehyde originates from cleavage of the benzyl ether group at C7 in **33b** via a process involving 1,5-H abstraction by the alkyl radical intermediate 34, leading to the benzyl radical 35, which then undergoes a precedented fragmentation as shown in Scheme 4.²⁵ Unfortunately, no products, resulting from the anticipated radical cascade, were isolated.

Almost as a last resort we then attempted to carry out a radical cascade from the substrate **36a** containing no protecting group associated with the C7 hydroxy group. This alcohol was easily

produced from the PMB ether **33b** after treatment with DDQ in $CH_2Cl_2-H_2O$ at 0 °C (Scheme 5). Subsequent treatment of the iodide **36a** with Bu_3SnH -AIBN led to a mixture of products, but we were baffled to find that not only did none of them correspond to the substituted taxane ring system **37**, but also none of them contained any alkene unsaturation on analysis of their NMR spectroscopic data! A similar fate was met by the corresponding TBS ether (**36b**).

At this point in time in our studies, we asked ourselves whether it was simply the oxy-substitution at C7, which was affecting the attempted radical cascade reactions from the iodides **33b** and **36**, or perhaps it had something to do with the oxy-substitutions in the Arings of the same precursors. To answer this question we decided to examine a radical cascade from the substituted iodide **41**, which lacked any oxy-functionality at C7, but contained a fully oxysubstituted A-ring. The iodoenynedione **41** was produced from the aldehyde **18** and the vinylstannane **38** derived from pent-4-yn- $1-ol^{26}$ using procedures and reagents, which were identical to those used previously in the syntheses of the analogous compounds **28**, **33** and **36** from **18** (Scheme 6).

We were gratified to find that when the iodide **41** was treated with Bu₃SnH–AIBN, it underwent alkyl radical formation, followed by a tandem 12-*endo-dig* macrocyclisation and 6-*exo-trig* cyclisation leading to the 6,8,6-tricyclic dienedione **42**, in 44% yield after purification by chromatography. The structure and stereochemistry of the tricycle **42** followed from analysis of its ¹H–¹H COSY NMR spectroscopic data together with comparison of its spectroscopic data with those of the analogue **7a** devoid of oxy-substitution in the A-ring, prepared by us in early work.¹⁹

Scheme 3. Reagents and conditions: (a) PNBCl, NEt₃, DMAP, CH₂Cl₂, 97%; (b) HF·Py, Py, 84%; (c) MsCl, NEt₃, CH₂Cl₂; (d) LiBr, THF, 56 °C, 73% (over two steps); (e) K₂CO₃, MeOH, 86%; (f) Dess–Martin periodinane, NaHCO₃, CH₂Cl₂; (g) HCCMgBr, THF, 0 °C; (h) Dess–Martin periodinane, NaHCO₃, CH₂Cl₂, 67% (over three steps); (i) Nal, butan-2-one, 80 °C, 95%.

Scheme 4. Fragmentation of the alkyl radical centre produced from the iodide **33b**, leading to *p*-anisaldehyde.

Scheme 5. Reagents and conditions: (a) DDQ, CH₂Cl₂-H₂O, 87%; (b) TBSOTf, 2,6-lutidene, CH₂Cl₂, 56%.

The successful outcome of the cascade cyclisation from 41 to 42 demonstrated that the oxy-substituents in the A-ring of the precursor 41 had no effect on the outcome of the cascade. With the benefit of hindsight, the failure of the C7 oxy-substituted envnediones **36** to undergo the anticipated cascade radical sequence, leading to 37, could be due to an unforeseen, competitive, H-radical abstraction process involving the C7-H centre. Thus, the alkyl radical centre 44 produced from 36 would be expected to undergo a 12-endo-dig cyclisation leading to the vinylic radical species 45 (Scheme 7). Instead of undergoing the expected 6-exo-trig cyclisation, leading to 37, the vinylic radical 45 could then undergo 1,5-H abstraction leading to the new radical centre 46, which is stabilised by both the neighbouring oxy-centre and the conjugated enone unit. The radical centre 46 could then undergo fragmentation, producing a new carbonyl group at C7, i.e., 48, or it could take part in a variety of alternative cyclisation and/or H-abstraction processes from the delocalised radical species **47**. leading to a plethora of products. Interesting as these suggestions may be, we have no experimental evidence to support them and they must therefore remain as speculation for the time being.

Our synthesis of the tetraoxy-bis-nortaxadiene **42** is distinguished from other approaches to the taxane ring system, in that the B and C rings are produced in a single step from a substituted A-ring precursor. In the syntheses of taxol **1** developed by Holton⁴ and Wender⁷ and their respective colleagues, the A,B-ring system was produced first, to which the C-ring was later annulated. By contrast, the research groups led by Nicolaou,⁵ Danishefsky,⁶ and Kuwajima⁸ all prepared ring A and ring C precursors as a prelude to making the eight-membered B-ring. Finally, Mukaiyama et al.⁹ synthesised their taxol, by first preparing the B-ring and then annulating the C (first) and the A-ring. Although our own synthetic approach to taxol was eventually thwarted by the lack of sufficient quantities of the taxadiene **42** to continue with, it is gratifying to note that **42** is at

the same oxidation level, and of similar constitution, to the advanced intermediate **43** used by Kuwajima et al.⁸ in their synthesis of taxol. Thus, a synthetic sequence involving 1,2-carbonyl group transposition, i.e., C10 to C9, and oxidative dehydrogenation of the C7 to C8 bond in **42**, as key steps, could have provided access to the compound **43** from **42**.

3. Conclusions

The approach to complex polycyclic structures involving cascades of radical cyclisations is a powerful strategy, which is now widely applied in contemporary organic synthesis. Protagonists of the applications of this novel radical chemistry will emphasise its special benefits when compared with corresponding ionic reactions. For our own part, we have shown here, and elsewhere, how powerful radical cascade reactions can be in accessing a variety of complex ring-fused systems, not just taxanes, but steroids and a multitude of polycyclic terpenoids.¹⁷ We would also emphasise that when these same radical cascades do not proceed according to plan, they can always be relied upon to produce new chemistry and interesting new chemical structures.

4. Experimental

4.1. General details

For general experimental details see Ref. 27.

4.1.1. [(S)-2-(4-Methoxy-phenyl)-[1,3]dioxan-4-yl]-methanol (20)

4-Methoxybenzaldehyde dimethyl acetal (2.00 mL, 11.7 mmol) was added dropwise over 5 min to a stirred solution of (*S*)-1,2,4butanetriol **19** (1.01 g, 9.5 mmol) in dichloromethane (30 mL) at room temperature. *p*-Toluenesulfonic acid (0.13 g, 0.60 mmol) was added in one portion and the mixture was then heated at 40 °C for 20 h under a nitrogen atmosphere. The mixture was cooled and then concentrated in vacuo. The residue was purified by flash column chromatography on silica, using 40% ethyl acetate in petroleum ether as eluent, to give the *alcohol* (1.64 g, 77%) as a colourless oil; $[\alpha]_D^{23}$ +7.2 (*c* 1.3, CHCl₃); ν_{max} (film)/cm⁻¹ 3595, 3491, 2936 and 2865; $\delta_{\rm H}$ (360 MHz, CDCl₃) 1.38 (1H, br d, *J* 13.2, OCH₂CHHCH), 1.76–1.90 (1H, m, OCH₂CHHCH), 2.76 (1H, br s, OH), 3.59 (2H, br d, *J* 5.4, CHOCH₂OH), 3.78 (3H, s, ArOCH₃), 3.87–3.96 (2H, m, CH₂CHO), 4.24 (1H, ddd, *J* 1.0, 5.0 and 11.3, CH₂CHO), 5.46 (1H, s, CHAr), 6.89 (2H, d, *J* 8.8, 2×ArH); $\delta_{\rm C}$ (90 MHz, CDCl₃) 26.7 (t),

Scheme 6. Reagents and conditions: (a) 38, n-BuLi, THF, -78 °C, then 18; (b) Dess-Martin periodinane, NaHCO₃, CH₂Cl₂, 86% (over two steps); (c) HCCMgBr, THF, 0 °C; (d) Dess-Martin periodinane, NaHCO₃, CH₂Cl₂, 64% (over two steps); (e) Nal, butan-2-one, 80 °C, 58%; (f) Bu₃SnH, AIBN, PhH, 80 °C, 44%.

Scheme 7. Possible 1,5-H abstraction from the vinylic radical 45.

55.2 (q), 65.4 (t), 66.5 (t), 77.5 (d), 101.0 (d), 113.5 (2×d), 127.4 (2×d), 130.9 (s), 159.9 (s); m/z (ES) 247.0931 (M⁺+Na, 100%, C₁₂H₁₆NaO₄ requires 247.0946).

4.1.2. (S)-2-(4-Methoxy-phenyl)-[1,3]dioxane-4-carbaldehyde (21)

A solution of DMSO (0.9 mL, 12.6 mmol) in dichloromethane (10 mL) was added dropwise over 15 min to a stirred solution of oxalyl chloride (0.62 mL, 7.13 mmol) in dichloromethane (10 mL) at -78 °C under a nitrogen atmosphere. The solution was stirred at -78 °C for 20 min and then a solution of the alcohol 20 (1.01 g, 4.50 mmol) in dichloromethane (10 mL) was added dropwise over 15 min. The solution was stirred at -78 °C for 25 min, then triethylamine (2.00 mL, 27.7 mmol) was added dropwise over 5 min and the mixture was allowed to warm to room temperature over 1 h. Water (20 mL) was added and the separated aqueous phase was then extracted with dichloromethane (2×20 mL). The combined organic extracts were washed with brine (20 mL), then dried over magnesium sulfate and concentrated in vacuo. The residue was purified by flash column chromatography on silica, using 40% ethyl acetate in petroleum ether as eluent, to give the aldehyde (0.817 g, 82%) as a colourless oil; v_{max} (film)/cm⁻¹ 2934, 2860 and 1738; $\delta_{\rm H}$ (360 MHz, CDCl₃) 1.78 (1H, dtd, J 1.5, 2.7 and 13.4, OCH₂CHHCH), 1.95 (1H, dtd, J 5.0, 11.9 and 13.4, OCH₂CHHCH), 3.78-3.80 (1H, m, CH₂CHO), 3.81 (3H, s, ArOCH₃), 3.99 (1H, ddd, J 2.7, 11.7 and 11.9, CH₂CHO), 4.28-4.37 (1H, m, CH₂CHO), 5.56 (1H, s, CHAr), 6.93 (2H, d, J 8.7, 2×ArH), 7.46 (2H, d, J 8.7, 2×ArH), 9.71 (1H, s, CHO); δ_C (90 MHz, CDCl₃) 25.9 (t), 55.3 (q), 66.4 (t), 80.3 (d), 101.1 (d), 113.7 (2×d), 127.4 (2×d), 130.2 (s), 160.2 (s), 200.6 (d), *m*/*z* (ES) 277.1069 (M⁺+MeOH+Na, 100%, C₁₃H₁₈NaO₅ requires 277.1052).

4.1.3. Tributyl-{(E)-2-[(S)-2-(4-methoxy-phenyl)-[1,3]dioxan-4-yl]-vinyl}-stannane (**22**)

N,N-Dimethylformamide (3 mL) was added dropwise to a stirred solution of chromium(II) chloride (2.5 g, 20 mmol, weighed out in a glove bag under an argon atmosphere) in THF (60 mL) at room temperature under an argon atmosphere. The solution was stirred at room temperature for 20 min and then a solution of Bu₃SnCHBr₂ (3.6 g, 7.8 mmol) and the aldehyde 21 (0.46 g, 2.0 mmol) in THF (30 mL) was added dropwise over 10 min via cannula. The reaction flask was covered with aluminium foil and then a solution of lithium iodide (2.26 g, 16.9 mmol) in THF (30 mL) was added dropwise via cannula over 10 min. The mixture was stirred at room temperature for 17 h, then water (50 mL) was added and the aqueous layer was extracted with diethyl ether (2×50 mL). The combined organic extracts were dried over magnesium sulfate and then concentrated in vacuo. The residue was purified by flash column chromatography on silica, using 10% diethyl ether in petroleum ether (bp 40–60 °C) as eluent, to give the stannane (0.5 g, 48%) as a colourless oil; $[\alpha]_D^{23}$ –5.7 (*c* 0.98, CDCl₃). (Found: C, 58.7; H, 8.3. C₂₅H₄₂O₃Sn requires C, 58.8; H, 8.3%.) ν_{max} (film)/cm⁻¹ 2937, 2851, 1615 and 1518; $\delta_{\rm H}$ (360 MHz, CDCl₃) 0.83–1.04 (15H, m, $3 \times CH_2CH_3$, $3 \times CH_2CH_3$), 1.26–1.40 (6H, m, $3 \times CH_2CH_2CH_3$), 1.45–1.59 (6H, m, $3 \times SnCH_2$), 1.63 (1H, br dd, *J* 1.3 and 13.0, CHHCHO), 1.94 (1H, dtd, *J* 5.0, 11.7 and 130, CHHCHO), 3.81 (3H, s, ArOCH_3), 4.00 (1H, dt, *J* 2.5 and 11.5, CH_2CHO), 4.29 (1H, ddd, *J* 0.9, 5.0 and 11.5, CH_2CHO), 4.32–4.39 (1H, m, CH_2CHO), 5.55 (1H, s, CHAr), 6.12 (1H, dd, *J* 4.9 and 19.3, CH=CHSn), 6.29 (1H, dd, *J* 1.2 and 19.3, CH=CHSn), 6.92 (2H, d, *J* 8.8, $2 \times ArH$), 7.48 (2H, d, *J* 8.8, $2 \times ArH$); δ_C (90 MHz, CDCl₃) 7.6 ($3 \times t$), 13.7 ($3 \times q$), 27.3 ($3 \times t$), 29.1 ($3 \times t$), 31.3 (t), 55.2 (q), 67.0 (t), 79.9 (d), 101.1 (d), 113.6 ($2 \times d$), 127.5 ($2 \times d$), 129.1 (d), 131.1 (s), 147.5 (d), 159.9 (s); *m/z* (ES) 511.2252 (M⁺+H, 20%, C₂₅H₄₃O₃Sn requires 511.2234).

