View Article Online View Journal

Organic & Biomolecular Chemistry

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: D. K. Mohapatra, B. Jena and G. S. Reddy , *Org. Biomol. Chem.*, 2017, DOI: 10.1039/C6OB02435A.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the **author guidelines**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the ethical guidelines, outlined in our <u>author and reviewer resource centre</u>, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

rsc.li/obc

ARTICLE TYPE

Cite this: DOI: 10.1039/coxxooooox

www.rsc.org/xxxxx

First Asymmetric Total Synthesis of Aspergillide D

Bighnanshu K. Jena, G. Sudhakar Reddy and Debendra K. Mohapatra*

Received (in XXX, XXX) Xth XXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

⁵ The first asymmetric total synthesis of 16-membered macrolide aspergillide D is described. The chiral centers of the acid is derived from D-ribose and the alcohol subunit from 1,8-octane diol through Sharpless kinetic resolution, respectively. The other key reactions include Yamaguchi ¹⁰ esterification, ring-closing metathesis reaction, and Shiina macrolactonization to construct the fully functionalized macrocycle.

Introduction

Published on 24 January 2017. Downloaded by University of Newcastle on 24/01/2017 21:38:00.

In 2013, Qi and co-workers¹ reported the isolation of aspergillide ¹⁵ D (1), a 16-membered macrolide along with two polyketones, (*R*)-semivioxanthin (1a),^{2a} (*R*)-semixanthomegnin (1b)^{2b} and four alkaloids, 5-(1*H*-indol-3-ylmethyl)-imidazolidine-2,4-dione (1c), 9α,14-dihydroxy-6β-*p*-nitro-benzoylcinnamolide (1d),^{2c} 7α,14dihydroxy-6β-*p*-nitro-benzoylconfertifolin(1e),^[2c] azonazine(1f)^{2d} ²⁰ from the extract of the gorgonian-associated fungal stain *Aspergillus* sp. SCSGAF 0076. The assignment of the gross structure of aspergillide D (1) was allotted on account of ¹H, ¹³C NMR, and DEPT spectra, which confirmed the presence of one methyl, eight aliphatic methylenes, α,β-unsaturated ester, four ²⁵ oxygenated methines, two double bond equivalents including one unsaturation and molecular formula by HRESIMS (*m/z* 323,1828

- $[M + Na]^+$). Elucidation of the relative configuration of the natural product 1 was based on NOESY spectrum, large coupling constant (J = 16 Hz) supporting *E*-configured olefinic bond. 14-³⁰ and 16-membered macrolides isolated from fungi and bacteria generally display antibacterial activity^{3,4} but this new macrolide
 - Natural Products Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; E-mail: <u>mohapatra@iict.res.in</u>

exhibited no antibacterial activity against both *Escherichia coli* and *Staphylococcus aureus*. Compounds **1d** and **1e** showed antiviral activity against H1N1 and H3N2, with IC_{50} values of 7.4 ⁴⁰ and 4.3 μ M for **1d** and IC_{50} values of 36.0 and 12.0 μ M for **1e**, respectively. Furthermore, the exploration of structure-activity

Figure 1. Structure of aspergillide D (1), two polyketones (1a-b), four 45 alkaloids (1c-f).

relationships (SAR) of different macrolides have revealed that the combination of macrolide core and side chain parts were effective for the enhancement of biological activity of the natural product.⁵ Generally, the accumulative importance focussed on the aglycons ⁵⁰ in the structure-activity investigations on such molecules sidelining the contribution of the corresponding carbohydrate components whereas latter part's inclusion can change the solubility, absorption, and interactions with a defined biological

³⁵ †Electronic Supplementary Information (ESI) available: [Scanned copies of ¹H, ¹³C NMR Spectra]. See DOI: 10.1039/b000000x/

This journal is © The Royal Society of Chemistry [year]

target and can be hampered to a great extent the other way around.⁶ The biological activities of aspergillide D has not been extensively explored, presumably due to the scarce natural abundance which can be recouped by total synthesis for further ⁵ biological evaluation. The quest for improvement of biological significance of aspergillide D with further structure-activity studies, along with its extremely limited supply, prompted us to undertake its chemical synthesis. Herein, we report the first asymmetric total synthesis of **1**, relying on the Shiina ¹⁰ macrolactonization⁷ as the pivotal step.

According to the retrosynthetic analysis of aspergillide D (1) as shown in Scheme 1, macrolactone core 2 of aspergillide D could be synthesized from seco-acid 3 via intramolecular Shiina esterification. Seco-acid 3 which could be obtained from α,β -

Published on 24 January 2017. Downloaded by University of Newcastle on 24/01/2017 21:38:00

Scheme 1. Retrosynthetic analysis of Aspergillide D (1).

²⁵ unsaturated ester through two carbon homologation on the corresponding lactol of the 14-membered macrolactone with controlled DIBAL-*H* reduction, which in turn could be constructed by ring-closing metathesis reaction of the resulting diene compound 4, followed by reduction of the unsaturated
³⁰ macrolactone with PtO₂. The diene could be prepared from the coupling of the acid 5 and the alcohol 6 under Yamaguchi coupling conditions. Acid fragment 5 would be obtained from D-ribose following a reported protocol whereas alcohol fragment 6 could be accessed from 1,8-octane diol (8) through Sharpless
³⁵ kinetic resolution as the key reaction (Scheme 1).

Results and Discussion

The synthesis of acid fragment **5** was commenced with commercially available D-ribose (7) which was converted to lactol **9** following a literature protocol,⁸ as shown in Scheme 2. ⁴⁰ Lactol **9** was synthesized from D-ribose (7) by treating with catalytic amount of H₂SO₄ and acetone, which produced 2,3-acetonide, followed by reduction with NaBH₄ and subsequent oxidative cleavage of the resulting diol with NaIO₄ afforded lactol **9** in quantitative yield. The lactol **9** was then treated with

Scheme 2. Synthesis of the acid fragment 5.

PPh₃=CH₂ in THF at 50 °C to afford alcohol **10** in 81% yield. The primary alcohol group was then transformed to its corresponding carboxylic acid functionality by treating with BAIB in presence ⁵⁵ of TEMPO in a mixture of CH₂Cl₂ and water as solvent at room temperature to furnish **5** in 82% yield.⁹

The synthesis of alcohol fragment 6 was initiated with commercially available 1.8-octane diol (8) and mono-PMB protection with 4-methoxybenzyl alcohol in presence of 60 Amberlyst-15 in CH₂Cl₂ furnished PMB ether **11** in 89% yield.¹⁰ The primary alcohol **11** was oxidized under Swern conditions¹¹ to obtain the corresponding aldehyde, which was treated with vinylmagnesium bromide in presence of CuI (catalytic), immediately after purification through flash chromatography, to 65 afford racemic allylic alcohol 12 in 74% yield over two steps. The allylic alcohol 12 was transformed to the enantiomerically rich epoxy alcohol 13 in 43% yield under Sharpless kinetic resolution conditions by employing requisite equivalents of (-)-DIPT and Ti(OiPr)₄ in presence of 0.5 equivalent of t-BuOOH in $_{70}$ CH₂Cl₂ at -20 °C.¹² The optical rotation of the compound **13** was found to be $\left[\alpha\right]_{D}^{20}$ -4.90 (c 2.1, CHCl₃) and the enantiomeric purity was determined by HPLC analysis. The free secondary hydroxy functionality of 13 was masked as its MOM ether to afford 14 in 93% yield by treating with MOMCl and N,N-75 diisopropylethylamine (DIPEA) in CH₂Cl₂. The PMB protecting group was oxidatively removed upon treatment with DDQ in $CH_2Cl_2:H_2O$ (9:1) under phosphate buffer solution (pH = 7) to

Published on 24 January 2017. Downloaded by University of Newcastle on 24/01/2017 21:38:00

provide **15** in 92% yield.¹³ The primary group **15** was then converted to the corresponding terminal alkene by a two step sequence involving oxidation to corresponding aldehyde with

Scheme 3. Synthesis of the alcohol fragment 7.

Dess-Martin periodinane in CH_2Cl_2 ,¹⁴ followed by treatment with PPh₃=CH₂ to produce alkene **16** in 65% yield over two steps ²⁰ (Scheme 3). The terminal epoxide **16** was reductively cleaved with LiAlH₄ in THF at -10 °C to obtain **6** in 89% yield.

Having synthesized both the desired fragments in a simple and efficient manner, we turned our attention to couple the acid 5 and the alcohol 6 followed by crucial ring-closing metathesis reaction 25 of the resulting diene 4. When the coupling was initially attempted in the presence of DCC (dicyclohexyl carbodiimide)¹⁵ and EDCI (N-ethyl-N'-(dimethylaminopropyl)carbodiimide),¹⁶ DMAP in CH₂Cl₂, both the reaction conditions afforded product with low yield and non-reproducible, anticipating the 30 vulnerability of acid moiety 5. Pleasingly, under Yamaguchi esterification¹⁷ conditions, the diene ester 4 was obtained in 65% yield, which set the stage for RCM reaction to prepare 14membered unsaturated lactone 17. The diene ester was dissolved in degassed CH₂Cl₂ and refluxed with Grubbs' 2nd generation 35 catalyst under high dilution conditions to furnish the desired macrolactone 17 as major isomer in 73% yield.¹⁸ Hydrogenation of unsaturated lactone compound 17 was effected in presence of catalytic amount of PtO2 under H2 atmosphere in MeOH to afford 14-membered saturated lactone 18 in 95% yield. The reduction of 40 macrolactone 18 in CH₂Cl₂ was efficiently carried out with DIBAL-H at -78 °C into the corresponding lactol, which was immediately subjected to $Ph_3P=CHCO_2Et$ in refluxing benzene after purification through a flash silica gel chromatography to produce α,β -unsaturated ester **19** in 61% yield over two steps ⁴⁵ (Scheme 7).¹⁹ The ester functionality of **19**, was hydrolyzed under

Scheme 4. Total synthesis of aspergillide D (1).

basic conditions with LiOH in THF/H₂O (3:2) to afford the 70 requisite seco-acid **3** of aspergillide D, which set the stage for crucial Shiina macrolactonization. The azeotropic seco-acid moiety with anhydrous benzene, was macrocyclized under Shiina's protocol utilizing 2-methyl-6-nitrobenzoic anhydride as acid activating agent, to furnish the key fully functionalized ⁷⁵ macrolactone **2** in 51% yield over two steps.⁷ Global deprotection of 2 having acetonide group and MOM-ether to the corresponding hydroxy groups was attempted under different acidic conditions, which led to the formation of inseparable mixture of products along with decomposition of the starting 80 material. Then, it was planned to deprotect the acetonide group of 2 selectively in the presence of MOM ether by treating with 3 equivalents CuCl₂·2H₂O in CH₃CN at 0 °C which produced the diol 20 in 90% yield.²⁰ Deprotection of MOM-protecting group was the remaining task to complete the synthesis of proposed 85 structure of aspergillide D. After achieving the acetonide deprotection, the deprotection of MOM ether with CuCl₂ 2H₂O in

Table 1: ¹H and ¹³C NMR data of natural and synthetic aspergillide D

Position	Natural	Synthetic	Position	Natural	Synthetic
	δ _H (J in Hz)	δ _H (J in Hz)		δ _C	δ_{C}
H-2	6.08, (dd, 1.5, 15.5)	6.11, (dd, 1.7, 15.9)	C-1	166.0	165.6
H-3	6.93, (dd, 5.0, 16.0)	6.92, (dd, 5.2, 15.7)	C-2	122.0	122.5
H-15	4.81, m	4.87, m	C-3	146.6	145.8
H-4	4.44, (ddd, 1.3, 2.6, 4.7)	4.50, m	C-4	74.0	74.02
H-5	3.69, m	3.74, m	C-5	74.1	74.5
H-6a, H-13a	1.58, m	1.66-1.52, m	C-6	31.8	32.1
H-7~ H- 12	1.45- 1.13, m	1.44-1.14, m	C-7	27.8	27.9
H-14	3.47, m	3.54, m	C-8	27.5	27.6
H-6b	1.32, m	1.48, m	C-9	23.2	23.4
H-16	1.38, (d, 6.0)	1.36, (d, 6.3)	C-10	22.9	23.0
H-13b	1.26, m	-	C-11	26.1	26.3
			C-12	26.0	26.3
			C-13	29.7	30.0
			C-14	73.8	73.97
			C-15	73.7	73.7
			C-16	17.6	17.6

Published on 24 January 2017. Downloaded by University of Newcastle on 24/01/2017 21:38:00

CH₃CN at room temperature was investigated which led to ⁵ furnish the requisite product along with the decomposition product. Finally, treatment of the MOM-ether **20** with 4N HCl in THF, successfully afforded aspergillide D in 72% yield. The specific rotation { $[\alpha]_D^{20} = -9.42$ (*c* 0.1, MeOH)} of synthetic compound **1** was in good agreement with the data reported¹ for ¹⁰ the natural product { $[\alpha]_D^{20} = -11.1$ (*c* 0.1, MeOH)} and the spectral data (¹H NMR and ¹³C NMR taken at 40 °C as the compound was partially soluble in CDCl₃) were also in good agreement with the natural product data except few chemical shifts differs to a little extent (Table 1), thus, represents the first ¹⁵ asymmetric total synthesis of 16-membered macrolactone Conclusions

In conclusion, the first asymmetric total synthesis of aspergillide D was achieved in 18 longest linear step sequences. The ²⁰ intramolecular Shiina coupling was successfully applied to the synthesis of 16-membered macrolactone ring of aspergillide D. Other key features of the synthesis include the preparation of both desired fragments from commercial available cheaper starting materials in a concise and convergent manner and the successful ²⁵ use of Sharpless resolution, Yamaguchi esterification, and RCM reaction. Hopefully, the current synthesis will provide considerable flexibility to a variety of structural analogues of aspergillide D for further biological studies.

Experimental Section

30 General Remarks: Air and/or moisture sensitive reactions were carried out in anhydrous solvents under an atmosphere of argon in an oven or flame-dried glassware. All anhydrous solvents were distilled prior to use: THF, benzene, toluene, diethyl ether from Na and benzophenone; CH₂Cl₂, DMSO, DMF, hexane from 35 CaH₂; MeOH, EtOH from Mg cake. Commercial reagents were used without purification. Column chromatography was carried out by using silica gel (60-120 mesh). Specific optical rotations $[\alpha]_D$ are given in 10⁻¹ degcm²g⁻¹. Infrared spectra were recorded in CHCl₃/neat (as mentioned) and reported in wave number ⁴⁰ (cm⁻¹). TOF analyzer type was used for the HRMS measurement. ¹H and ¹³C NMR chemical shifts are reported in ppm downfield from tetramethylsilane and coupling constants (J) are reported in hertz (Hz). The following abbreviations are used to designate signal multiplicity: s = singlet, d = doublet, t = triplet, q = quartet, $_{45}$ m = multiplet, br = broad.