4.1.4. (E)-(S)-3-(4-Methoxy-benzyloxy)-5-tributylstannanyl-pent-4-en-1-ol (23)

A solution of DIBAL (1.0 M) in hexanes (2.10 mL, 2.10 mmol) was added dropwise over 5 min to a stirred solution of the stannane 22 (0.53 g, 1.04 mmol) in dichloromethane (20 mL) at 0 °C under a nitrogen atmosphere. The solution was stirred at room temperature for 1 h and then a saturated solution of aqueous Rochelle's salt (5 mL) was added at 0 °C. The mixture was warmed to room temperature over 20 min and then extracted with diethyl ether (3×20 mL). The combined organic extracts were dried over magnesium sulfate and then concentrated in vacuo. The residue was purified by flash column chromatography on silica, using 20% ethyl acetate in petroleum ether (bp 40-60 °C) as eluent, to give the *alcohol* (0.36 g, 67%) as a colourless oil; ν_{max} (film)/cm⁻¹ 3626, 3507, 2929, 1613 and 1514; $\delta_{\rm H}$ (360 MHz, CDCl₃) 0.83–0.97 (15H, m, 3×CH₂CH₃, 3×CH₂CH₃), 1.24–1.39 (6H, m, 3×CH₂CH₂CH₃), 1.46– 1.58 (6H, m, 3×SnCH₂), 1.72-1.93 (2H, m, CH₂CHOPMB), 2.57 (1H, br s, OH), 3.68-3.85 (2H, m, CH₂OH), 3.81 (3H, s, ArOCH₃), 3.96 (1H, dt, J 4.6 and 7.4, CH₂CHOPMB), 4.30 (1H, d, J 11.4, OCHHAr), 4.50 (1H, d, J 11.4, OCHHAr), 5.91 (1H, dd, J 7.4 and 19.1, CH=CHSn), 6.20 (1H, dd, J 0.7 and 19.1, CH=CHSn), 6.88 (2H, d, J 8.7, 2×ArH), 7.24 (2H, d, J 8.7, 2×ArH); δ_C (90 MHz, CDCl₃) 9.6 (3×t), 13.8 (3×q), 27.3 (3×t), 29.2 (3×t), 37.8 (t), 55.3 (t), 61.0 (q), 70.0 (t), 82.8 (d), 113.9 (2×d), 129.5 (2×d), 130.5 (s), 132.0 (d), 148.1 (d), 159.3 (s); m/z (ES) 513.2441 (M⁺+H, 100%, C₂₅H₄₄O₃Sn requires 513.2391).

4.1.5. tert-Butyl-[(E)-(S)-3-(4-methoxy-benzyloxy)-5-tributylstannanyl-pent-4-enyloxy]-dimethyl-silane (24)

N,*N*-Dimethylaminopyridine (6.6 mg, 0.054 mmol) was added in one portion to a stirred solution of the alcohol **23** (0.25 g, 0.48 mmol), triethylamine (0.15 mL, 1.08 mmol) and *tert*-butyldimethylsilyl chloride (0.12 g, 0.76 mmol) in dichloromethane (1.5 mL) at room temperature. The solution was stirred at room temperature for 4 h and then a saturated solution of aqueous sodium hydrogencarbonate (5 mL) was added. The separated aqueous phase was extracted with dichloromethane (3×5 mL) and the combined organic extracts were then dried over magnesium sulfate and concentrated in vacuo. The residue was purified by flash column chromatography on silica using 10% diethyl ether in petroleum ether (bp 40–60 °C) as eluent to give the *silyl ether* (0.29 g, 95%) as a colourless oil; $[\alpha]_D^{23}$ –30.3 (*c* 1.15, CHCl₃). (Found: C, 59.6; H, 9.4. $C_{31}H_{58}O_3SnSi$ requires C, 59.4; H, 9.3%.) ν_{max} (film)/cm⁻¹ 2931, 2856, 1613 and 1514; $\delta_{\rm H}$ (360 MHz, CDCl₃) 0.04 (6H, s, 2×SiCH₃), 0.84-0.95 (24H, m, 3×CH₂CH₃, 3×CH₂CH₃, 3×SiC(CH₃)₃), 1.47-1.58 (6H, m, 3×CH₂CH₂CH₃), 1.33 (6H, ttd, / 7.3, 7.3 and 7.3, 3×SnCH₂), 1.70 (1H, tdd, / 6.5, 12.3 and 13.4, CHHCH2OTBS), 1.86 (1H, tdd, / 6.2, 7.2 and 12.3, CHHCH₂OTBS), 3.64 (1H, td / 6.2 and 10.1, CHHOTBS), 3.72 (1H, td, / 6.5 and 10.1, CHHOTBS), 3.81 (3H, s, ArOCH₃), 3.87 (1H, dd, / 7.2 and 13.4, CH₂CHOPMB), 4.28 (1H, d, / 11.3, OCHHAr), 4.52 (1H, d, / 11.3, OCHHAr), 5.86 (1H, dd, / 7.2 and 19.1, CH=CHSn), 6.14 (1H, dd, / 0.7 and 19.1, CH=CHSn), 6.87 (2H, d, / 8.7, 2×ArH), 7.25 (2H, d, [8.7, $2 \times \text{ArH}$); δ_{C} (90 MHz, CDCl₃) -5.2 ($2 \times q$), 9.6 ($3 \times t$), 13.8 (3×q), 18.4 (s), 26.0 (3×q), 27.3 (3×t), 29.2 (3×t), 38.7 (t), 55.3 (q), 59.6 (t), 69.9 (t), 80.1 (d), 113.8 $(2 \times d)$, 129.4 $(2 \times d)$, 131.1 (d), 131.3 (s), 149.0 (d), 159.0 (s); m/z (ES) 627.3294 (M⁺+H, 95%, C₃₁H₅₈O₃SnSi requires 627.3287), 649.3107 (M⁺+Na, 100%, C₃₁H₅₈NaO₃SiSn requires 649.3075).

4.1.6. Benzoic acid (S)-3-(tert-butyl-dimethyl-silanyloxymethyl)-

1,5-bis-methoxymethoxy-2,2,4-trimethyl-cyclohex-3-enyl ester (16) Tetrabutylammonium iodide (0.83 g, 2.26 mmol) was added in one portion to a stirred solution of the diol **15** (0.30 g, 0.64 mmol)²³ in dry dichloromethane (10 mL) at room temperature. Diisopropylethylamine (5.5 mL, 31.6 mmol) was added dropwise over 2 min and then methyloxymethyl chloride (1.8 mL, 23.7 mmol) was added over 2 s at room temperature. The mixture was stirred at room temperature for 17 h and then more tetrabutylammonium iodide (0.52 g, 1.41 mmol), diisopropylethylamine (3.6 mL, 20.7 mmol) and methyloxymethyl chloride (1.2 mL, 14.7 mmol) were added. The mixture was then stirred at room temperature for a further 4 h. Water (5 mL) was added and the separated aqueous phase was then extracted with dichloromethane (2×5 mL). The combined organic extracts were dried over magnesium sulfate and then concentrated in vacuo. The residue was purified by flash column chromatography on silica, using 20% ethyl acetate in petroleum ether (bp 40–60 °C) as eluent, to give the protected diol (0.28 g, 83%); $[\alpha]_{D}^{23}$ -3.4 (c 1.1, CHCl₃); ν_{max} (film)/cm⁻¹ 2954 and 1716; $\delta_{\rm H}$ (360 MHz, CDCl₃) 0.09 (6H, s, 2×SiCH₃), 0.91 (9H, s, 3×SiC(CH₃)₃), 1.19 (6H, s, 2×C(CH₃)₂), 1.80 (3H, s, C=C(CH₃)), 2.15 (1H, dd, J 5.6 and 14.3, OCHCHH), 2.52 (1H, dd, J 2.9 and 14.3, OCHCHH), 3.27 (3H, s, OCH₃), 3.35 (3H, s, OCH₃), 4.06 (1H, dd, J 2.9 and 5.6, OCHCH₂), 4.17 (2H, s, CH₂OSi), 4.20 (1H, d, J 7.1, OCHHO), 4.40 (1H, d, J 11.9, CHHOBz), 4.56 (1H, d, J 11.9, CHHOBz), 4.71 (1H, d, J 7.1, OCHHO), 4.87 (1H, d, J 7.4, OCHHO), 5.00 (1H, d, J 7.4, OCHHO), 7.43 (2H, t, J 7.6, 2×ArH), 7.54 (1H, t, J 7.4, ArH), 8.05 (2H, d, J 7.1, 2×ArH); δ_C (90 MHz, CDCl₃) –5.4 (2×q), 16.6 (q), 18.3 (s), 20.9 (q), 23.9 (q), 25.8 (3×q), 27.7 (t), 42.6 (s), 55.6 (q), 55.8 (q), 59.3 (t), 68.4 (t), 73.2 (d), 78.5 (s), 91.7 (t), 94.5 (t), 128.5 (2×d), 129.5 (2×d), 130.2 (s), 130.5 (s), 132.8 (d), 139.3 (s), 166.1 (s); m/z (ES) 545.2878 (M⁺+Na, 100%, C₂₈H₄₆NaO₇Si requires 545.2911).

4.1.7. Benzoic acid (S)-3-hydroxymethyl-1,5-bis-methoxymethoxy-2,2,4-trimethyl-cyclohex-3-enyl ester (**17**)

Tetrabutylammonium fluoride (0.411 g, 0.613 mmol) was added in one portion to a stirred solution of the silyl ether **16** (0.320 g, 0.613 mmol) in dry THF (10 mL) at room temperature, and the mixture was then stirred at room temperature for 2 h. A saturated solution of aqueous ammonium chloride (10 mL) followed by diethyl ether (10 mL) were added, and the separated aqueous phase was then extracted with diethyl ether (2×10 mL). The combined organic extracts were dried over magnesium sulfate and then concentrated in vacuo. The residue was purified by flash column chromatography on silica, using 50% ethyl acetate in petroleum ether (bp 40–60 °C) as eluent, to give the *alcohol* (0.15 g, 60%) as a colourless oil; v_{max} (film)/cm⁻¹ 3614, 3501 (br), 2952 and 1716; $\delta_{\rm H}$ (360 MHz, CDCl₃) 1.16 (3H, s, C(CH₃)₂), 1.21 (3H, s, C(CH₃)₂), 1.85 (3H, s, C=C(CH₃)), 2.14 (1H, dd, J 5.5 and 14.3, OCHC*H*H), 2.46 (1H, dd, *J* 3.5 and 14.3, OCHC*H*H), 3.27 (3H, s, OC*H*₃), 3.34 (3H, s, OC*H*₃), 4.04 (1H, dd, *J* 3.5 and 5.5, OCHCH₂), 4.14 (1H, d, *J* 11.7, CHHOH), 4.21 (1H, d, *J* 7.1, OCHHO), 4.21 (1H, d, *J* 11.7, CHHOH), 4.38 (1H, d, *J* 11.9, CHHOBz), 4.56 (1H, d, *J* 11.9, CHHOBz), 4.69 (1H, d, *J* 7.1, OCHHO), 4.88 (1H, d, *J* 7.4, OCHHO), 4.97 (1H, d, *J* 7.4, OCHHO), 7.42 (2H, t, *J* 7.6, 2×ArH), 7.54 (1H, t, *J* 7.4, ArH), 8.03 (2H, d, *J* 8.5, 2×ArH); $\delta_{\rm C}$ (90 MHz, CDCl₃) 16.4 (q), 21.2 (q), 23.6 (q), 27.9 (t), 41.6 (s), 55.6 (q), 55.8 (q), 58.9 (t), 68.2 (t), 73.0 (d), 78.3 (s), 91.7 (t), 94.7 (t), 128.5 (2×d), 129.4 (2×d), 130.3 (s), 131.6 (s), 132.9 (d), 140.0 (s), 166.1 (s); *m/z* (ES) 431.2065 (M⁺+Na, 100%, C₂₂H₃₂NaO7 requires 431.2046).

4.1.8. Benzoic acid (15,55)-3-formyl-1,5-bis-methoxymethoxy-2,2,4-trimethyl-cyclohex-3-enylmethyl ester (**18**)

Sodium hydrogencarbonate (150 mg, 1.79 mmol) and Dess-Martin periodinane (148 mg, 0.35 mmol) were added to a stirred solution of the alcohol 17 (65.8 mg, 0.161 mmol) in dichloromethane (10 mL) at room temperature. The mixture was stirred at room temperature for 1 h, and then saturated solutions of aqueous sodium hydrogencarbonate (5 mL) and aqueous sodium thiosulfate (5 mL) were added. The biphasic mixture was stirred at room temperature for 5 min, and then diethyl ether (10 mL) was added. The separated aqueous phase was extracted with diethyl ether $(2 \times 10 \text{ mL})$ then the combined organic extracts were then dried over magnesium sulfate and concentrated in vacuo. The residue was purified by flash column chromatography on silica, using 40% ethyl acetate in petroleum ether (bp 40-60 °C) as eluent, to give the *aldehyde* (54 mg, 82%) as a colourless oil; $[\alpha]_D^{23}$ +2.3 (*c* 1.0, CHCl₃); ν_{max} (film)/cm⁻¹ 2952, 1719 and 1682; $\delta_{\rm H}$ (360 MHz, CDCl₃) 1.35 (3H, s, C(CH₃)₂), 1.38 (3H, s, C(CH₃)₂), 2.13 (3H, s, C=C(CH₃)), 2.26 (1H, dd, J 5.6 and 14.4, OCHCHH), 2.38 (1H, dd, / 5.6 and 14.4, OCHCHH), 3.34 (3H, s, OCH₃), 3.37 (3H, s, OCH₃), 4.16 (1H, t, / 5.6, OCHCH₂), 4.36 (1H, d, / 7.1, OCHHO), 4.42 (1H, d, J 12.2, CHHOBz), 4.46 (1H, d, J 12.2, CHHOBz), 4.74 (1H, d, J 7.1, OCHHO), 4.92 (1H, d, J 7.4, OCHHO), 4.95 (1H, d, J 7.4, OCHHO), 7.43-7.49 (2H, m, 2×ArH), 7.55-7.61 (1H, m, ArH), 8.03-8.07 (2H, m, 2×ArH), 10.20 (1H, s, CHO); $\delta_{\rm C}$ (90 MHz, CDCl₃) 15.6 (q), 22.1 (q), 22.5 (q), 28.3 (t), 41.7 (s), 55.9 (q), 56.1 (q), 67.4 (t), 73.8 (d), 78.8 (s), 91.7 (t), 95.5 (t), 128.6 (2×d), 129.5 (2×d), 130.1 (s), 133.1 (d), 140.5 (s), 148.5 (s), 166.1 (s), 193.7 (d); *m*/*z* (ES) 429.1991 (M⁺+Na, 100%, C₂₂H₃₀NaO₇ requires 429.1889).