8-((4-Methoxybenzyl)oxy)octan-1-ol (11): To a stirred solution of 1,8-octanediol (8) (18.0 g, 123.29 mmol) and catalytic amount of Amberlyst-15 resin (1.8 g, 10% w/w) in CH₂Cl₂ (100 mL) was added 4-methoxybenzyl alcohol (15.28 mL, 123.29 mmol) at ⁵⁰ room temperature and heated to reflux at 50 °C for 10 h. After completion of the reaction (monitored by TLC), it was filtered through a pad of Celite. The residue was washed with CH₂Cl₂ (2 × 40 mL). The combined organic layer was dried over anhydrous Na₂SO₄, concentrated under reduced pressure. The crude residue ⁵⁵ was purified by silica gel column chromatography (EtOAc/hexane = 1:3) to obtain the desired alcohol **11** (29.19 g,

aspergillide D.

Downloaded by University of Newcastle on 24/01/2017 21:38:00

Published on 24 January 2017.

89%) as a colorless liquid. IR (neat): 3409, 2930, 2855, 1612, 1513, 1247, 1095, 1036, 821 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.26 (d, *J* = 8.7 Hz, 2H), 6.87 (d, *J* = 8.7 Hz, 2H), 4.43 (s, 2H), 3.80 (s, 3H), 3.62 (t, *J* = 6.6 Hz, 2H), 3.43 (t, *J* = 6.7 Hz, 2H), s 1.65-1.50 (m, 5H), 1.40-1.27 (m, 7H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 159.0, 130.7, 129.2, 113.7, 72.5, 70.1, 62.9, 55.2, 32.7, 29.7, 29.4, 29.3, 26.1, 25.6 ppm; HRMS (ESI): m/z calcd for $C_{16}H_{26}O_3Na [M + Na]^+ 289.1774$; Found: 289.1766.

10-((4-Methoxybenzyl)oxy)dec-1-en-3-ol (12): To a stirred 10 solution of anhydrous dimethyl sulfoxide (19.67 mL, 277.44 mmol) in CH₂Cl₂ (120 mL), was added oxalyl chloride (16.8 mL, 184.96 mmol) drop-wise at -78 °C under N₂ atmosphere. The reaction mixture was stirred for 30 min before alcohol 11 (24.6 g, 92.84 mmol) in CH₂Cl₂ (80 mL) was added slowly. The reaction 15 mixture was stirred for 45 min at same temperature. Then triethylamine (51.50 mL, 369.92 mmol) was added drop-wise and allowed to stir for 1 h at -78 °C. The reaction was allowed to stir at room temperature for additional 1 h. After completion of the reaction (monitored by TLC), the reaction mixture was quenched $_{20}$ with water. The aqueous phase was extracted with CH₂Cl₂ (3 × 100 mL). The combined organic layer was washed with brine (100 mL), dried over Na₂SO₄ and evaporated to dryness under reduced pressure. The crude aldehyde was purified by flash chromatography and immediately used in the next reaction 25 without further characterization.

Vinyl magnesium bromide (122.16 mL, 122.16 mmol) (1 M solution in THF) was added dropwise to a solution of CuI (1.55 g, 8.14 mmol) in THF (130 mL) at -20 °C. The mixture was stirred for 30 min. and aldehyde (21.5 g, 81.44 mmol) in THF (60 mL) ³⁰ was added dropwise to the above mixture at the same temperature. After 2 h, the reaction (monitored by TLC) was quenched with a saturated NH₄Cl solution (75 mL) and diluted with ethyl acetate (100 mL). The organic layer was separated and the aqueous layer extracted with ethyl acetate (3 × 50 mL). The

- ³⁵ combined organic layer was washed with brine (70 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give the crude mass. Purification by silica gel column chromatography (EtOAc/hexane = 3:7) afforded the desired allyl alcohol **12** (19.98 g, 74% yield over two steps) as a colorless
- ⁴⁰ liquid. IR (neat): 3438, 2931, 2855, 1611, 1513, 1463, 1247, 1096, 821 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): 7.26 (d, J = 8.7 Hz, 2H), 6.87 (d, J = 8.7 Hz, 2H), 5.85 (m, 1H), 5.21 (m, 1H),

5.09 (td, J = 1.4, 10.4 Hz, 1H), 4.42 (s, 2H), 4.07 (m, 1H), 3.80 (s, 3H), 3.42 (t, J = 6.7 Hz, 2H), 1.62-1.56 (m, 2H), 1.54-1.46 (m, 45 2H), 1.39-1.27 (m, 8H); ¹³C NMR (125 MHz, CDCl₃): δ 159.0, 141.3, 130.7, 129.2, 114.4, 113.7, 73.1, 72.4, 70.1, 55.2, 36.9, 29.7, 29.4, 29.3, 26.1, 25.2; HRMS (ESI) calcd for C₁₈H₂₈O₃Na [M + Na]⁺ 315.1931; Found: 315.1939.

(R)-8-((4-Methoxybenzyl)oxy)-1-((S)-oxiran-2-yl)octan-1-ol

50 (13): At first, 4 Å molecular sieves (12.7 g) and CH₂Cl₂ (90 mL) were placed in a two-necked 250 mL round bottomed flask, followed by the addition of Ti(OⁱPr)₄ (2.45 mL, 8.24 mmol) and (-)-diisopropyltartrate (2.0 mL, 9.50 mmol) at -25 °C under nitrogen and the resulting mixture was stirred for 30 min. The 55 allylic alcohol 12 (18.5 g, 63.36 mmol) was then added and stirred for 30 min, after which t-BuOOH (4.9 mL, 31.68 mmol) (6.5 M in toluene) was added over 20 min at the same temperature. Then the reaction mixture was stirred for 12 h at the same temperature. After monitoring resolution of the racemic 60 alcohol (monitored by TLC), the reaction mixture was warmed to 0 °C and whole reaction mixture was filtered through sintered funnel. Then quenched by water (40 mL) and stirred vigorously for 30 min and the filtrate were again stirred along with 20% aqueous NaOH solution (15 mL). The biphasic solution was 65 separated and aqueous layer was extracted with CH_2Cl_2 (3 × 60 mL). The combined organic extracts were dried over anhydrous Na₂SO₄ and evaporated under reduced pressure. The crude residue was purified by silica gel column chromatography (EtOAc/hexane = 2:3) to afford pure epoxy alcohol 13 (8.39 g, ⁷⁰ 43%) as a colorless liquid. $[\alpha]_{D}^{20}$ –4.90 (*c* 2.1, CHCl₃); IR (neat): 3426, 2925, 2854, 1610, 1512, 1461, 1247, 1093, 1034, 823 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): 7.26 (d, J = 8.7 Hz, 2H), 6.87 (d, J= 8.7 Hz, 2H), 4.42 (s, 2H), 3.86-3.77 (m, 4H), 3.43 (t, J = 6.6 Hz, 2H), 3.00 (m, 1H), 2.79 (m, 1H), 2.72 (dd, J = 4.0, 5.0 Hz, 75 1H), 1.65-1.44 (m, 4H), 1.43-1.23 (m, 8H); ¹³C NMR (125 MHz, CDCl₃): δ 159.0, 130.7, 129.2, 113.7, 72.5, 70.1, 68.4, 55.2, 54.5, 43.4, 33.4, 29.7, 29.5, 29.3, 26.1, 25.2; HRMS (ESI) calcd for $C_{18}H_{28}O_4Na [M + Na]^+ 331.1880$; Found: 331.1891.