4.1.9. (E)-(S)-6-(tert-Butyl-dimethyl-silanyloxy)-1-((35,55)-5hydroxymethyl-3,5-bis-methoxymethoxy-2,6,6-trimethyl-cyclohex-1-enyl)-4-(4-methoxy-benzyloxy)-hex-2-en-1-ol (**25**)

A solution of *n*-BuLi (2.5 M) in hexanes (1.6 mL, 2.5 mmol) was added dropwise over 2 min to a stirred solution of the vinylstannane 24 (1.7 g, 2.7 mmol) in dry THF (4 mL) at -78 °C. The solution was stirred at -78 °C for 1 h and then a solution of the aldehyde 18 (290 mg, 0.71 mmol) in dry THF (10 mL) was added dropwise over 2 min at -78 °C. The mixture was warmed to room temperature over 17 h, and then water (30 mL) and diethyl ether (30 mL) were added. The separated aqueous phase was extracted with diethyl ether (3×30 mL) and the combined organic extracts were dried then over magnesium sulfate and concentrated in vacuo. The residue was purified by flash column chromatography on silica, using 20% ethyl acetate in petroleum ether (bp 40–60 °C) as eluent, to give: (i) diastereoisomer A (177 mg, 39%); (eluted first) $\nu_{\rm max}$ (film)/cm⁻¹ 3609, 2954, 1612 and 1514; $\delta_{\rm H}$ (360 MHz, CDCl₃) 0.04 (6H, s, 2×SiCH₃), 0.89 (9H, s, 3×SiC(CH₃)₃), 1.03 (3H, s, C(CH₃)₂), 1.20 (3H, s, C(CH₃)₂), 1.62–1.73 (2H, m, CH₂CH₂OTBS), 1.93 (3H, s, C=C(CH₃)), 2.04 (1H, dd, J 5.3 and 14.5, OCHCHH), 2.34 (1H, d, J 14.5, OCHCHH), 3.43 (3H, s, OCH₃), 3.44 (3H, s, OCH₃), 3.60-3.75 (4H, m, CH₂CH₂OTBS and CH₂OH), 3.80 (3H, s, ArOCH₃), 3.89-3.95 (1H, m, OCHCH₂), 3.99 (1H, dd, J 7.9 and 13.1, CHOPMB), 4.29 (1H, d, J 11.2, OCHHArOMe), 4.50 (1H, d, J 11.2, OCHHArOMe), 4.68 (1H, d, J 6.8, OCHHO), 4.83 (1H, d, J 6.8, OCHHO), 4.90 (1H, s, C=

CCH(O)CH=CH), 4.91 (1H, d, J 7.2, OCHHO), 4.96 (1H, d, J 7.2, OCHHO), 5.64 (1H, ddd, J 1.0, 7.9 and 15.7, CH=CHCH(OPMB)), 5.88 (1H, dd, J 4.7 and 15.7, CH=CHCH(OPMB)), 6.87 (2H, d, J 8.5, 2×Ar*H*), 7.24 (2H, d, *J* 8.5, 2×Ar*H*); δ_C (90 MHz, CDCl₃) –5.3 (2×q), 17.7 (q), 18.3 (s), 23.3 (q), 26.0 (3×q), 28.6 (t), 29.8 (q), 39.0 (t), 42.9 (s), 55.3 (q), 55.5 (q), 56.4 (q), 59.4 (t), 65.9 (t), 69.8 (d), 70.2 (t), 75.6 (d), 76.0 (d), 80.0 (s), 91.6 (t), 96.8 (t), 113.8 (2×d), 129.4 (2×d), 130.8 (s), 131.0 (s), 131.6 (d), 134.0 (d), 142.2 (s), 159.1 (s); m/z (ES) 661.3727 (M⁺+Na, 100%, C₃₄H₅₈NaO₉Si requires 661.3748); and (ii) diastereoisomer B (208 mg, 46%); (eluted second) ν_{max} (film)/cm⁻¹ 3607, 2955, 1602 and 1514; $\delta_{\rm H}$ (360 MHz, CDCl₃) 0.04 (2×3H, s, 2×SiCH₃), 0.89 (9H, s, 3×SiC(CH₃)₃), 1.12 (3H, s, C(CH₃)₂), 1.19 (3H, s, C(CH₃)₂), 1.75-1.81 (1H, m, CHHCH₂OTBS), 1.89-2.02 (1H, m, CHHCH₂OTBS), 1.89 (3H, s, C=C(CH₃)), 2.10 (1H, dd, J 5.8 and 14.6, OCHCHH), 2.23 (1H, dd, *J* 5.8 and 14.6, OCHCHH), 3.43 (3H, s, OCH₃), 3.44 (3H, s, OCH₃), 3.75–3.83 (4H, m, CH₂CH₂OTBS and CH₂OH), 3.80 (3H, s, ArOCH₃), 3.91 (1H, t, J 5.8, OCHCH₂), 3.97–4.03 (1H, m, CHOPMB), 4.28 (1H, d, J 11.2, OCHHArOMe), 4.50 (1H, d, J 11.2, OCHHArOMe), 4.68 (1H, d, J 6.9, OCHHO), 4.82 (1H, d, J 6.9, OCHHO), 4.83 (1H, d, J 7.4, OCHHO), 4.94 (1H, d, J 7.4, OCHHO), 4.96 (1H, br d, J 4.2, C=CCH(O)CH=CH), 5.63 (1H, ddd, J 1.7, 8.0 and 15.6, CH= CHCH(OPMB)), 5.89 (1H, dd, J 4.2 and 15.6, CH=CHCH(OPMB)), 6.86 (2H, d, J 8.7, 2×ArH), 7.23 (2H, d, J 8.7, 2×ArH); δ_C (90 MHz, CDCl₃) -5.3 (2×q), 17.6 (q), 18.3 (s), 22.7 (q), 26.0 (3×q), 28.5 (t), 30.4 (q), 39.0 (t), 42.9 (s), 55.3 (q), 55.5 (q), 56.2 (q), 59.4 (t), 65.6 (t), 69.9 (d), 70.0 (t), 75.6 (d), 76.1 (d), 80.7 (s), 91.3 (t), 96.6 (t), 113.8 (2×d), 129.4 (2×d), 130.8 (s), 131.2 (d), 131.4 (s), 134.6 (d), 142.2 (s), 159.1 (s); *m*/*z* (ES) 661.3798 (M⁺+Na, 100%, C₃₄H₅₈NaO₉Si requires 661.3748).

4.1.10. (15,5S)-3-[(E)-(S)-6-(tert-Butyl-dimethyl-silanyloxy)-4-(4-methoxy-benzyloxy)-hex-2-enoyl]-1,5-bis-methoxymethoxy-2,2,4-trimethyl-cyclohex-3-enecarbaldehyde (**26**)

Sodium hydrogencarbonate (95.4 mg, 1.14 mmol) and Dess-Martin periodinane (153 mg, 0.36 mmol) were added in one portion to a stirred solution of a mixture of diastereoisomers of the alcohol 25 (72.0 mg, 0.113 mmol) in dichloromethane (4 mL) at room temperature. The mixture was stirred at room temperature for 2 h, and then saturated solutions of aqueous sodium hydrogencarbonate (5 mL) and aqueous sodium thiosulfate (5 mL) were added. The biphasic mixture was stirred at room temperature for 5 min and then diethyl ether (10 mL) was added. The separated aqueous phase was extracted with diethyl ether $(3 \times 10 \text{ mL})$, and the combined organic extracts were then dried over magnesium sulfate and concentrated in vacuo. The residue was purified by flash column chromatography on silica, using 20% ethyl acetate in petroleum ether (bp 40-60 °C) as eluent, to give the ketoaldehyde (60.7 mg, 85%) as a colourless oil; $\delta_{\rm H}$ (360 MHz, CDCl₃) 0.04 (6H, s, 2×SiCH₃), 0.88 (9H, s, 3×SiC(CH₃)₃), 1.16 (3H, br s, C(CH₃)₂), 1.19 (3H, br s, C(CH₃)₂), 1.66 (3H, s, C=C(CH₃)), 1.98-2.09 (1H, m, CHHCH2OTBS), 2.09-2.21 (1H, m, CHHCH2OTBS), 2.23-2.27 (1H, m, OCHCHH), 2.40-2.47 (1H, m, OCHCHH), 3.41 (3H, s, OCH₃), 3.42 (3H, s, OCH₃), 3.79 (3H, s, ArOCH₃), 3.82 (2H, m, CH₂CH₂OTBS), 4.04-4.08 (1H, m, OCHCH2), 4.21-4.29 (1H, m, CHOPMB), 4.36 (1H, d, J 11.4, OCHHArOMe), 4.52 (1H, d, J 11.4, OCHHArOMe), 4.64 (1H, d, J 6.8, OCHHO), 4.72 (1H, d, J 7.4, OCHHO), 4.75 (1H, d, J 6.8, OCHHO), 4.89 (1H, d, J 7.4, OCHHO), 6.33 (1H, d, J 15.9, CH= CHCH(OPMB)), 6.77 (1H, dd, J 6.5 and 15.9, CH=CHCH(OPMB)), 6.90 (2H, d, J 8.7, 2×ArH), 7.22 (2H, d, J 8.7, 2×ArH), 9.77 (1H, s, CHO).

4.1.11. (E)-(S)-1-((3S,5S)-3,5-Bis-methoxymethoxy-2,6,6-trimethyl-5-propynoyl-cyclohex-1-enyl)-6-(tert-butyl-dimethyl-silanyloxy)-4-(4-methoxy-benzyloxy)-hex-2-en-1-one (**28a**)

A solution of ethynylmagnesium bromide (0.5 M) in THF (1 mL, 0.50 mmol) was added dropwise over 5 min to a stirred solution of

the aldehyde 26 (21.8 mg, 0.034 mmol) in dry THF (1.5 mL) at 0 °C. The mixture was warmed to room temperature over 17 h and then water (5 mL) and diethyl ether (10 mL) were added. The separated aqueous phase was extracted with diethyl ether $(3 \times 10 \text{ mL})$ and the combined organic extracts were then dried over magnesium sulfate and concentrated in vacuo to leave the propargyl alcohol 27 as an oil. Sodium hydrogencarbonate (21.9 mg, 0.261 mmol) and Dess-Martin periodinane (13.2 mg, 0.0311 mmol) were added in one portion to a stirred solution of 27 in dichloromethane (4 mL) at room temperature. The mixture was stirred at room temperature for 3.5 h, and then saturated solutions of aqueous sodium hydrogencarbonate (5 mL) and aqueous sodium thiosulfate (5 mL) were added. The biphasic mixture was stirred at room temperature for 5 min and then diethyl ether (10 mL) was added. The separated aqueous phase was extracted with diethyl ether (2×10 mL), and the combined organic extracts were then dried over magnesium sulfate and concentrated in vacuo. The residue was purified by flash column chromatography on silica, using 20% ethyl acetate in petroleum ether (bp 40–60 °C) as eluent, to give the ynone (13.3 mg, 98%) as a colourless oil; $\delta_{\rm H}$ (360 MHz, CDCl₃) 0.04 (6H, s, 2×SiCH₃), 0.89 (9H, s, 3×SiC(CH₃)₃), 1.17 (3H, br s, C(CH₃)₂), 1.20 (3H, br s, C(CH₃)₂), 1.67 (3H, s, C=C(CH₃)), 1.97-2.08 (1H, m, CHHCH₂OTBS), 2.09-2.19 (1H, m, CHHCH₂OTBS), 2.22-2.27 (1H, m, OCHCHH), 2.41-2.48 (1H, m, OCHCHH), 3.40 (3H, s, OCH₃), 3.44 (3H, s, OCH₃), 3.48 (1H, s, C=CH), 3.81 (3H, s, ArOCH₃), 3.83 (2H, m, CH₂CH₂OTBS), 4.02–4.08 (1H, m, OCHCH₂), 4.20-4.29 (1H, m, CHOPMB), 4.34 (1H, d, J 11.2, OCHHArOMe), 4.48 (1H, d, / 11.2, OCHHArOMe), 4.64 (1H, d, / 6.9, OCHHO), 4.71 (1H, d, J 7.2, OCHHO), 4.76 (1H, d, J 6.9, OCHHO), 4.90 (1H, d, J 7.2, OCHHO), 6.32 (1H, d, J 16.1, CH=CHCH(OPMB)), 6.78 (1H, dd, / 6.8 and 16.1, CH=CHCH(OPMB)), 6.89 (2H, d, / 8.9, 2×ArH), 7.23 (2H, d, J 8.9, 2×ArH).

4.1.12. 1-((15,55)-3-{2-[(S)-3-(4-Methoxy-benzyloxy)-

tetrahydrofuran-2-yl]-acetyl}-1,5-bis-methoxymethoxy-2,2,4-trimethyl-cyclohex-3-enyl)-propynone (**29**)

Tetrabutylammonium fluoride (15 mg, 0.05 mmol) was added in one portion to a stirred solution of the silvl ether **28a** (13.3 mg, 0.02 mmol) in dry THF (2 mL) at room temperature. The mixture was stirred at room temperature for 1 h and then water (5 mL) and diethyl ether (10 mL) were added. The separated aqueous phase was extracted with diethyl ether (3×10 mL) and the combined organic extracts were then dried over magnesium sulfate and concentrated in vacuo. The residue was purified by flash column chromatography on silica, using 10% ethyl acetate in petroleum ether (bp 40-60 °C) as eluent, to give the substituted tetrahydro*furan* (6.0 mg, 55%) as a colourless oil; $\delta_{\rm H}$ (360 MHz, CDCl₃) 1.16 (3H, br s, C(CH₃)₂), 1.19 (3H, br s, C(CH₃)₂), 1.68 (3H, s, C=C(CH₃)), 1.86-2.22 (4H, m, (C=O)CH₂CH and CH(OPMB)CH₂CH₂), 2.23-2.27 (1H, m, OCHCHH), 2.40-2.46 (1H, m, OCHCHH), 3.39 (3H, s, OCH₃), 3.42 $(1H, s, C \equiv CH), 3.48 (3H, s, OCH_3), 3.70-3.76 (1H, m, (C=0)CH_2)$ CHOCH₂), 3.74 (3H, s, ArOCH₃), 3.97-4.09 (3H, m, OCHCH₂ and CH(OPMB)CH₂CH₂OCH), 4.14-4.19 (1H, m, CHOPMB), 4.33 (1H, d, J 11.6, OCHHArOMe), 4.52 (1H, d, J 11.6, OCHHArOMe), 4.63 (1H, d, J 6.4, OCHHO), 4.69 (1H, d, J 7.1, OCHHO), 4.74 (1H, d, J 6.4, OCHHO), 4.89 (1H, d, J 7.1, OCHHO), 6.88 (2H, d, J 9.0, 2×ArH), 7.21 (2H, d, J 9.0, $2 \times ArH$).

4.1.13. [(E)-(S)-6-[(3S,5S)-3,5-Bis-methoxymethoxy-2,6,6trimethyl-5-(4-nitrophenoxymethyl)-cyclohex-1-enyl]-3-(4methoxy-benzyloxy)-6-(4-nitrophenoxy)-hex-4-enyloxy]-tertbutyl-dimethyl-silane (**30**)

Triethylamine (0.31 mL, 2.22 mmol) and *N*,*N*-dimethylaminopyridine (13 mg, 0.11 mmol) were added to a stirred solution of diastereoisomer A of the diol **25** (142.6 mg, 0.224 mmol) in dry dichloromethane (10 mL) at room temperature. *para*-Nitrobenzoyl chloride (266 mg, 1.43 mmol) was added, in one portion, and the mixture was then stirred at room temperature for 1.5 h. Water (10 mL) was added and the separated aqueous phase was then extracted with dichloromethane (2×10 mL). The combined organic extracts were dried over magnesium sulfate and then concentrated in vacuo. The residue was purified by flash column chromatography on silica, using 30% ethyl acetate in petroleum ether (bp 40-60 °C) as eluent, to give the bis-benzoate (203 mg, 97%) as a colourless oil; $v_{\rm max}$ (film)/cm⁻¹ 2955, 1725, 1610 and 1531; $\delta_{\rm H}$ (360 MHz, CDCl₃) 0.01–0.04 (6H, m, 2×SiCH₃), 0.87 (9H, s, 3×SiC(CH₃)₃), 1.26 (6H, s, 2×C(CH₃)₂), 1.69 (1H, td, / 6.1 and 13.4, CHHCH₂OTBS), 1.84 (1H, td, / 5.7 and 13.4, CHHCH₂OTBS), 2.05 (3H, s, C=C(CH₃)), 2.31 (1H, br d, J 6.3, OCHCHH), 2.58 (1H, br d, / 14.3, OCHCHH), 3.32 (3H, s, OCH₃), 3.34 (3H, s, OCH₃), 3.63 (1H, td, J 5.3 and 9.1, CH₂CHHOTBS), 3.69-3.76 (1H, m, CH₂CHHOTBS), 3.79 (3H, s, ArOCH₃), 4.02–4.09 (2H, m, OCHCH₂ and CHOPMB), 4.24 (1H, d, J 6.9, CHHOBzpNO₂), 4.31 (1H, d, / 11.5, OCHHArOMe), 4.47–4.53 (1H, m, OCHHO), 4.50 (2H, d, / 11.5, OCHHArOMe), 4.58–4.63 (1H, m, CHHOBzpNO₂), 4.73 (1H, d, J 6.9, OCHHO), 4.91 (2H, s, OCHHO), 5.74 (1H, ddd, J 1.2, 7.5 and 15.6, CH=CHCH(OPMB)), 5.92 (1H, dd, J 4.0 and 15.6, CH=CHCH(OPMB)), 6.43 (1H, d, J 4.0, C=CCH(O)CH=CH), 6.85 (2H, d, J 8.7, 2×ArH), 7.23 (2H, d, J 8.7, 2×ArH), 8.20–8.25 (4H, m, ArH), 8.28–8.34 (4H, m, ArH); δ_{C} (90 MHz, CDCl₃) -5.4 (2×q), 14.1 (q), 18.2 (q), 18.4 (s), 23.3 (q), 25.9 (3×q), 29.6 (t), 38.7 (t), 43.5 (s), 55.3 (q), 55.8 (q), 56.1 (q), 59.2 (t), 68.8 (t), 70.4 (t), 72.2 (d), 72.7 (d), 75.6 (d), 78.1 (s), 91.2 (t), 94.7 (t), 113.8 (2×d), 123.7 (4×d), 123.8 (4×d), 129.4 (2×d), 130.2 (s), 130.5 (d), 130.8 (d), 135.7 (2×s), 135.8 (s), 137.3 (s), 150.5 (s), 150.6 (s), 159.1 (s), 163.5 (s), 164.1 (s); *m/z* (ES) 960.4101 (M⁺+H+Na, 100%, C₄₈H₆₅N₂NaO₁₅Si requires 960.4101).

The diastereoisomer B of the diol **25** (224 mg, 0.35 mmol) was treated under the same conditions to give the corresponding diastereomeric bis-benzoate (314 mg, 95%) as a colourless oil; v_{max} (film)/cm⁻¹ 2930, 1726, 1610 and 1531; $\delta_{\rm H}$ (360 MHz, CDCl₃) 0.02 (3H, s, SiCH₃), 0.03 (3H, s, SiCH₃), 0.87 (9H, s, 3×SiC(CH₃)₃), 1.26 (6H, s, 2×C(CH₃)₂), 1.69 (1H, td, J 5.9 and 13.6, CHHCH₂OTBS), 1.84 (1H, td, J 5.9 and 13.6, CHHCH₂OTBS), 2.04 (3H, s, C=C(CH₃)), 2.32 (2H, br d, J 5.5, OCHCH₂), 3.34 (3H, s, OCH₃), 3.35 (3H, s, OCH₃), 3.62 (1H, td, J 5.9 and 10.0, CH₂CHHOTBS), 3.73 (1H, td, J 5.9 and 10.0, CH₂CHHOTBS), 3.78 (3H, s, ArOCH₃), 4.01–4.09 (2H, m, OCHCH₂ and CHOPMB), 4.31 (1H, d, J 11.7, OCHHArOMe), 4.41 (1H, d, J 7.0, OCHHO), 4.50 (1H, d, J 11.7, CHHOBzpNO₂), 4.51 (1H, d, J 11.7, CHHOBzpNO₂), 4.61 (1H, d, J 11.7, OCHHArOMe), 4.74 (1H, d, J 7.0, OCHHO), 4.86 (1H, d, J 7.6, OCHHO), 4.94 (1H, d, J 7.6, OCHHO), 5.75 (1H, ddd, J 1.2, 7.5 and 15.6, CH=CHCH(OPMB)), 5.94 (1H, dd, J 4.5 and 15.6, CH=CHCH(OPMB)), 6.44 (1H, d, J 4.5, C=CCH(O)CH=CH), 6.85 (2H, d, J 8.7, 2×ArH), 7.23 (2H, d, J 8.7, 2×ArH), 8.21 (2H, d, J 6.6, 2×ArH), 8.23 (2H, d, J 6.6, 2×ArH), 8.30 (2H, d, J 5.5, 2×ArH), 8.32 (2H, d, J 5.5, 2×ArH); δ_C (90 MHz, CDCl₃) -5.3 (2×q), 14.2 (q), 18.3 (s), 18.6 (q), 23.5 (q), 26.0 (3×q), 29.8 (t), 38.8 (t), 43.5 (s), 55.3 (q), 55.9 (q), 56.1 (q), 59.2 (t), 68.4 (t), 70.5 (t), 72.9 (d), 74.3 (d), 75.8 (d), 79.0 (s), 91.7 (t), 95.6 (t), 113.9 (2×d), 123.7 (4×d), 123.8 (4×d), 129.4 (2×d), 129.7 (s), 130.5 (d), 130.9 (d), 135.6 (2×s), 135.7 (s), 137.0 (s), 150.6 (2×s), 159.2 (s), 163.6 (s), 164.3 (s); *m*/*z* (ES) 959.3951 (M⁺+Na, 100%, C₄₈H₆₄N₂NaO₁₅Si requires 959.3974).

4.1.14. (E)-(S)-6-[(35,55)-3,5-Bis-methoxymethoxy-2,6,6-trimethyl-5-(4-nitrophenoxymethyl)-cyclohex-1-enyl]-3-(4-methoxybenzyloxy)-6-(4-nitrophenoxy)-hex-4-en-1-ol (**31a**)

A solution of hydrogen fluoride (70% solution) in pyridine (0.1 mL) was added dropwise over 1 min to a stirred solution of diastereoisomer A of the silyl ether **30** (15.3 mg, 0.016 mmol) in pyridine (0.5 mL, 6.2 mmol) at 0 °C. The solution was stirred at room temperature for 1.5 h and then poured onto a saturated solution of aqueous sodium hydrogencarbonate (20 mL). The resulting biphasic mixture was extracted with ethyl acetate (3×15 mL), and the combined organic extracts were then washed with

a saturated solution of aqueous copper(II) sulfate (15 mL). The organic layer was dried over magnesium sulfate and then concentrated in vacuo to leave the alcohol (11.3 mg, 84%) as a colourless oil, which was used without further purification; v_{max} (film)/cm⁻⁻ 3606, 2931, 1724, 1610 and 1531; $\delta_{\rm H}$ (360 MHz, CDCl_3) 1.23 (3H, s, C(CH₃)₂), 1.25 (3H, s, C(CH₃)₂), 1.72-1.95 (2H, m, CH₂CH₂OH), 2.04 (3H, s, C=C(CH₃)), 2.25–2.40 (1H, m, OCHCHH), 2.59 (1H, br d, *J* 6.3, OCHCHH), 3.00 (3H, s OCH₃), 3.35 (3H, s, OCH₃), 3.71-3.80 (2H, m, CH₂CH₂OH), 3.78 (3H, s, ArOCH₃), 4.05-4.13 (2H, m, OCHCH₂ and CHOPMB), 4.20 (1H, d, / 6.9, OCHHO), 4.32 (1H, d, / 11.3, OCHHAr-OMe), 4.45 (1H, d, / 11.8, CHHOBzpNO₂), 4.53 (1H, d, / 11.3, OCH-HArOMe), 4.63 (1H, d, / 11.8, CHHOBzpNO₂), 4.71 (1H, d, / 6.9, OCHHO), 4.90 (1H, d, J 7.7, OCHHO), 4.93 (1H, d, J 7.7, OCHHO), 5.79 (1H, app dddd, J 1.1, 3.5, 7.4 and 15.6, CH=CHCH(OPMB)), 5.96 (1H, dd, J 5.2 and 15.6, CH=CHCH(OPMB)), 6.41 (1H, d, J 4.9, C=CCH(0)CH=CH), 6.85 (2H, d, J 8.7, 2×ArH), 7.22 (2H, d, J 8.7, 2×ArH), 8.22 (2H, d, J 9.0, 2×ArH), 8.23 (2H, d, J 9.0, 2×ArH), 8.30 (2H, d, J 9.0, 2×ArH), 8.31 (2H, d, J 9.0, 2×ArH); δ_{C} (90 MHz, CDCl₃) 14.2 (q), 18.6 (q), 23.6 (q), 29.8 (t), 37.8 (t), 43.5 (s), 55.3 (q), 55.9 (q), 56.2 (q), 60.4 (t), 68.9 (t), 70.4 (t), 72.3 (d), 72.8 (d), 78.1 (s), 77.9 (d), 91.9 (t), 94.8 (t), 114.0 (2×d), 123.7 (4×d), 123.8 (4×d), 129.5 (2×d), 130.0 (s), 130.5 (d), 130.8 (d), 134.5 (s), 135.7 (2×s), 137.4 (s), 150.6 (s), 150.7 (s), 159.4 (s), 163.6 (s), 164.3 (s); *m*/*z* (ES) 845.3076 (M⁺+Na, 100%, C₄₂H₅₀N₂NaO₁₅ requires 845.3109).