(S)-2-((R)-8-((4-Methoxybenzyl)oxy)-1-(methoxymethoxy)oct-

⁸⁰ yl)oxirane (14): To a stirred solution of compound 13 (8.1 g, 26.30 mmol) in CH₂Cl₂ (60 mL), was added diisopropyl ethylamine (13.74 mL, 78.9 mmol) and stirred for 30 min at 0 °C under N₂ atmosphere. Methoxymethyl chloride (3.0 mL, 39.45 mmol) was added to the reaction mixture at same temperature.

The reaction was continued to stir for 3 h at room temperature. After completion of the reaction (monitored by TLC), it was quenched with water (30 mL). The organic layer was separated and the aqueous layer extracted with CH_2Cl_2 (2 × 50 mL). The 5 combined organic layer was dried over anhydrous Na₂SO₄ and removed under reduced pressure. The crude mass was purified by silica gel chromatography (EtOAc/hexane = 1:3) to afford 14 (8.61 g, 93%) as a colorless liquid. $[\alpha]_D^{20}$ +6.81 (*c* 1.60, CHCl₃); IR (neat): 2931, 2855, 1612, 1513, 1461, 1247, 1099, 1035, 802 10 cm^{-1} ; ¹H NMR (500 MHz, CDCl₃): 7.26 (d, J = 8.6 Hz, 2H), 6.87 (d, J = 8.7 Hz, 2H), 4.65 (ABq, J = 6.9, 66.8 Hz, 2H), 4.43 (s,2H), 3.80 (s, 3H), 3.43 (t, J = 6.7 Hz, 2H), 3.39 (m, 1H), 3.36 (s, 3H), 2.90 (m, 1H), 2.78 (dd, J = 4.0, 5.2 Hz, 1H), 2.72 (dd, J =2.6, 5.3 Hz, 1H), 1.68-1.55 (m, 4H), 1.49 (m, 1H), 1.40-1.28 (m, ¹⁵ 7H); ¹³C NMR (75 MHz, CDCl₃): δ 159.0, 130.7, 129.1, 113.7, 95.9, 76.2, 72.4, 70.1, 55.4, 55.2, 53.2, 45.5, 32.8, 29.7, 29.5, 29.3, 26.1, 25.0; ESI-HRMS Calcd for $C_{20}H_{32}O_5Na [M + Na]^+$ 375.2142; found: 375.2150.

Published on 24 January 2017. Downloaded by University of Newcastle on 24/01/2017 21:38:00

(R)-8-(Methoxymethoxy)-8-((S)-oxiran-2-yl)octan-1-ol (15): 20 To a stirred solution of PMB ether 14 (7.4 g, 21.02 mmol) in CH_2Cl_2 (50 mL), was added phosphate buffer (pH⁷) solution (3 mL) at 0 °C followed by DDQ (7.16 g, 31.53 mmol). The reaction mixture was continued to stir for 1 h at room temperature. After completion of the reaction (monitored by TLC), it was quenched 25 with saturated NaHCO₃ solution (40 mL). The organic layer was separated and the aqueous layer extracted with CH_2Cl_2 (2 × 50 mL). The combined organic layer was washed with brine (50 mL), dried over anhydrous Na2SO4. The solvent was removed under reduced pressure to obtain the crude product which on 30 purification by silica gel column chromatography (EtOAc/hexane = 2:3) furnished the corresponding diol 15 (4.49 g, 92%) as colorless liquid. $[\alpha]_{D}^{20}$ +8.73 (c 1.5, CHCl₃); IR (neat): 3444, 2930, 2856, 1465, 1366, 1149, 1103, 1034, 919, 755 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): 4.65 (ABq, J = 6.9, 65.3 Hz, 2H), 3.63 $_{35}$ (t, J = 6.7 Hz, 2H), 3.41-3.36 (m, 4H), 2.90 (m, 1H), 2.78 (m, 1H), 2.72 (m, 1H), 1.69-1.46 (m, 5H), 1.42-1.30 (m, 7H); ¹³C NMR (100 MHz, CDCl₃): δ 95.9, 76.3, 62.8, 55.4, 53.3, 45.6, 32.9, 32.7, 29.5, 29.2, 25.6, 25.0 ppm; ESI-HRMS Calcd for $C_{12}H_{25}O_4 [M + H]^+ 233.1747$; found: 233.1755.

⁴⁰ (*S*)-2-((*R*)-1-(Methoxymethoxy)non-8-en-1-yl)oxirane (16): To a stirred solution of primary alcohol 15 (4.0 g, 17.24 mmol) in CH₂Cl₂ (45 mL) at 0 °C, was added Dess-Martin periodinane (10.97 g, 25.86 mmol). The reaction mixture was stirred at 0 °C for 3 h. After completion of the reaction (monitored by TLC), it ⁴⁵ was quenched with saturated aqueous NaHCO₃ solution (30 mL) and stirred for another 30 min. The organic layer was separated and the aqueous layer extracted with CH_2Cl_2 (3 × 30 mL). The combined organic layer was evaporated under reduced pressure to afford a crude residue which was immediately used for the next ⁵⁰ reaction.

Methyltriphenylphosphonium bromide (15.04 g, 42.13 mmol) was dissolved in THF (50 mL) and cooled to -78 °C. n-Butyllithium (14.04 mL, 2.5 M in hexane, 35.11 mmol) was added drop wise to the above stirred solution which turned into 55 light orange solution. It was then warmed to 0 °C for 45 min and again cooled to -78 °C. The crude aldehyde (3.23 g, 14.04 mmol) in THF (20 mL) was added to the reaction mixture drop wise. The reaction mixture was stirred at the same temperature for 1 h then warmed to 0 °C for 2 h. After complete consumption of the 60 starting material (monitored by TLC), the reaction was quenched with saturated NH₄Cl solution (30 mL) and warmed to room temperature. The organic phase was separated and the aqueous phase extracted with ethyl acetate (2 \times 30 mL). The combined organic layers were washed with brine (25 mL), dried over 65 Na₂SO₄ and concentrated under reduced pressure. Purification by silica gel column chromatography (EtOAc/hexane = 1:4) afforded the desired compound 16 (2.56 g, 65% over two steps) as a colorless liquid. [α]_D²⁰ +9.48 (c 0.5, CHCl₃); IR (neat): 2927, 2855, 1741, 1641, 1150, 1104, 1038, 916, 557 cm⁻¹; ¹H NMR $_{70}$ (500 MHz, CDCl₃): 5.80 (m, 1H), 4.99 (dd, J = 1.5, 17.1 Hz, 1H), 4.92 (dd, J = 1.2, 10.2 Hz, 1H), 4.64 (ABq, J = 6.9, 66.2 Hz, 2H), 3.39 (m, 1H), 3.36 (s, 3H), 2.89 (m, 1H), 2.77 (dd, J = 4.0, 5.2 Hz, 1H), 2.71 (dd, J = 2.6, 5.2 Hz, 1H), 2.07-2.00 (m, 2H), 1.69-1.56 (m, 2H), 1.50 (m, 1H), 1.44-1.28 (m, 7H) ppm; ¹³C NMR 75 (75 MHz, CDCl₃): δ 139.1, 114.2, 96.0, 76.3, 55.4, 53.3, 45.6, 33.7, 32.9, 29.5, 29.0, 28.8, 25.1 ppm; ESI-HRMS Calcd for $C_{13}H_{24}O_3Na [M + Na]^+ 251.1618$; found: 251.1627.