The diastereoisomer B of the silvl ether **30** (380 mg, 0.41 mmol) was treated under the same conditions to give the corresponding diastereomeric alcohol (324 mg, 97%) as a colourless oil; ν_{max} (film)/ cm⁻¹ 3519, 2936, 1724, 1610 and 1531; $\delta_{\rm H}$ (360 MHz, CDCl₃) 1.26 (6H, s, 2×C(CH₃)₂), 1.72-1.89 (2H, m, CH₂CH₂OH), 2.05 (3H, s, C=C(CH₃)), 2.28-3.36 (2H, m, OCHCH₂), 3.35 (6H, s, 2×OCH₃), 3.69-3.75 (2H, m, CH₂CH₂OH), 3.80 (3H, s, ArOCH₃), 4.08-4.15 (2H, m, OCHCH₂ and CHOPMB), 4.32 (1H, d, J 11.3, OCHHArOMe), 4.39 (1H, d, J 7.0, OCHHO), 4.50 (1H, d, J 12.2, CHHOBzpNO₂), 4.54 (1H, d, J 11.3, OCHHArOMe), 4.61 (1H, d, J 12.2, CHHOBzpNO₂), 4.73 (1H, d, J 7.0, OCHHO), 4.87 (1H, d, J 7.6, OCHHO), 4.94 (1H, d, J 7.6, OCHHO), 5.77 (1H, ddd, / 1.4, 7.5 and 15.7, CH=CHCH(OPMB)), 5.97 (1H, dd, / 4.4 and 15.7, CH=CHCH(OPMB)), 6.46 (1H, d, J 4.4, C= CCH(O)CH=CH), 6.87 (2H, d, J 8.7, 2×ArH), 7.73 (2H, d, J 8.7, 2×ArH), 8.21 (2H, d, J 8.9, 2×ArH), 8.24 (2H, d, J 8.9, 2×ArH), 8.31 (2H, d, J 7.6, 2×ArH), 8.33 (2H, d, J 7.6, 2×ArH); δ_C (90 MHz, CDCl₃) 14.2 (q), 18.6 (q), 22.9 (q), 29.8 (t), 37.9 (t), 43.5 (s), 55.3 (q), 55.8 (q), 56.0 (q), 60.3 (t), 68.3 (t), 70.4 (t), 72.7 (d), 74.1 (d), 78.0 (d), 78.8 (s), 91.6 (t), 95.4 (t), 114.0 (2×d), 123.8 (4×d), 123.9 (4×d), 129.5 (2×d), 130.1 (s), 130.5 (d), 130.8 (d), 133.8 (s), 135.5 (2×s), 136.8 (s), 150.7 (2×s), 159.4 (s), 163.7 (s), 164.3 (s); m/z (ES) 845.3155 (M⁺+Na, 100%, C₄₂H₅₀N₂NaO₁₅ requires 845.3109).

4.1.15. (E)-(S)-6-[(3S,5S)-3,5-Bis-methoxymethoxy-2,6,6-trimethyl-5-(4-nitrophenoxymethyl)-cyclohex-1-enyl]-1-bromo-3-(4-methoxy-benzyloxy)-6-(4-nitrophenoxy)-hex-4-ene (**31b**)

Triethylamine (7 μ L, 0.05 mmol) was added dropwise to a stirred solution of diastereoisomer A of the alcohol **31a** (29.8 mg, 0.04 mmol) in dry dichloromethane (4 mL) at -20 °C. Methanesulfonyl chloride (3 μ L, 0.04 mmol) was added dropwise and the mixture was then stirred at room temperature for 1 h. A solution of lithium bromide (31.3 mg, 0.36 mmol) in THF (2 mL) was added dropwise via cannula over 1 min, and the mixture was heated to 56 °C for 17 h and then cooled to room temperature. A saturated solution of aqueous sodium hydrogencarbonate (10 mL) and ethyl acetate (10 mL) were added, and the separated aqueous phase was then extracted with ethyl acetate (3×15 mL). The combined organic extracts were dried over magnesium sulfate and then concentrated in vacuo. The residue was purified by flash column chromatography on silica, using 50% ethyl acetate in petroleum ether (bp 40–60 °C) as eluent, to give the *bromide* (23.4 mg, 73%) as a colourless oil; ν_{max} (film)/cm⁻¹ 2934, 1725, 1610 and 1631; $\delta_{\rm H}$ (360 MHz, CDCl₃) 1.26 (6H, br s, 2×C(CH₃)₂), 2.01-2.21 (2H, m, CH₂CH₂Br), 2.06 (3H, s, C=C(CH₃)), 2.29-2.35 (1H, m, OCHCHH), 2.58 (1H, br d, J 13.7, OCHCHH), 3.32 (3H, s, OCH₃), 3.36 (3H, s, OCH₃), 3.41-3.48 (1H, m, CH₂CHHBr), 3.49-3.57 (1H, m, CH₂CHHBr), 3.80 (3H, s, ArOCH₃), 4.05-4.11 (2H, m, OCHCH₂ and CHOPMB), 4.23 (1H, d, J 6.9, OCHHO), 4.33 (1H, d, J 11.1, CHHOBzpNO₂), 4.45 (1H, d, J 11.7, OCHHArOMe), 4.52 (1H, d, J 11.1, CHHOBzpNO2), 4.63 (1H, d, J 11.7 °CHHArOMe), 4.72 (1H, d, J 6.9, OCHHO), 4.91 (1H, s, OCHHO), 4.92 (1H, s, OCHHO), 5.73 (1H, ddd, / 1.5, 7.5 and 15.4, CH=CHCH(OPMB)), 5.99 (1H, dd, / 5.0 and 15.4, CH=CHCH(OPMB)), 6.43 (1H, d, J 4.2, C=CCH(O)CH=CH), 6.87 (2H, d, / 8.7, 2×ArH), 7.24 (2H, d, / 8.7, 2×ArH), 8.23 (2H, d, / 9.0, 2×ArH), 8.24 (2H, d, J 9.0, 2×ArH), 8.32 (2H, d, J 9.0, 2×ArH), 8.33 (2H, d, J 9.0, $2 \times \text{ArH}$; δ_{C} (90 MHz, CDCl₃) 14.2 (q), 18.6 (q), 28.4 (t), 29.7 (t), 31.6 (q), 37.9 (t), 43.4 (s), 55.3 (q), 55.9 (q), 56.0 (q), 68.3 (t), 70.3 (t), 72.8 (d), 74.1 (d), 77.9 (d), 78.9 (s), 91.7 (t), 95.5 (t), 113.9 (2×d), 123.7 (8×d), 129.4 (2×d), 130.1 (s), 130.5 (d), 130.9 (d), 133.6 (s), 135.5 $(2 \times s)$, 136.8 (s), 150.6 (s), 150.7 (s), 159.3 (s), 163.6 (s), 164.3 (s); m/z(ES) 907.2247 (M⁺+Na, 100%, C₄₂H₄₉BrN₂NaO₁₄ requires 907.2247).

The *diastereoisomer B* of the alcohol **31a** (14.4 mg, 0.02 mmol) was treated under the same conditions to give the corresponding diastereomeric *bromide* (13.2 mg, 83%) as a colourless oil; $\delta_{\rm H}$ (360 MHz, CDCl₃) 1.26 (6H, br s, 2×C(CH₃)₂), 1.98-2.02 (1H, m, CHHCH₂Br), 2.03 (3H, s, C=C(CH₃)), 2.11-2.20 (1H, m, CHHCH₂Br), 2.32 (2H, br s, OCHCH₂), 3.35 (6H, s, 2×OCH₃), 3.44 (1H, td, J 6.2 and 10.0, CH₂CHHBr), 3.54 (1H, td, / 6.0 and 10.0, CH₂CHHBr), 3.81 (3H, s, ArOCH₃), 4.06–4.14 (2H, m, 2H, m, OCHCH₂ and CHOPMB), 4.33 (1H, d, / 11.6, OCHHArOMe), 4.40 (1H, d, / 7.1, OCHHO), 4.50 (1H, d, / 6.6, CHHOBzpNO₂), 4.53 (1H, d, / 6.6, CHHOBzpNO₂), 4.62 (1H, d, / 11.6, OCHHArOMe), 4.73 (1H, d, J 7.1, OCHHO), 4.86 (1H, d, J 7.6, OCHHO), 4.94 (1H, d, / 7.6, OCHHO), 5.73 (1H, ddd, / 1.6, 7.6 and 15.7, CH=CHCH(OPMB)), 6.01 (1H, dd, J 4.5 and 15.7, CH=CHCH(OPMB)), 6.45 (1H, d, J 4.5, C=CCH(O)CH=CH), 6.87 (2H, d, J 8.7, 2×ArH), 7.24 (2H, d, J 8.7, 2×ArH), 8.22 (2H, d, J 9.0, 2×ArH), 8.24 (2H, d, J 9.0, $2 \times ArH$), 8.32 (2H, d, J 9.0, $2 \times ArH$), 8.34 (2H, d, J 9.0, $2 \times ArH$); δ_C (90 MHz, CDCl₃) 14.2 (q), 18.6 (q), 28.5 (t), 29.7 (t), 30.3 (q), 38.5 (t), 43.5 (s), 55.3 (q), 55.9 (q), 56.0 (q), 68.3 (t), 70.7 (t), 72.7 (d), 74.2 (d), 76.7 (d), 78.9 (s), 91.6 (t), 95.5 (t), 113.9 (2×d), 123.7 (8×d), 129.4 (2×d), 130.0 (s), 130.5 (d), 130.9 (d), 133.5 (s), 135.5 (s), 135.6 (s), 136.8 (s), 150.6 (s), 150.7 (s), 159.3 (s), 163.6 (s), 164.2 (s).

4.1.16. (15,5S)-3-[(E)-(S)-6-Bromo-4-(4-methoxy-benzyloxy)hex-2-enoyl]-1,5-bis-methoxymethoxy-2,2,4-trimethyl-cyclohex-3-enecarbaldehyde (**32**)

Potassium carbonate (104 mg, 0.75 mmol) was added in one portion to a stirred solution of diastereoisomer A of the bis-benzoate 31b (11.2 mg, 0.13 mmol) in methanol (2 mL) at room temperature. The mixture was stirred at room temperature for 1 h and then concentrated in vacuo. Water (5 mL) and ethyl acetate (5 mL) were added to the residue and the separated aqueous phase was then extracted with ethyl acetate $(3 \times 10 \text{ mL})$. The combined organic extracts were dried over magnesium sulfate and then concentrated in vacuo. The residue was purified by flash column chromatography on silica, using 70% ethyl acetate in petroleum ether (bp 40-60 °C) as eluent, to give the corresponding diol (6.4 mg, 86%) as a colourless oil; ν_{max} (film)/cm⁻¹ 3606, 2954, 1612 and 1514; $\delta_{\rm H}$ (360 MHz, CDCl₃) 1.02 (3H, br s, C(CH₃)₂), 1.16 (3H, br s, C(CH₃)₂), 1.92 (3H, s, C=C(CH₃)), 1.86–2.06 (2H, m, CH₂CH₂Br), 2.09–2.20 (1H, m, OCHCHH), 2.47 (1H, d, J 14.3, OCHCHH), 3.38-3.56 (2H, m, CH₂CH₂Br), 3.44 (3H, s, OCH₃), 3.49 (3H, s, OCH₃), 3.69-3.77 (2H, m, CH₂OH), 3.79 (3H, s, ArOCH₃), 3.88-3.96 (1H, m, OCHCH₂), 4.01 (1H, dt, J 4.5 and 8.0, CHOPMB), 4.30 (1H, d, J 11.1, OCHHArOMe), 4.50 (1H, d, J 11.1, OCHHArOMe), 4.72 (1H, d, J 6.8, OCHHO), 4.77 (1H, d, J 7.6, OCHHO), 4.87 (1H, d, J 6.8, OCHHO), 4.91 (1H, br d, J 3.3, C=CCH(O)CH=CH), 5.15 (1H, d, J 7.6, OCHHO), 5.63 (1H, ddd, J 1.5, 7.8 and 15.5, CH=CHCH(OPMB)), 5.90 (1H, dd, J 4.5 and 15.5, CH=CHCH(OPMB)), 6.87 (2H, d, J 8.6, $2 \times ArH$), 7.23 (2H, d, J 8.6, $2 \times ArH$); δ_{C} (90 MHz, CDCl₃) 17.7 (q), 23.3 (q), 28.1 (t), 29.9 (t), 30.3 (q), 38.7 (t), 42.9 (s), 55.3 (q), 55.8 (q), 56.5 (q), 65.9 (t), 69.5 (d), 70.4 (t), 75.8 (d), 77.0 (d), 79.8 (s), 91.3 (t), 97.2 (t), 113.9 ($2 \times d$), 125.5 (s), 129.5 ($2 \times d$), 130.3 (d), 131.0 (s), 134.8 (d), 142.1 (s), 159.3 (s); *m/z* (ES) 609.2018 (M⁺+Na, 100%, C₂₈H₄₃BrNaO₈ requires 609.2039).

The diastereoisomer B of the bis-benzoate **31b** (97.4 mg, 0.11 mmol) was treated under the same conditions to give the corresponding diastereomeric *diol* (61.4 mg, 95%); $\delta_{\rm H}$ (360 MHz, CDCl₃) 1.13 (3H, br s, C(CH₃)₂), 1.20 (3H, br s, C(CH₃)₂), 1.88 (3H, s, C=C(CH₃)), 1.96-2.06 (2H, m, CH₂CH₂Br), 2.11-2.25 (2H, m, OCHCH₂), 3.43 (3H, s, OCH₃), 3.45 (3H, s, OCH₃), 3.40-3.49 (1H, m, CH₂CHHBr), 3.50–3.59 (1H, m, CH₂CHHBr), 3.64–3.72 (1H, m, CHHOH), 3.76-3.83 (1H, m, CHHOH), 3.81 (3H, s, ArOCH₃), 3.89-3.93 (1H, m, OCHCH₂), 4.04 (1H, dt, J 4.4 and 8.0, CHOPMB), 4.30 (1H, d, J 11.2, OCHHArOMe), 4.52 (1H, d, J 11.2, OCHHArOMe), 4.68 (1H, d, J 6.9, OCHHO), 4.82 (1H, d, J 6.9, OCHHO), 4.83 (1H, d, J 7.4, OCHHO), 4.94 (1H, d, J 7.4, OCHHO), 4.96-4.99 (1H, m, C=CCH(O)CH=CH), 5.65 (1H, ddd, J 1.8, 8.0 and 15.5, CH=CHCH(OPMB)), 5.95 (1H, dd, J 4.3 and 15.5, CH=CHCH(OPMB)), 6.88 (2H, d, J 8.6, 2×ArH), 7.24 (2H, d, J 8.6, $2 \times \text{Ar}H$); δ_{C} (90 MHz, CDCl₃) 17.5 (q), 22.7 (q), 28.5 (t), 30.0 (t), 30.3 (q), 38.8 (t), 42.9 (s), 55.3 (q), 55.6 (q), 56.2 (q), 65.5 (t), 69.7 (d), 70.2 (t), 75.6 (d), 77.1 (d), 80.6 (s), 91.2 (t), 96.6 (t), 113.9 (2×d), 129.3 (s), 129.5 (2×d), 129.9 (s), 130.3 (d), 135.6 (d), 142.1 (s), 159.2 (s).