(2*S*,3*R*)-3-(Methoxymethoxy)undec-10-en-2-ol (6): To a stirring suspension of LiAlH₄ (0.38 g, 10.83 mmol) in dry THF ⁸⁰ (10 mL) was dropwise added a solution of epoxide 16 (1.9 g, 8.33 mmol) in dry THF (30 mL) at 0 °C. The reaction mixture was allowed to warm to room temperature, and stirred for 3 h. The reaction was quenched by the addition of water (20 mL). The mixture was filtered with a pad of Celite and washed with ethyl ⁸⁵ acetate (3 × 40 mL), washed with brine (15 mL), and dried over

Downloaded by University of Newcastle on 24/01/2017 21:38:00

Published on 24 January 2017.

Na₂SO₄. The combined organic layers were concentrated under reduced pressure. The crude product was purified by silica gel column chromatography (EtOAc/hexane = 3:7) to afford **6** (1.71 g, 89%) as a colorless liquid. [α]_D²⁰ –10.29 (*c* 0.6, CHCl₃); IR ⁵ (neat): 3430, 2926, 2854, 1640, 1460, 1147, 1100, 1034, 910 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): 5.81 (m, 1H), 5.03-4.92 (m, 2H), 4.70 (ABq, *J* = 6.9, 47.3 Hz, 2H), 3.75 (m, 1H), 3.50 (m, 1H), 3.44 (s, 3H), 3.13 (bs, 1H), 2.04 (q, *J* = 6.7 Hz, 2H), 1.55-1.43 (m, 2H), 1.42-1.35 (m, 3H), 1.34-1.26 (m, 5H), 1.14 (d, *J* = ¹⁰ 6.6 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 139.0, 114.1, 97.5, 85.1, 68.9, 55.7, 33.7, 30.9, 29.4, 28.9, 28.7, 25.9, 17.0; HRMS (ESI) calcd for C₁₃H₃₀O₃N [M + NH₄]⁺ 248.2220; Found: 248.2233.

(3aS,6aS)-2,2-Dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-ol

15 (9): To a stirred solution of D-ribose monoacetonide (3.5 g, 18.42 mmol) in dry methanol (30 mL), NaBH₄ (1.05 g, 27.63 mmol) was added in small portions at 0 °C, then the resulting reaction mixture was stirred at room temperature for 1 h. After complete consumption of the starting material (monitored by TLC), the 20 solvent was evaporated under reduced pressure. The crude residue was dissolved in t-BuOH:H₂O (30:20 mL), NaIO₄ (15.76 g, 73.68 mmol) was added in small portions at 0 °C. Then the resulting reaction mixture was stirred at room temperature for 10 h until complete consumption of stirring material (monitored by 25 TLC). The reaction mixture was filtered to remove solid residue, washed with ethyl acetate (2 \times 30 mL) and guenched by the addition of saturated NaHCO₃ solution (30 mL). The filtrate was extracted with ethyl acetate (2×40 mL), dried over Na₂SO₄, and concentrated under reduced pressure. Purification of the crude 30 product by silica gel column chromatography (EtOAc/hexane = 1:3) afforded 9 (2.27 g, 77%) as a colorless liquid. $[\alpha]_D^{20}$ -73.8 (c 1.9, CHCl₃); IR (neat): 3448, 2923, 2854, 1631, 1465, 1219, 770 cm^{-1} ; ¹H NMR (400 MHz, CDCl₃) $\delta = 5.43$ (s, 1H), 4.84 (m, 1H), 4.58 (d, J = 6.0 Hz, 1H), 4.08-3.99 (m, 2H), 1.48 (s, 3H), 1.33 (s, $_{35}$ 3H) ppm; 13 C NMR (100 MHz, CDCl₃) $\delta = 112.2$, 101.5, 85.0, 79.8, 71.6, 26.0, 24.6 ppm; ESI-HRMS Calcd for C₇H₁₂O₄Na [M + Na]⁺ 183.0628; found: 183.0649.

((4S,5R)-2,2-Dimethyl-5-vinyl-1,3-dioxolan-4-yl)methanol

(10): Methyltriphenylphosphonium bromide (13.40 g, 37.5
⁴⁰ mmol) was dissolved in THF (30 mL) and cooled to -78 °C. *n*-Butyllithium (12.5 mL, 2.5 M in hexane, 31.25 mmol) was added drop wise to the above stirred solution which turned into light

orange solution. It was then warmed to 0 °C for 45 min and again cooled to -78 °C. The crude aldehyde 9 (2.0 g, 12.5 mmol) in 45 THF (15 mL) was added to the reaction mixture drop wise. The reaction mixture was stirred at 0 °C for 1 h and then warmed to 50 °C. After complete consumption of the starting material (monitored by TLC), the reaction was guenched with saturated NH₄Cl solution (20 mL) and warmed to room temperature. The 50 organic phase was separated and the aqueous phase extracted with ethyl acetate (2 \times 50 mL). The combined organic layers were washed with brine (50 mL), dried over Na₂SO₄ and concentrated under reduced pressure. Purification by silica gel column chromatography (EtOAc/hexane = 1:6) afforded the s5 desired compound **10** (1.6 g, 81%) as a colorless liquid. $[\alpha]_D^{20}$ -26.09 (c 0.5, CHCl₃); IR (neat): 3384, 2924, 2854, 1717, 1461, 1376, 1215, 1075, 1045, 930 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): 5.87 (m, 1H), 5.40 (dt, J = 1.4, 17.2 Hz, 1H), 5.28 (dt, J = 1.4, 10.4 Hz, 1H), 4.65 (m, 1H), 4.27 (m, 1H), 3.60-3.57 (m, 2H), 60 1.51 (s, 3H), 1.40 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 132.9, 119.0, 108.9, 78.3, 78.2, 62.0, 27.8, 25.2; HRMS (ESI) calcd for $C_8H_{14}O_3Na [M + Na]^+ 181.0835$; Found: 181.0841.

(4R,5R)-2,2-Dimethyl-5-vinyl-1,3-dioxolane-4-carboxylic acid

(5): To a stirred solution of 10 (1.7 g, 10.76 mmol) in 65 MeCN:H₂O (2:1, 24 mL) were added PhI(OAc)₂ (8.66 g, 26.90 mmol) and TEMPO (0.336 g, 2.15 mmol). The reaction mixture was stirred at room temperature for 3 h. After completion of the reaction (monitored by TLC), it was extracted with ethyl acetate $(3 \times 20 \text{ mL})$. The combined organic layers were washed with 70 brine (40 mL), dried over anhydrous Na₂SO₄ and evaporated under reduced pressure. The crude product was purified by silica gel column chromatography (EtOAc/hexane = 1:1) to afford desired acid 5 (1.52 g, 82%) as a colorless liquid. $\left[\alpha\right]_{D}^{20}$ -2.78 (c 2.8, CHCl₃); IR (neat): 2927, 2855, 1733, 1420, 1377, 1215, ⁷⁵ 1165, 1091, 875 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): 5.79 (ddd, J = 7.0, 10.4, 17.2 Hz, 1H), 5.46 (d, J = 17.1 Hz, 1H), 5.31 (d, J =10.4 Hz, 1H), 4.85 (t, J = 7.2 Hz, 1H), 4.69 (d, J = 7.5 Hz, 1H), 1.62 (s, 3H), 1.41 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 174.0, 131.6, 119.8, 111.3, 78.5, 77.2, 26.8, 25.3; HRMS (ESI) calcd for $_{80}$ C₈H₁₂O₄Na [M + Na]⁺ 195.0628; Found: 195.0621.