Sodium hydrogencarbonate (29 mg, 0.34 mmol) and Dess-Martin periodinane (31.4 mg, 0.074 mmol) were added in one portion to a stirred solution of diastereoisomer A of the above diol (13.8 mg, 0.023 mmol) in dichloromethane (2.3 mL) at 0 °C. The mixture was stirred at 0 °C for 30 min and then allowed to warm to room temperature over 5 h. Saturated solutions of aqueous sodium hydrogencarbonate (1 mL) and aqueous sodium thiosulfate (1 mL) were added to the mixture, which was stirred at room temperature for 5 min and then diethyl ether (5 mL) was added. The separated aqueous phase was extracted with diethyl ether $(3 \times 5 \text{ mL})$, and the combined organic extracts were then dried over sodium sulfate and concentrated in vacuo. The residue was purified by flash column chromatography on silica, using 30% ethyl acetate in pentane as eluent, to give the *ketoaldehyde* (11.3 mg, 84%) as a colourless oil; $v_{\rm max}$ (film)/cm⁻¹ 2937, 1727, 1613 and 1514; $\delta_{\rm H}$ (360 MHz, CDCl₃) 1.15 (3H, br s, C(CH₃)₂), 1.20 (3H, br s, C(CH₃)₂), 1.65 (3H, s, C=C(CH₃)), 1.98-2.09 (1H, m, CHHCH₂Br), 2.09-2.20 (1H, m, CHHCH₂Br), 2.26 (1H, dd, J 6.8 and 15.0, OCHCHH), 2.43 (1H, dd, / 6.4 and 15.0, OCHCHH), 3.38–3.49 (1H, m, CH₂CHHBr), 3.40 (3H, s, OCH₃), 3.43 (3H, s, OCH₃), 3.54 (1H, ddd, J 5.9, 8.8 and 10.1, CH₂CHHBr), 3.81 (3H, s, ArOCH₃), 4.06-4.12 (1H, m, OCHCH₂), 4.21-4.29 (1H, m, CHOPMB), 4.35 (1H, d, J 11.0, OCHHArOMe), 4.52 (1H, d, J 11.0, OCHHArOMe), 4.66 (1H, d, J 7.0, OCHHO), 4.73 (1H, d, J 7.4, OCHHO), 4.77 (1H, d, J 7.0, OCHHO), 4.84 (1H, d, J 7.4, OCHHO), 6.35 (1H, d, J 16.0, CH=CHCH(OPMB)), 6.75 (1H, dd, J 6.5 and 16.0, CH=CHCH(OPMB)), 6.89 (2H, d, / 8.6, 2×ArH), 7.24 (2H, d, / 8.6, 2×ArH), 9.79 (1H, s, CHO); δ_C (90 MHz, CDCl₃) 17.3 (q), 21.9 (q), 25.4 (q), 27.9 (t), 29.1 (t), 37.9 (t), 40.6 (s), 55.3 (q), 56.0 (q), 56.1 (q), 71.5 (t), 73.2 (d), 75.8 (d), 85.1 (s), 92.6 (t), 96.3 (t), 114.0 (2×d), 129.5 (s), 129.6 (2×d), 130.6 (s), 132.8 (d), 140.6 (s), 149.3 (d), 159.5 (s), 199.1 (s), 202.5 (d); m/z (ES) 605.1736 (M⁺+Na, 100%, C₂₈H₃₉BrNaO₈ requires 605.1726).

4.1.17. (E)-(S)-1-((3S,5S)-3,5-Bis-methoxymethoxy-2,6,6-trimethyl-5-propynoyl-cyclohex-1-enyl)-6-bromo-4-(4-methoxy-benzyloxy)-hex-2-en-1-one (**33a**)

A solution of ethynylmagnesium bromide (0.5 M) in THF (2.8 mL, 1.4 mmol) was added dropwise over 5 min to a stirred solution of the ketoaldehyde **32** (61 mg, 0.09 mmol) in dry THF (2 mL) at 0 °C, and the mixture was then warmed to room temperature over 17 h. Water (2 mL) and 2 M hydrochloric acid (2 mL)

6679

were added and the separated aqueous phase was then extracted with diethyl ether $(3 \times 15 \text{ mL})$. The combined organic extracts were dried over magnesium sulfate and concentrated in vacuo. Sodium hydrogencarbonate (142 mg, 1.69 mmol) and Dess-Martin periodinane (108 mg, 0.254 mmol) were added in one portion to a stirred solution of the residue in dichloromethane (2 mL) at room temperature. The mixture was stirred at room temperature for 1 h. and then saturated solutions of aqueous sodium hydrogencarbonate (2 mL) and aqueous sodium thiosulphate (2 mL) were added. The biphasic mixture was stirred at room temperature for 5 min and then diethyl ether (5 mL) was added. The separated aqueous phase was extracted with diethyl ether (3×15 mL), and the combined organic extracts were then dried over sodium sulfate and concentrated in vacuo. The residue was purified by flash column chromatography on silica, using 30% ethyl acetate in petroleum ether (bp 40–60 °C) as eluent, to give the ynone (69 mg, 67%) as a colourless oil; v_{max} (film)/cm⁻¹ 3297, 2936, 2097, 1645, 1613 and 1514; $\delta_{\rm H}$ (360 MHz, CDCl₃) 1.17 (3H, br s, C(CH₃)₂), 1.24 (3H, br s, C(CH₃)₂), 1.64 (3H, s, C=C(CH₃)), 1.99-2.07 (1H, m, CHHCH2Br), 2.12-2.20 (1H, m, CHHCH2Br), 2.54 (2H, t, J 7.2, OCHCH₂), 3.41 (3H, s, OCH₃), 3.38–3.45 (1H, m, CH₂CHHBr), 3.43 (3H, s, OCH₃), 3.47 (1H, s, C=CH), 3.50-3.57 (1H, m, CH₂CHHBr), 3.81 (3H, s, ArOCH₃), 4.22-4.29 (2H, m, OCHCH₂ and CHOPMB), 4.43 (1H, d, J 11.0, OCHHArOMe), 4.42 (1H, d, J 11.0, OCHHArOMe), 4.67 (1H, d, J 7.2, OCHHO), 4.76 (1H, d, J 5.7, OCHHO), 4.78 (1H, d, J 5.7, OCHHO), 4.83 (1H, d, J 7.2, OCHHO), 6.34 (1H, d, / 16.0, CH=CHCH(OPMB)), 6.83 (1H, dd, / 6.6 and 16.0, CH=CHCH(OPMB)), 6.89 (2H, d, J 8.7, 2×ArH), 7.23 (2H, d, J 8.7, $2 \times \text{ArH}$; δ_{C} (90 MHz, CDCl₃) 17.3 (q), 21.8 (q), 26.6 (q), 29.2 (t), 30.8 (t), 38.0 (t), 41.3 (s), 55.4 (q), 56.0 (q), 56.6 (q), 71.5 (t), 73.5 (d), 75.8 (d), 81.9 (d), 82.6 (s), 88.7 (s), 94.0 (t), 96.5 (t), 114.0 (2×d), 129.4 (s), 129.6 (2×d), 130.5 (s), 132.0 (d), 140.7 (s), 149.6 (d), 159.5 (s), 189.0 (s), 199.5 (s); m/z (ES) 629.1721 (M⁺+Na, 100%, C₃₀H₃₉BrNaO₈ requires 629.1726).

4.1.18. (E)-(S)-1-((3S,5S)-3,5-Bis-methoxymethoxy-2,6,6-trimethyl-5-propynoyl-cyclohex-1-enyl)-6-iodo-4-(4-methoxy-benzyloxy)hex-2-en-1-one (**33b**)

Sodium iodide (26 mg, 0.17 mmol) was added in one portion to a stirred solution of the bromide 33a (69 mg, 0.113 mmol) in butan-2-one (2 mL) at room temperature and the mixture was then heated under reflux for 16 h. The mixture was allowed to cool to room temperature and then water (2 mL) and diethyl ether (2 mL) were added. The separated aqueous phase was extracted with diethyl ether $(2 \times 5 \text{ mL})$, and the combined organic extracts were then dried over sodium sulfate and concentrated in vacuo. The residue was purified by flash column chromatography on silica, using 30% ethyl acetate in petroleum ether (bp 40-60 °C) as eluent, to give the *iodide* (70 mg, 95%) as a colourless oil; $[\alpha]_D^{23}$ -17.4 (*c* 0.84, CHCl₃); ν_{max} (film)/cm⁻¹ 3298, 2935, 2096, 1726, 1613 and 1515; $\delta_{\rm H}$ (360 MHz, CDCl₃) 1.26 (6H, s, 2×C(CH₃)₂), 1.65 (3H, s, C=C(CH₃)), 1.98-2.13 (2H, m, CH₂CH₂I), 2.52 (1H, d, J 7.9, OCHCHH), 2.54 (1H, d, J 7.9, OCHCHH), 3.21-3.31 (2H, m, CH₂CH₂I), 3.42 (3H, s, OCH₃), 3.43 (3H, s, OCH₃), 3.46 (1H, s, C=CH), 3.82 (3H, s, ArOCH₃), 4.21-4.19 (1H, m, CHOPMB), 4.25 (1H, dd, J 7.9 and 7.9, OCHCH₂), 4.34 (1H, d, J 11.0, OCHHArOMe), 4.52 (1H, d, J 11.0, OCHHArOMe), 4.68 (1H, d, J 7.2, OCHHO), 4.77 (1H, d, J 5.7, OCHHO), 4.79 (1H, d, J 5.7, OCHHO), 4.83 (1H, d, J 7.2, OCHHO), 6.34 (1H, d, J 16.0, CH=CHCH(OPMB)), 6.83 (1H, dd, J 6.6 and 16.0, CH=CHCH(OPMB)), 6.89 (2H, d, J 8.7, 2×ArH), 7.24 (2H, d, J 8.7, 2×ArH); δ_C (90 MHz, CDCl₃) 1.5 (t), 17.3 (q), 21.8 (q), 26.7 (q), 30.8 (t), 38.7 (t), 41.3 (s), 55.4 (q), 56.0 (q), 56.7 (q), 71.4 (t), 73.5 (d), 77.7 (d), 81.9 (d), 82.6 (s), 88.7 (s), 94.0 (t), 96.5 (t), 114.0 (2×d), 129.5 (s), 129.6 (2×d), 130.5 (s), 133.1 (d), 140.7 (s), 149.4 (d), 159.5 (s), 189.0 (s), 199.5 (s); m/z (ES) 677.1530 (M⁺+Na, 100%, C₃₀H₃₉INaO₈ requires 677.1587).

4.1.19. (E)-(S)-1-((35,55)-3,5-Bis-methoxymethoxy-2,6,6-trimethyl-5-propynoyl-cyclohex-1-enyl)-4-hydroxy-6-iodohex-2-en-1-one (**36a**)

2,3-Dichloro-5,6-dicyanobenzoquinone (DDO) (25.0 mg 0.11 mmol) was added in one portion to a stirred solution of the iodide **33b** (36.6 mg, 0.06 mmol) in dichloromethane (3.5 mL) and water (0.5 mL) at room temperature. The mixture was stirred at room temperature for 2 h and then an extra portion of DDO (25.0 mg, 0.11 mmol) was added in one portion at room temperature. The mixture was stirred at room temperature for a further 2 h, and then a saturated solution of aqueous sodium hydrogencarbonate (5 mL) was added. The separated aqueous phase was extracted with dichloromethane (4×5 mL) and the combined organic extracts were dried over sodium sulfate and then concentrated in vacuo. The residue was purified by flash column chromatography on silica, using 30% ethyl acetate in petroleum ether (bp 40-60 °C) as eluent, to give the *alcohol* (25.8 mg, 87%) as a colourless oil; $[\alpha]_D^{23}$ –1.0 (*c* 0.24, CHCl₃); ν_{max} (film)/cm⁻¹ 3604, 3297, 2935, 2096, 1725 and 1675; $\delta_{\rm H}$ (360 MHz, CDCl₃) 1.15 (3H, s, C(CH₃)₂), 1.22 (3H, s, C(CH₃)₂), 1.61 (3H, s, C=C(CH₃)), 1.98-2.10 (2H, m, CH₂CH₂I), 2.51 (2H, t, J 7.5, OCHCH₂), 3.26-3.36 (2H, m, CH₂CH₂I), 3.42 (3H, s, OCH₃), 3.43 (3H, s, OCH₃), 3.47 (1H, s, C=CH), 4.23 (1H, t, J 7.5, OCHCH2), 4.49-4.57 (1H, m, CHOH), 4.66 (1H, d, J 7.4, OCHHO), 4.76 (1H, d, J 6.8, OCHHO), 4.77 (1H, d, J 6.8, OCHHO), 4.83 (1H, d, J 7.4, OCHHO), 6.36 (1H, d, J 15.9, CH=CHCH(OH)), 6.89 (1H, dd, J 4.9 and 15.9, CH=CHCH(OH)); δ_{C} (90 MHz, CDCl₃) 1.5 (t), 17.3 (q), 21.8 (q), 26.6 (q), 30.8 (t), 39.6 (t), 41.3 (s), 56.0 (q), 56.6 (q), 71.0 (d), 73.5 (d), 81.9 (d), 82.5 (s), 88.6 (s), 93.9 (t), 96.5 (t), 130.4 (s), 130.9 (d), 140.8 (s), 151.0 (d), 189.0 (s), 199.6 (s); *m/z* (ES) 573.0775 (M⁺+K, 100%, C₂₂H₃₁IKO₇ requires 573.0752).

4.1.20. (E)-(S)-1-((3S,5S)-3,5-Bis-methoxymethoxy-2,6,6trimethyl-5-propynoyl-cyclohex-1-enyl)-4-(tert-butyl-dimethylsilanyloxy)-6-iodo-hex-2-en-1-one (**36b**)

tert-Butyl-dimethylsilyl triflate (50 µL, 0.22 mmol) was added dropwise over 10 s to a stirred solution of the alcohol **36a** (18.1 mg, 0.034 mmol) and 2,6-lutidine (40 µL, 0.34 mmol) in dry dichloromethane (2 mL) at -20 °C. The mixture was warmed to room temperature over 17 h and then water (5 mL) was added. The separated aqueous phase was extracted with dichloromethane (3×5 mL) and the combined organic extracts were then dried over magnesium sulfate and concentrated in vacuo. The residue was purified by flash column chromatography on silica using 20% ethyl acetate in petroleum ether (bp 40–60 $^{\circ}$ C) as eluent to give the *silyl* ether (12.3 mg, 56%); $[\alpha]_D^{23}$ +3.7 (c 0.60, CHCl₃); ν_{max} (film)/cm⁻⁷ 3297, 2931, 2096, 1711 and 1676; $\delta_{\rm H}$ (360 MHz, CDCl₃) 0.04 (3H, s, SiCH₃), 0.12 (3H, s, SiCH₃), 0.90 (9H, s, 3×SiC(CH₃)₃), 1.14 (3H, s, C(CH₃)₂), 1.22 (3H, s, C(CH₃)₂), 1.61 (3H, s, C=C(CH₃)), 1.97–2.10 (2H, m, CH2CH2I), 2.39-2.47 (2H, m, OCHCH2), 3.13-3.25 (2H, m, CH₂CH₂I), 3.42 (3H, s, OCH₃), 3.43 (3H, s, OCH₃), 3.46 (1H, s, C≡CH), 4.13-4.20 (1H, m, OCHCH₂), 4.39-4.47 (1H, m, CHOTBS), 4.66 (1H, d, / 6.8, OCHHO), 4.76 (1H, d, / 7.2, OCHHO), 4.77 (1H, d, / 6.8, OCHHO), 4.83 (1H, d, J 7.2, OCHHO), 6.28 (1H, d, J 15.8, CH=CHCH(OTBS)), 6.86 (1H, dd, J 5.7 and 15.8, CH=CHCH(OTBS)); δ_{C} (90 MHz, CDCl₃) -4.3 (q) -4.6 (q), 1.2 (t), 17.3 (q), 18.2 (s), 21.8 (q), 25.9 (3×q), 26.7 (q), 30.8 (t), 40.6 (t), 41.3 (s), 56.0 (q), 56.6 (q), 71.8 (d), 73.5 (d), 81.9 (d), 82.6 (s), 88.8 (s), 94.0 (t), 96.5 (t), 130.3 (s), 131.0 (d), 140.9 (s), 151.6 (d), 189.1 (s), 199.6 (s); m/z (ES) 671.1889 (M⁺+Na, 60%, C₂₈H₄₅INaO₇Si requires 671.1877).

4.1.21. (15,55)-3-((E)-6-Bromo-hex-2-enoyl)-1,5-bis-methoxymethoxy-2,2,4-trimethyl-cyclohex-3-enecarbaldehyde (**39**)

A solution of *n*-BuLi (2.5 M) in hexanes (0.65 mL, 1.6 mmol) was added dropwise over 2 min to a stirred solution of the vinyl-stannane **38** (715 mg, 1.63 mmol)¹⁹ in dry THF (10 mL) at $-78 \degree$ C. The mixture was stirred at $-78 \degree$ C for 1 h and then a solution of the

aldehyde **18** (132 mg, 0.32 mmol) in dry THF (5 mL) at -78 °C was added dropwise over 2 min. The mixture was warmed to room temperature over 17 h, and then water (10 mL) and diethyl ether (10 mL) were added. The separated aqueous phase was extracted with diethyl ether (3×10 mL), and the combined organic extracts were then dried over magnesium sulfate and concentrated in vacuo. The residue was purified by flash column chromatography on silica, using 30% ethyl acetate in petroleum ether (bp 40–60 $^{\circ}$ C) as eluent, to give the corresponding *diol* analogue of **25** (79.6 mg, 53%) as a mixture of diastereoisomers. Sodium hydrogencarbonate (142 mg, 1.69 mmol) and Dess-Martin periodinane (146 mg, 0.344 mmol) were added to a stirred solution of the diol in dichloromethane (10 mL) at room temperature. The mixture was stirred at room temperature for 2 h, and then a saturated solution of aqueous sodium thiosulfate (5 mL) was added. The biphasic mixture was stirred at room temperature for 5 min and then diethyl ether (5 mL) was added. The separated aqueous phase was extracted with diethyl ether $(3 \times 10 \text{ mL})$, and the combined organic extracts were then dried over sodium sulfate and concentrated in vacuo. The residue was purified by flash column chromatography on silica, using 30% ethyl acetate in petroleum ether (bp 40–60 $^{\circ}$ C) as eluent, to give the *ketoaldehyde* (67.5 mg, 86%) as a colourless oil; $[\alpha]_{D}^{23}$ +8.0 (c 1.0, CHCl₃); ν_{max} (film)/cm⁻¹ 2953 and 1726; δ_{H} (360 MHz, CDCl₃) 1.12 (3H, br s, C(CH₃)₂), 1.29 (3H, br s, C(CH₃)₂), 1.62 (3H, s, C=C(CH₃)), 1.99–2.09 (2H, m, CH₂CH₂Br), 2.25 (1H, dd, [7.5 and 15.0, OCHCHH), 2.36-2.49 (3H, m, OCHCHH and C=CCH₂CH₂), 3.40-3.44 (2H, m, CH₂CH₂Br), 3.41 (3H, s, OCH₃), 3.43 (3H, s, OCH₃), 4.08 (1H, t, J 7.5, OCHCH₂), 4.66 (1H, d, J 7.1, OCHHO), 4.74 (1H, d, J 7.4, OCHHO), 4.77 (1H, d, J 7.1, OCHHO), 4.84 (1H, d, J 7.4, OCHHO), 6.19 (1H, dt, J 1.3 and 15.9, (C=O)CH=CHCH₂), 6.83 (1H, dt, / 7.0 and 15.9, (C=0)CH=CHCH₂), 9.79 (1H, s, CHO); $\delta_{\rm C}$ (90 MHz, CDCl₃) 17.3 (q), 22.0 (q), 25.3 (q), 28.0 (t), 30.8 (t), 30.9 (t), 32.5 (t), 40.5 (s), 56.0 (q), 56.1 (q), 73.4 (d), 85.1 (s), 92.6 (t), 96.4 (t), 130.3 (s), 133.5 (d), 140.9 (s), 149.5 (d), 199.4 (s), 202.8 (d); *m/z* (ES) 469.1169 (M⁺+Na, 100%, C₂₀H₃₁BrNaO₆ requires 496.1202).

4.1.22. (E)-1-((3S,5S)-3,5-Bis-methoxymethoxy-2,6,6-trimethyl-5-propynoyl-cyclohex-1-enyl)-6-bromo-hex-2-en-1-one (**40**)

A solution of ethynylmagnesium bromide (0.5 M) in THF (1.5 mL, 0.75 mmol) was added dropwise over 5 min to a stirred solution of the aldehyde **39** (67.5 mg, 0.15 mmol) in dry THF (3 mL) at 0 °C. The mixture was warmed to room temperature over 17 h and then water (5 mL) and 2 M hydrochloric acid (0.5 mL) were added. The separated aqueous phase was extracted with diethyl ether $(3 \times 10 \text{ mL})$, and the combined organic extracts were then dried over sodium sulfate and concentrated in vacuo. Sodium hydrogencarbonate (123 mg, 1.46 mmol) and Dess-Martin periodinane (124 mg, 0.29 mmol) were added to a stirred solution of the residue in dichloromethane (5 mL) at room temperature. The mixture was stirred at room temperature for 2 h and then a saturated solution of aqueous sodium thiosulfate (2 mL) was added. The biphasic mixture was stirred at room temperature for 5 min and then diethyl ether (5 mL) was added. The separated aqueous phase was extracted with diethyl ether (3×15 mL), and the combined organic extracts were then dried over sodium sulfate and concentrated in vacuo. The residue was purified by flash column chromatography on silica, using 30% ethyl acetate in petroleum ether (bp 40–60 °C) as eluent, to give the *ynone* (44.9 mg, 64%) as a colourless oil; $[\alpha]_D^{23}$ +3.4 (c 1.0, CHCl₃); ν_{max} (film)/cm⁻¹ 3296, 2945, 2096, 1704, 1674, 1651 and 1616; $\delta_{\rm H}$ (360 MHz, CDCl₃) 1.14 (3H, br s, C(CH₃)₂), 1.21 (3H, br s, C(CH₃)₂), 1.60 (3H, s, C=C(CH₃)), 1.98-2.07 (2H, m, CH₂CH₂I), 2.40–2.47 (2H, m, C=CCH₂), 2.51 (2H, t, J 7.9, OCHCH₂), 3.38-3.44 (2H, m, CH₂CH₂I), 3.42 (3H, s, OCH₃), 3.43 (3H, s, OCH₃), 3.47 (1H, s, C=CH), 4.23 (1H, t, J 7.9, OCHCH₂), 4.66 (1H, d, J 6.9, OCHHO), 4.76 (1H, d, J 7.3, OCHHO), 4.77 (1H, d, J 6.9, OCHHO), 4.82 (1H, d, J 7.3, OCHHO), 6.17 (1H, dt, J 1.2 and 15.8, (C=O)CH=CHCH₂), 6.89 (1H, dt, *J* 7.0 and 15.8, (C=O)CH=CHCH₂); δ_{C} (90 MHz, CDCl₃) 17.2 (q), 21.8 (q), 26.6 (q), 30.7 (t), 30.9 (2×t), 32.5 (t), 41.2 (s), 56.5 (q), 56.0 (q), 73.6 (d), 82.0 (d), 82.6 (s), 88.6 (s), 93.9 (t), 96.4 (t), 130.1 (s), 133.6 (d), 140.8 (s), 149.7 (d), 189.0 (s), 199.8 (s); *m/z* (ES) 493.1210 (M⁺+Na, 100%, C₂₂H₃₁BrNaO₆ requires 493.1202).

4.1.23. (E)-1-((3S,5S)-3,5-Bis-methoxymethoxy-2,6,6-trimethyl-5-propynoyl-cyclohex-1-enyl)-6-iodo-hex-2-en-1-one (**41**)

Sodium iodide (66 mg, 0.43 mmol) was added in one portion to a stirred solution of the bromide 40 (45.0 mg, 0.093 mmol) in butan-2-one (3 mL) at room temperature. The mixture was heated under reflux for 16 h and then allowed to cool to room temperature. Water (2 mL) and diethyl ether (2 mL) were added and the separated aqueous phase was extracted with diethyl ether $(3 \times 5 \text{ mL})$. The combined organic extracts were dried over sodium sulfate and concentrated in vacuo to leave a residue, which was purified by flash column chromatography on silica, using 30% ethyl acetate in petroleum ether (bp 40–60 °C) as eluent, to give the *iodide* (29 mg, 58%) as a colourless oil; $[\alpha]_D^{23}$ +5.6 (*c* 1.0, CHCl₃); ν_{max} (film)/cm⁻ 3295, 2938, 2096, 1728, 1675 and 1644; $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.15 (3H, br s, C(CH₃)₂), 1.22 (3H, br s, C(CH₃)₂), 1.61 (3H, s, C=C(CH₃)), 1.95–2.03 (2H, m, CH₂CH₂I), 2.36–2.43 (2H, m, C=CCH₂), 2.51 (2H, app. dd, J 7.9 and 9.6, OCHCH₂), 3.20 (2H, t, J 6.8, CH₂CH₂I), 3.42 (3H, s, OCH₃), 3.43 (3H, s, OCH₃), 3.43 (1H, s, C≡CH), 4.23 (1H, t, J 7.9, OCHCH₂), 4.66 (1H, d, J 7.2, OCHHO), 4.76 (1H, d, J 3.3, OCHHO), 4.77 (1H, d, / 3.3, OCHHO), 4.83 (1H, d, / 7.2, OCHHO), 6.18 (1H, dt, / 1.4 and 15.8, (C=O)CH=CHCH₂), 6.87 (1H, dt, J 7.0 and 15.8, $(C=0)CH=CHCH_2$; δ_C (100 MHz, CDCl₃) 5.2 (t), 17.2 (q), 21.8 (q), 26.7 (q), 30.8 (t), 31.6 (t), 33.2 (t), 41.3 (s), 56.6 (q), 56.0 (q), 73.5 (d), 82.0 (d), 82.5 (s), 88.6 (s), 93.9 (t), 96.5 (t), 130.1 (s), 133.6 (d), 140.9 (s), 149.3 (d), 189.1 (s), 199.6 (s); m/z (ES) 541.1076 (M⁺+Na, 100%, C₂₂H₃₁INaO₆ requires 541.1063).