(4*R*,5*R*)-(2*S*,3*R*)-3-(Methoxymethoxy)undec-10-en-2-yl-2,2-

dimethyl-5-vinyl-1,3-dioxolane-4-carbo xylate (4): To a stirred solution of the acid **5** (1.15 g, 6.70 mmol) in dry toluene (15 mL), Et₃N (1.0 mL, 7.17 mmol) followed by 2,4,6-trichlorobenzoyl

atmosphere and continued to stir for 45 min at room temperature. DMAP (0.58 g, 4.78 mmol) and alcohol 6 (1.1 g, 4.78 mmol) dissolved in dry toluene (20 mL) was added to reaction mixture 5 dropwise at 0 °C and allowed to stir for 7 h at room temperature. After completion of the reaction (monitored by TLC), it was quenched with water (20 mL). The reaction mixture was extracted with ethyl acetate (3 \times 40 mL). The combined organic layers were washed with brine (50 mL), dried over anhydrous 10 Na₂SO₄ and solvent evaporated under reduced pressure. The crude mass was purified by silica gel column chromatography (EtOAc/hexane = 1:9) to furnish 4 (1.19 g, 65%, based on the starting alcohol) as a colorless liquid. $\left[\alpha\right]_{D}^{20}$ +2.34 (c 0.45, CHCl₃); IR (neat): 2925, 2853, 2311, 1756, 1377, 1194, 1096, $15\ 1038,\ 918\ \text{cm}^{-1};\ ^{1}\text{H}\ \text{NMR}\ (400\ \text{MHz},\ \text{CDCl}_{3})\ \delta = 5.77\ (\text{m},\ 2\text{H}),$ 5.41 (d, J = 17.0 Hz, 1H), 5.25 (d, J = 10.3 Hz, 1H), 5.07-4.89 (m, 3H), 4.78 (t, J = 7.2 Hz, 1H), 4.70 (d, J = 6.7 Hz, 1H), 4.65 (d, J = 7.2 Hz, 1H), 4.60 (d, J = 6.7 Hz, 1H), 3.60 (m, 1H), 3.36 (s, 3H), 2.07-1.99 (m, 2H), 1.62 (s, 3H), 1.53-1.25 (m, 13H), 1.17 $_{20}$ (d, J = 6.5 Hz, 3H) ppm; 13 C NMR (100 MHz, CDCl₃) $\delta = 168.8$, 139.0, 132.4, 119.4, 114.2, 111.0, 96.1, 78.9, 78.5, 77.3, 73.0, 55.7, 33.7, 30.8, 29.4, 28.9, 28.8, 27.0, 25.6, 25.5, 14.5 ppm; ESI-HRMS Calcd for $C_{21}H_{40}O_6N [M + NH_4]^+$ 402.2850; found: 402.2871.

chloride (1.12 mL, 7.17 mmol) was added at 0 °C under N₂

25 (3aR,6S,7R,15aR,E)-7-(Methoxymethoxy)-2,2,6-trimethyl-6,7,8,9,10,11,12,13-octahydro-3aH-[1,3]dioxolo[4,5-c][1]oxa cyclotetradecin-4(15aH)-one (17): A flame-dried roundbottomed flask was charged with a solution of ester 4 (0.6 g, 1.6 mmol) in CH₂Cl₂ (500 mL). The solution was degassed for 20 30 min under argon atmosphere. Grubbs' 2nd generation catalyst (132 mg, 0.16 mmol) was subsequently added to the solution, which was again degassed for 15 min. The reaction mixture was stirred for 12 h under refluxing conditions. After completion of the reaction (monitored by TLC), solvent was evaporated under 35 reduced pressure. Purification of the crude residue by silica gel column chromatography (EtOAc/hexane = 1:9) afforded 17 (404 mg, 73%) as a colorless liquid. $[\alpha]_{D}^{20}$ +29.53 (c 0.35, CHCl₃); IR (neat): 2926, 2856, 1728, 1457, 1246, 1193, 1091, 1035, 976, 722 cm^{-1} ; ¹H NMR (500 MHz, CDCl₃) δ = 5.86 (m, 1H), 5.48 (dd, J $_{40} = 6.9, 15.5 \text{ Hz}, 1\text{H}$), 5.10 (m, 1H), 4.82 (t, J = 7.0 Hz, 1H), 4.77 (d, J = 6.7 Hz, 1H), 4.72-4.68 (m, 2H), 3.72 (q, J = 5.3 Hz, 1H),3.41 (s, 3H), 2.17-2.04 (m, 2H), 1.65-1.55 (m, 5H), 1.49-1.22 (m, 14H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 169.3, 136.0, 124.2, 110.7, 95.6, 78.6, 78.3, 77.5, 72.5, 55.7, 30.3, 29.2, 27.1, 26.4, 45 26.2, 25.6, 25.3, 20.9, 15.7 ppm; ESI-HRMS Calcd for $C_{19}H_{36}O_6N [M + NH_4]^+$ 374.2537; found: 374.2564.

(3aR,6S,7R,15aR)-7-(Methoxymethoxy)-2,2,6-trimethyldecahydro-3aH-[1,3]dioxolo[4,5-c][1]oxa-cyclotetradecin-4(6H)-

one (18): A catalytic amount of PtO_2 was added in one portion to 50 a solution of 17 (270 mg, 0.76 mmol) in ethyl acetate (5 mL). The reaction vessel was evacuated under vacuum and placed under H₂ balloon pressure. The reaction mixture was allowed to stir at room temperature for 3 h until complete consumption of the starting material (monitored by TLC). The reaction was filtered ss through a small pad of Celite and washed with ethyl acetate (2 imes15 mL). The combined organic layer was concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (EtOAc/hexane = 1:9) to provide the desired product 18 (255 mg, 95%) as a colorless oil. $\left[\alpha\right]_{D}^{20}$ 60 -6.12 (c 0.65, CHCl₃); IR (neat): 2927, 2853, 2310, 1732, 1457, 1375, 1219, 1044, 772 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ = 4.90 (m, 1H), 4.72 (d, J = 6.9, Hz, 1H), 4.65 (d, J = 6.9, Hz, 1H), 4.51 (d, J = 6.6 Hz, 1H), 4.27 (m, 1H), 3.67 (m, 1H), 3.37 (s, 3H),1.53 (s, 3H), 1.49-1.37 (m, 7H), 1.36-1.20 (m, 15H) ppm; ¹³C 65 NMR (100 MHz, CDCl₃) δ = 170.4, 110.6, 95.3, 79.0, 77.9, 77.4, 70.8, 55.8, 27.72, 27.67, 27.1, 26.6, 25.7, 25.5, 23.5, 22.4, 21.9, 18.0, 17.6 ppm; HRMS (ESI) calcd for $C_{19}H_{34}O_6Na [M + Na]^+$ 381.2248; Found: 381.2259.

(E)-Ethyl-3-((4S,5R)-5-((9R,10S)-10-hydroxy-9-(methoxymeth oxy)undecyl)-2,2-dimethyl-1,3-diox- olan-4-yl)acrylate (3): To a stirred solution of lactone 18 (140 mg, 0.39 mmol) in CH₂Cl₂ (15 mL), DIBAL-*H* (0.36 mL, 1.4 M solution in toluene, 0.51 mmol) was added slowly at -78 °C under nitrogen atmosphere. The solution was stirred for 20 min at same temperature and allowed to warm to 0 °C slowly. After completion of the reaction (monitored by TLC), MeOH (0.2 mL) was added slowly followed by the addition of cold aqueous saturated sodium potassium tartrate (15 mL). The biphasic mixture was stirred for further 2 h and separated. The aqueous layer was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic phase was dried over Na₂SO₄ and concentrated under reduced pressure. The crude residue (111 mg, 79%) was used for the next step without further purification.

The lactol compound (111 mg, 0.31 mmol) in benzene (10 mL), was added Ph₃P=CHCO₂Et (0.161 mg, 0.46 mmol) at room ss temperature. The reaction mixture was heated to 90 °C for 4 h. Downloaded by University of Newcastle on 24/01/2017 21:38:00

Published on 24 January 2017.

After completion of the reaction (monitored by TLC), the reaction mixture was concentrated under reduced pressure. Purification by silica gel column chromatography (EtOAc/hexane = 3:7) afforded α,β-unsaturated ester **3** (102 mg, 77%; 61% over two steps) as a colorless liquid. $[\alpha]_D^{20}$ +7.18 (*c* 0.3, CHCl₃); IR (neat): 2925, 2854, 1731, 1608, 1459, 1382, 1272, 1038, 721 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 6.82 (dd, *J* = 6.2, 15.7 Hz, 1H), 6.04 (dd, *J* = 1.5, 15.7 Hz, 1H), 4.73 (d, *J* = 7.0 Hz, 1H), 4.65-4.60 (m, 2H), 4.24-4.16 (m, 3H), 3.74 (m, 1H), 3.48 (m, 1H), 3.42 (s, 3H), 1.74 (br s, 1H), 1.52-1.40 (m, 7H), 1.39-1.33 (m, 5H), 1.32-1.20 (m, 13H), 1.12 (d, *J* = 6.6 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 166.0, 143.8, 122.9, 108.7, 97.6, 85.1, 78.3, 77.3, 69.0, 60.5, 55.8, 31.0, 30.4, 29.6, 29.41, 29.39, 28.0, 26.3, 26.0, 25.5, 17.1, 14.2 ppm; ESI-HRMS Calcd for ¹⁵ C₂₃H₄₂O₇Na [M + Na]⁺ 453.2823; found: 453.2824.

(3a*S*,8*S*,9*R*,17a*R*,*E*)-9-(Methoxymethoxy)-2,2,8-trimethyl-9,10,11,12,13,14,15,16,17,17a-decahydro-3a*H*-[1,3]dioxolo-

[4,5-e][1]oxacyclohexadecin-6(8*H*)-one (2): To a stirred solution of the ester **3** (64 mg, 0.15 mmol) in THF (8 mL), was ²⁰ added aqueous solution of LiOH (37 mg, 0.9 mL, 0.89 mmol) at room temperature. The reaction mixture was allowed to stir at 70 °C for 12 h. After completion of the reaction (monitored by TLC), it was cooled to 0 °C. The reaction mixture was acidified with 1 M HCl until pH = 5.0 and diluted with ethyl acetate (15 ²⁵ mL). The aqueous layer extracted with ethyl acetate (3 × 15 mL). The combined organic layer were washed with brine (30 mL), dried over anhydrous Na₂SO₄ and evaporated to dryness under reduced pressure. The crude mass was dried through azeotropic mixture with dry benzene to afford **19** (46 mg, 77%) as a ³⁰ colorless liquid.

4 Å molecular sieves (114 mg) and toluene (50 mL) were placed in a two-necked 250 mL round bottomed flask, followed by the addition of DMAP (70 mg, 0.57 mmol) and MNBA (59 mg, 0.17 mmol) at 0 °C under nitrogen atmosphere. The crude seco-acid ³⁵ **19** (azeotroped with benzene two times) (46 mg, 0.114 mmol) was dissolved in toluene (20 mL) and added to the above mixture for 10 h with the help of syringe pump at room temperature. After completion of the reaction (monitored by TLC), MS 4 Å was removed by filtration and the filtrate was evaporated under ⁴⁰ reduced pressure. The resulting residue was purified by flash chromatography (EtOAc/hexane = 1:9) to provide macrolactone **2** (29 mg, 66%) as a colorless liquid. $[\alpha]_D^{20}$ –3.28 (*c* 0.5, CHCl₃); IR (neat): 2917, 1636, 1430, 1373, 1337, 1163, 1115, 1061, 898 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): 6.82 (dd, J = 7.2, 15.7 Hz, 45 1H), 6.03 (dd, J = 1.1, 15.7 Hz, 1H), 5.02 (m, 1H), 4.66 (dd, J = 6.9, 11.1 Hz, 2H), 4.61 (m, 1H), 4.21 (dd, J = 6.3, 13.6 Hz, 1H), 3.56 (m, 1H), 3.38 (s, 3H), 1.63-1.48 (m, 7H), 1.47-1.35 (m, 7H), 1.33-1.14 (m, 11H); ¹³C NMR (125 MHz, CDCl₃): δ 164.7, 142.7, 124.1, 108.6, 95.9, 79.1, 78.4, 77.3, 71.0, 55.8, 29.7, 29.6, 50 29.5, 28.0, 27.8, 26.9, 26.6, 25.4, 23.2, 22.5, 17.7 ppm; HRMS (ESI) calcd for C₂₁H₃₆O₆Na [M + Na]⁺ 407.2404; Found: 407.2410.

(5S,6R,15R,16S,E)-5,6-Dihydroxy-15-(methoxymethoxy)-16-

- methyloxacyclohexadec-3-en-2-one (20): To a stirred solution
 ⁵⁵ of 2 (13 mg, 0.034 mmol) in CH₃CN (8 mL), was added CuCl₂·2H₂O (9 mg, 0.050 mmol) at 0 °C. The reaction mixture was allowed to stir for 2 h at the same temperature. After complete conversion (monitored by TLC), the reaction was quenched by a saturated NaHCO₃ solution (5 mL). The aqueous ⁶⁰ layer extracted with ethyl acetate (3 × 10 mL), the combined organic layer were washed with brine (10 mL) and dried over anhydrous Na₂SO₄. The combined organic solvent was removed under reduced pressure. The residue was purified by column chromatography with silica gel (EtOAc/hexane = 2:3) to give 20
- ⁶⁵ (10 mg, 90%) as a clear liquid. [α]_D²⁰ -4.08 (*c* 0.3, CHCl₃); IR (neat): 3414, 2923, 2855, 1716, 1628, 1457, 1393, 1096, 1028, 767 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): 6.93 (dd, *J* = 4.8, 15.8 Hz, 1H), 6.11 (dd, *J* = 1.7, 15.8 Hz, 1H), 5.00 (m, 1H), 4.66 (d, *J* = 2.5 Hz, 2H), 4.50 (m, 1H), 3.77 (m, 1H), 3.55 (m, 1H), 3.38 (s, ⁷⁰ 3H), 2.56 (br s, 1H), 2.13 (br s, 1H), 1.68-1.52 (m, 3H), 1.50-1.16 (m, 16H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 165.3, 145.6, 122.3, 95.9, 79.4, 73.8, 73.5, 71.3, 55.8, 29.9, 29.6, 28.3, 27.3, 26.5, 26.1, 23.1, 22.6, 17.7 ppm; HRMS (ESI) calcd for C₁₈H₃₂O₆Na [M + Na]⁺ 367.2091; Found: 367.2097.