4.1.24. (1S,8R,13S)-1,13-Bis-methoxymethoxy-12,15,15-

trimethyltricyclo[9.3.1.0^{3,8}]pentadeca-3,11-diene-2,10-dione (42)

A solution of tributyltin hydride (20 µL, 0.074 mmol) and AIBN (0.5 mg) in dry, degassed benzene (5 mL) was added dropwise over 4 h to a solution of the iodide 41 (28.6 mg, 0.055 mmol) and 2,2azo-bis-isobutyronitrile (0.5 mg) in dry, degassed benzene (18 mL) at 80 °C under an argon atmosphere. The mixture was stirred at 80 °C for 3 h and then allowed to cool to room temperature. The mixture was concentrated in vacuo and the residue was purified by flash column chromatography on silica, using 30% ethyl acetate in petroleum ether (bp 40-60 °C) as eluent, to give the tricycle (9.6 mg, 44%) as a colourless oil; $[\alpha]_D^{23}$ –9.2 (c 0.5, CHCl₃); ν_{max} (film)/cm⁻¹ 2931, 1694 (br); $\delta_{\rm H}$ (500 MHz, CDCl₃) 1.17 (3H, s, C(CH₃)₂), 1.40 (3H, s, C(CH₃)₂), 1.65 (3H, br s, C=C(CH₃)), 1.67–1.72 (3H, m, C=CCH₂CH₂ and C=OCH₂CHCHH), 2.13-2.19 (3H, m, C=CCH₂ and C=OCH₂CHCHH), 2.44 (1H, dd, J 9.3 and 13.7, OCHCHH), 2.47–2.51 (1H, m, C=CCH), 2.54 (1H, dd, J 3.4 and 19.1, (C=O)CHHα), 2.85 (1H, dd, J 12.9 and 19.1, (C=O)CHHβ), 2.99 (1H, dd, J 1.9 and 13.7, OCHCHH), 3.40 (3H, s, OCH₃), 3.44 (3H, s, OCH₃), 4.38 (1H, d, J 9.3, OCHCH₂), 4.62 (1H, d, J 6.8, OCHHO), 4.65 (1H, d, J 7.1, OCHHO), 4.85 (1H, d, J 6.8, OCHHO), 4.85 (1H, d, J 7.1, OCHHO), 5.69 (1H, t, J 3.6, C=CH); δ_{C} (125 MHz, CDCl₃) 16.3 (q), 21.6 (q), 24.4 (t), 26.4 (q), 29.6 (t), 33.0 (t), 33.4 (d), 34.1 (t), 38.3 (s), 50.6 (t), 56.0 (q), 56.1 (q), 70.8 (d), 85.0 (s), 92.7 (t), 95.6 (t), 128.8 (d), 135.8 (s), 142.2 (s), 144.7 (s), 206.6 (s), 209.0 (s); m/z (ES) 415.2107 (M⁺+Na, 100%, C₂₂H₃₂NaO₆ requires 415.2097).

Acknowledgements

We thank the EPSRC (studentship to S.L.R.) and The University of Nottingham (fellowship to W.P.D.G.) for support of this work.

References and notes

- 1. Wani, M. C.; Wall, M. E.; Taylor, H. L.; Coggan, P.; McPhail, A. T. J. Am. Chem. Soc. 1971, 93, 2325–2327.
- 2. Horwitz, S. B.; Fant, J.; Schiff, P. B. Nature 1979, 277, 665-667.
- For commentary and reviews see: (a) Nicolaou, K. C.; Dai, W.-M.; Guy, R. K. Angew. Chem., Int. Ed. Engl. 1994, 33, 15–44; (b) Goodman, J.; Walsh, V. The Story of Taxol, 1st ed.; Cambridge University Press: Cambridge, UK, 2001; part 1, Chapter 1, p 10; (c) Kingston, D. G. I. Chem. Commun. 2001, 867–880.
- (a) Holton, R. A.; Somoza, C.; Kim, H. B.; Liang, F.; Biediger, R. J.; Boatman, P. D.; Shindo, M.; Smith, C. C.; Kim, S. C.; Nadizadeh, H.; Suzuki, Y.; Tao, C. L.; Vu, P.; Tang, S. H.; Zhang, P. S.; Murthi, K. K.; Gentile, L. N.; Liu, J. H. J. Am. Chem. Soc. 1994, 116, 1597–1598; (b) Holton, R. A.; Kim, H. B.; Somoza, C.; Liang, F.; Biediger, R. J.; Boatman, P. D.; Shindo, M.; Smith, C. C.; Kim, S. C.; Nadizadeh, H.; Suzuki, Y.; Tao, C. L.; Vu, P.; Tang, S. H.; Zhang, P. S.; Murthi, K. K.; Gentile, L. N.; Liu, J. H. J. Am. Chem. Soc. 1994, 116, 1599–1600.
- 5. (a) Nicolaou, K. C.; Nantermet, P. G.; Ueno, H.; Guy, R. K.; Couladoros, E. A.; Sorensen, E. J. J. Am. Chem. Soc. **1995**, *117*, 624–633; (b) Nicolaou, K. C.; Liu, J. J.; Yang, Z.; Ueno, H.; Sorensen, E. J.; Claiborne, C. F.; Guy, R. K.; Hwang, C. K.; Nakada, M.; Nantermet, P. G. J. Am. Chem. Soc. **1995**, *117*, 634–644; (c) Nicolaou, K. C.; Yang, Z.; Liu, J. J.; Nantermet, P. G.; Claiborne, C. F.; Renaud, J.; Guy, R. K.; Shibayama, K. J. Am. Chem. Soc. **1995**, *117*, 645–652; (d) Nicolaou, K. C.; Ueno, H.; Liu, J. J.; Nantermet, P. G.; Yang, Z.; Renaud, J.; Paulvannan, K.; Chadha, R. J. Am. Chem. Soc. **1995**, *117*, 653–659; (e) Nicolaou, K. C.; Yang, Z.; Liu, J. J.; Ueno, H.; Nantermet, P. G.; Guy, R. K.; Claiborne, C. F.; Renaud, J.; Couladouros, E. A.; Paulvannan, K.; Sorensen, E. J. Nature **1994**, *367*, 630–634.
- Danishefsky, S. J.; Masters, J. J.; Young, W. B.; Link, J. T.; Snyder, L. B.; Magee, T. V.; Jung, D. K.; Isaacs, R. C. A.; Bornmann, W. G.; Alaimo, C. A.; Coburn, C. A.; Di Grandi, M. J. J. Am. Chem. Soc. **1996**, *118*, 2843–2859.
- Wender, P. A.; Badham, N. F.; Conway, S. P.; Floreancig, P. E.; Glass, T. E.; Houze, J. B.; Krauss, N. E.; Lee, D. S.; Marguess, D. G.; McGrane, P. L.; Meng, W.; Natchus, M. G.; Shuker, A. J.; Sutton, J. C.; Taylor, R. E. J. Am. Chem. Soc. **1997**, 119, 2757–2758.
- (a) Morihira, K.; Hara, R.; Kawahara, S.; Nishimora, T.; Nakamura, N.; Kusama;, H.; Kuwajima, I. J. Am. Chem. Soc. **1998**, 118, 12980–12981; (b) Kusama, H.; Hara, R.; Kawahara, S.; Nishimora, T.; Kashima, H.; Nakamura, N.; Morihira, K.; Kuwajima, I. J. Am. Chem. Soc. **2000**, 122, 3811–3820.
- Mukaiyama, T.; Shiina, I.; Iwadare, H.; Saitoh, M.; Nishimura, T.; Ohkawa, N.; Sakoh, H.; Nishimura, K.; Tani, Y.; Hasegawa, M.; Yamada, K.; Saitoh, K. *Chem. – Eur. J.* **1999**, *5*, 121–161.
- For some early examples see: (a) Funk, R. L.; Yost, K. J. J. Org. Chem. 1996, 61, 2598–2599; (b) Yadav, J. S.; Srinivas, D. Tetrahedron Lett. 1997, 38, 7789–7792; (c) Crich, D.; Natarajan, S.; Crich, J. Z. Tetrahedron 1997, 53, 7139–7158; (d) Wennerberg, J.; Polla, M.; Frejd, T. J. Org. Chem. 1997, 62, 8735–8740.
- For more recent examples see: (a) Törmäkangas, O. P.; Toivola, R. J.; Karvinen, E. K.; Koskinen, A. M. P. Tetrahedron 2002, 58, 2175–2181; (b) Enomoto, T.; Morimoto, T.; Ueno, M.; Matsukubo, T.; Shimada, Y.; Tsutsumi, K.; Shirai, R.; Kakiuchi, K. Tetrahedron 2008, 64, 4051–4059; (c) Brémond, P.; Audran, G.; Monti, H. J. Org. Chem. 2008, 73, 6033–6036; (d) Ma, C.; Schiltz, S.; Le Goff, X. F.; Prunet, J. Chem.—Eur. J. 2008, 14, 7314–7323.
- (a) Harrison, J. W.; Scrowston, R. M.; Lythgoe, B. J. Chem. Soc. C 1966, 1933– 1945; (b) Koepp, A. E.; Hezari, M.; Zajicek, J.; Vogel, B. S.; LaFever, R. E.; Lewis, N. G.; Croteau, R. J. Biol. Chem. 1995, 270, 8686–8690.
- (a) Hefner, J.; Rubenstein, S. M.; Williams, R. M.; Ketchum, R. E. B.; Gibson, D. M.; Croteau, R. Chem. Biol. 1996, 3, 479–489; (b) Jennewein, S.; Long, R. M.;

Williams, R. M.; Croteau, R. *Chem. Biol.* **2004**, *11*, 379–387; (c) Jennewein, S.; Rithner, C. D.; Williams, R. M.; Croteau, R. *Arch. Biochem. Biophys.* **2003**, *413*, 262–270; (d) Chau, M.; Jennewein, S.; Walker, K.; Croteau, R. *Chem. Biol.* **2004**, *11*, 663–672.

- (a) Jackson, C. B.; Pattenden, G. Tetrahedron Lett. 1985, 26, 3393–3396; (b) Begley, M. J.; Jackson, C. B.; Pattenden, G. Tetrahedron Lett. 1985, 26, 3397– 3400; (c) Begley, M. J.; Jackson, C. B.; Pattenden, G. Tetrahedron 1990, 46, 4907–4924.
- (a) Lin, X.; Hezari, M.; Koepp, A. E.; Floss, H. G.; Croteau, R. *Biochemistry* **1996**, 35, 2968–2977; (b) Jin, Q.; Williams, D. C.; Hezari, M.; Croteau, R.; Coates, R. M. J. Org. Chem. **2005**, 70, 4667–4675.
- Goldring, W. P. D.; Pattenden, G. Acc. Chem. Res. 2006, 39, 354–361; see also: Tokiwano, T.; Endo, T.; Tsukagoshi, T.; Goto, H.; Fukushi, E.; Oikawa, H. Org. Biomol. Chem. 2005, 3, 2713–2722.
- See for example: (a) Chen, L.; Gill, G. B.; Pattenden, G. Tetrahedron Lett. 1994, 35, 2593–2596; (b) Handa, S.; Pattenden, G. J. Chem. Soc., Perkin Trans. 1 1999, 843–845; (c) Pattenden, G.; Smithies, A. J.; Walter, D. S. Tetrahedron Lett. 1994, 35, 2413–2416; (d) Begley, M. J.; Pattenden, G.; Smithies, A. J.; Walter, D. S. Tetrahedron Lett. 1994, 35, 2417–2420; (e) Brennan, C. J.; Pattenden, G.; Rescourio, G. Tetrahedron Lett. 1994, 35, 2417–2420; (e) Brennan, C. J.; Pattenden, G.; Gonzalez, M. A.; McCulloch, S.; Walter, A.; Woodhead, S. J. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 12024–12029; (g) Hayes, C. J.; Herbert, N. M. A.; Harrington-Frost, N. M.; Pattenden, G. Org. Biomol. Chem. 2005, 3, 340–347; (i) Mulholland, N. P.; Pattenden, G. Tetrahedron Lett. 2005, 46, 937–939; (j) Cases, M.; Gonzalez-Lopez de Turiso, F.; Hadijsoteriou, M. S.; Pattenden, G. Org. Biomol. Chem. 2005, 3, 2786–2804; (k) Pattenden, G.; Stoker, D. A.; Thomson, N. M. Org. Biomol. Chem. 2007, 5, 1776–1788.
- 18. Hitchcock, S. A.; Pattenden, G. Tetrahedron Lett. 1992, 33, 4843-4846.
- Hitchcock, S. A.; Houldsworth, S. J.; Pattenden, G.; Pryde, D. C.; Thomson, N. M.; Blake, A. J. J. Chem. Soc., Perkin Trans. 1 1998, 3181–3206.
- 20. cf. Taber, D. F.; Joshi, P. V. J. Org. Chem. 2004, 69, 4276-4278.
- For some discussion on the issue of installing the angular methyl at C8 in the taxanes see: (a) Mukaiyama, T.; Shiina, I.; Iwadare, H.; Saitoh, M.; Nishimura, K.; Nishimura, T.; Ohkawa, N.; Sakoh, H.; Saitoh, K. *Chem. Lett.* **1996**, 483–484; (b) Kuwajima, I.; Kusama, H. *Synlett* **2000**, 1385–1401.
- 22. Kuwajima et al. used this approach in their synthesis of taxol. See Ref. 8.
- Roy, O.; Pattenden, G.; Pryde, D. C.; Wilson, C. *Tetrahedron* 2003, 59, 5115–5121; Also see: Pryde, D. C. Ph.D. Thesis, University of Nottingham, 1994. For some other earlier approaches to the fully substituted A-ring in taxol see: (a) Pettersson, L.; Frejd, T.; Magnusson, G. *Tetrahedron Lett.* 1987, 28, 2753–2756; (b) Pettersson, L.; Frejd, T. J. Chem. Soc., Perkin Trans. 1 2001, 789–800; (c) Doi, T.; Robertson, J.; Stork, G.; Yamashita, A. *Tetrahedron Lett.* 1994, 35, 1481–1484; (d) Winkler, J. D.; Bhattacharya, S. K.; Liotta, F.; Batey, R. A.; Heffernan, G. D.; Cladingboel, D. E.; Kelly, R. C. *Tetrahedron Lett.* 1995, 36, 2211–2214; (e) Tjepkema, M. W.; Wilson, P. D.; Wong, T.; Romero, M. A.; Audrain, H.; Fallis, A. G. *Tetrahedron Lett.* 1995, 36, 6039–6042; (f) Tjepkema, M. W.; Wilson, P. D.; Audrain, H.; Fallis, A. G. *Can. J. Chem.* 1997, 75, 1215–1224.
- 24. Hodgson, D. M. *Tetrahedron* **1995**, *51*, 3713–3724. 25. Curran, D. P.; Yu, H. *Synthesis* **1992**, *1*, 123–127.
- Leusink, A. J.; Budding, H. A. J. Organomet. Chem. 1968, 11, 533-539 See also Ref. 19.
- Foote, K. M.; Hayes, C. J.; John, M. P.; Pattenden, G. Org. Biomol. Chem. 2003, 1, 3917–3948.