75 (5S,6R,15R,16S,E)-5,6,15-Trihydroxy-16-methyloxacyclohex-

adec-3-en-2-one (1): Compound **20** (6.5 mg, 0.019 mmol) was dissolved in THF (2 mL) and aqueous 4 N HCl (9 μ L, 0.038 mmol) was added at 0 °C. The reaction mixture was stirred at room temperature for 6 h and then quenched with saturated ⁸⁰ aqueous NaHCO₃ solution. The aqueous layer was extracted with ethyl acetate (3 × 5 mL) and the combined organic layer was washed with brine (10 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. Purification of the crude residue by silica gel column chromatography (EtOAc/hexane =

1:1) afforded **1** (4.1 mg, 72%) as a amorphous solid. $[\alpha]_D^{20}$ –9.42 (*c* 0.1, CHCl₃); IR (neat): 3447, 2923, 2853, 1716, 1461, 1376, 1251, 1170, 1099, 771 cm⁻¹; ¹H NMR (at 40 °C as the compound was not completely soluble in CDCl₃) (500 MHz, CDCl₃): 6.92 5 (dd, *J* = 5.2, 15.7 Hz, 1H), 6.11 (dd, *J* = 1.7, 15.9 Hz, 1H), 4.87 (m, 1H), 4.50 (m, 1H), 3.74 (m, 1H), 3.54 (m, 1H), 2.38 (br s, 1H), 2.00 (br s, 1H), 1.66-1.52 (m, 2H), 1.48 (m, 1H), 1.40 (m, 1H), 1.36 (d, *J* = 6.3 Hz, 3H), 1.38-1.14 (m, 12H) ppm; ¹³C NMR (at 40 °C as the compound was not completely soluble in CDCl₃) 10 (125 MHz, CDCl₃): δ 165.6, 145.8, 122.5, 74.5, 74.02, 73.97, 73.7, 32.1, 30.0, 27.9, 27.6, 26.3, 23.4, 23.0, 17.6 ppm; HRMS (ESI) calcd for C₁₆H₂₈O₅Na [M + Na]⁺ 323.1829; Found: 323.1847.

Acknowledgements

¹⁵ The authors thank Council of Scientific & Industrial Research (CSIR), New Delhi, India for financial support as part of XII Five Year plan programme under title ORIGIN (CSC-0108). B.J. thanks the CSIR, New Delhi, India, for financial assistance in the form of fellowships.

20 References

- J. Bao, X. Y. Xu, X. Y. Zhang and S. H. Qi, *Nat. Prod. Commun.* 2013, 8, 1127-1128.
- a) H. Yada, H. Sato, H. Toshima, M. Deura and A.Ichihara, *Biosci. Biotechnol. Biochem.* 2001, 65, 484-486; b) J. J. Fang, G. Ye, W.
 L. Chen and W. M. Zhao, *Phytochemistry* 2003, 69, 1279-1286; c) G.
 N. Belofsky, P. R. Jensen, M. K. Renner and W. Fenical, *Tetrahedron* 1998, 54, 1715-1724; d) Q. X. Wu, M. S. Crews, M. Draskovic, J. Sohn, T. A. Johnson, K. Tenny, F. A. Valeriote, X. J. Yao, L. F. Bjeldanes and P. Crews, *Org. Lett.* 2010, 12, 4458-4461.
- ³⁰ 3 a) S. W. Yang, T. M. Chan, J. Terracciano, D. Loebenberg, M. Patel and M. Chu, *J. Antibiot.* 2005, **58**, 535-538; b) K. Kito, R. Ookura, S. Yoshida, M. Namikoshi, T. Ooi and T. Kusumi, *Org. Lett.* 2008, **10**, 225-228.
- a) C. M. M. Franco, J. N. Gandhi, S. Chatterjee and B. N. Ganguli, *J. Antibiot.* 1987, 40, 1361-1367; b) J. S. Park, H. O. Yang and H.
 C. Kwon, *J. Antibiot.* 2009, 62, 171-175; c) K. Ditrich, T. Bube, R.
 Sturmer and R. W. Hoffmann, *Angew. Chem. Int. Ed.* 1986, 25, 1028-1030; d) R. N. Asolkar, R. P. Maskey, E. Helmke and H.
 Laatsch, *J. Antibiot.* 2002, 55, 893-898.

- ⁴⁰ 5 M. Ueda, M. Yamaura, Y. Ikeda, Y. Suzuki, K. Yoshizato, I. Hayakawa and H. Kigoshi, J. Org. Chem. 2009, 74, 3370–3377.
 - 6 X. M. Yu, H. Han and B. S. J. Blagg, J. Org. Chem. 2005, 70, 5599-5605.
- 7 a) I. Shiina, M. Kubota and R. Ibuka, *Tetrahedron Lett.* 2002, 43,
 ⁵ 7535-7539; b) I. Shiina, M. Kubota, H. Oshiumi and M. Hashizume,
 J. Org. Chem. 2004, 69, 1822–1830; c) A. Parenty, X. Moreau and
 J. M. Champagne, Chem. Rev. 2006, 106, 911–939.
- 8 L. Nagarapu, S. Karnakanti and R. Bannu, *Tetrahedron* 2012, 68, 5829-5832.
- 9 J. B. Epp and T. S. Widlanski, J. Org. Chem. 1999, 64, 293-295.
- 10 S. P. Chavan and K. R. Harele, Tetrahedron Lett., 2012, 53, 4683.
- A. J. Mancuso, S.-L. Huang and D. Swern, *J. Org. Chem.* 1978,
 43, 2480.
- 12 V. S. Martin, S. S. Woodward, T. Katsuki, Y. Yamada, M. Ikeda and K. B. Sharpless, *J. Am. Chem. Soc.* 1981, **103**, 6237.
- 60 13 K. Horita, T. Yoshioka, T. Tanaka, Y. Oikawa and O. Yonemitsu, *Tetrahedron* 1986, 42, 3021.
 - a) D. B. Dess and J. C. Martin, J. Org. Chem. 1983, 48, 4155; b) D.
 B. Dess and J. C. Martin, J. Am. Chem. Soc. 1991, 113, 7277.
- a) A. Williams and I. T. Ibrahim, *Chem. Rev.* 1981, **81**, 589–636; b)
 M. Mikolajczyk and P. Kielbasin' ski, *Tetrahedron* 1981, **37**, 233–284; c) B. Neises and W. Steglich, *Angew. Chem. Int. Ed. Engl.* 1978, **17**, 522–524.
- a) S. Nozaki and I. Muramatsu, *Bull. Chem. Soc. Jpn.* 1982, 55, 2165-2168; b) J. C.Sheehan, J. Preston and P. A. Cruickshank, *J. Am. Chem. Soc.* 1965, 87, 2492-2493.
- 17 J. Inanaga, K. Hirata, H. Saeki, T. Katsuki and M. Yamaguchi, Bull. Chem. Soc. Jpn. 1979, 52, 1989.
- a) T. E. Wilhelm, T. R. Belderrain, S. N. Brown, R. H. Grubbs, *Organometallics* 1997, 16, 386; b) A. K. Chatterjee, T.-L. Choi, D.
 P. Sanders and R. H. Grubbs, *J. Am. Chem. Soc.* 2003, 125, 11360.
 - a) B. K. Jena and D. K. Mohapatra, *Tetrahedron Lett.* 2013, 54, 3415-3418; b) B. K. Jena and D. K. Mohapatra, *Tetrahedron* 2015, 71, 5678-5692.

20 P. Saravanan, M. Chandrashekar, R. Vijaya and V. K. Singh, *Tetrahedron Lett.* 1998, **39**, 3091.