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Catalytic Asymmetric Synthesis of Nitrogen-Containing gem-Bisphosphonates 
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Abstract: A catalytic asymmetric synthesis of nitrogen-containing
gem-bisphoshonates is described. A Lewis acid–Brønsted base bi-
functional homodinuclear Ni2–Schiff base complex promoted cata-
lytic enantioselective conjugate addition of nitroacetates to
ethylidenebisphosphonates, giving products in up to 93% ee and
94% yield. Transformation of the product into a chiral a-amino
ester with a gem-bisphosphonate moiety is also described.
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gem-Bisphosphonates (BP) have high affinity for hy-
droxyapatite bone mineral surfaces and constitute an im-
portant class of biologically active compounds.1 Some BP
are used clinically for the prevention and treatment of sev-
eral bone disorders, such as Paget’s disease, osteoporosis,
bone metastasis, myeloma, and rheumatoid arthritis.2 The
use of BP as carriers for bone-specific therapeutic agents
has also been intensively studied.1 In addition, BP are ef-
fective growth inhibitors of several protozoan parasites
that cause African sleeping sickness, malaria, and others.3

Because of these important pharmacologic activities, syn-
thetic methods for various BP have been intensively in-
vestigated over the last two decades. Catalytic asymmetric
approaches for the synthesis of optically active BP are,
however, quite limited.4 Highly enantioselective organo-
catalytic 1,4-additions5 of aldehydes,4a b-keto esters,4b

and ketones4c to ethylidenebisphosphonates have been re-
ported, but there are no reports of a catalytic asymmetric
synthesis of nitrogen-containing BP. Because nitrogen-
containing BP are often biologically much more active
than BP without an amino functional group,6 the develop-
ment of a new method for chiral nitrogen-containing BP
is in high demand. Herein, we report catalytic asymmetric
1,4-addition of nitroacetates to ethylidenebisphospho-
nates. A Lewis acid–Brønsted base bifunctional homodi-
nuclear Ni2–Schiff base 1 complex (Figure 1) promoted
the reaction, giving products in up to 93% ee and 94%
yield.

Initially, we screened catalysts for the reaction of ethyl-
idenebisphosphonate 2a with nitroacetate 3a. Among var-
ious Lewis acid/Brønsted base cooperative catalysts,7–9

dinuclear Schiff base complexes10,11 showed promising
results for the present reaction. The optimization studies

are summarized in Table 1 and Table 2. With a homodi-
nuclear Ni2–Schiff base 1 complex,10c,e which was origi-
nally developed for a Mannich-type reaction of
nitroacetates, the reaction of 2a with 3a proceeded at 0 °C
in THF, and product 4aa was obtained in quantitative con-
version and 38% ee (Table 1, entry 1). With other homo-
dinuclear complexes, such as a Co2-1 complex,10f the
reactivity was good, but the enantioselectivity was worse
than that in entry 1 (entries 2–4: 21–0% ee). The hetero-
dinuclear transition metal/rare earth metal Schiff base
complexes are effective in other reactions.10a,b,d Therefore,
we also examined heterodinuclear Ni/rare earth metal
complexes (entries 5–7), but the results were much less
satisfactory. The reaction conditions were further opti-
mized using the Ni2-1 complex (Table 2). By changing the
ester moiety of the nitroacetate to a bulkier tert-butyl
group, enantioselectivity improved to 58% ee (entry 2,
3b). Solvent affected the enantioselectivity, and toluene in
entry 5 was the best, giving 4ab in 75% ee. The addition
of 5 Å MS further improved the enantioselectivity to 83%
ee (entry 6). Catalyst loading was successfully reduced to
3 mol% in entry 7, while maintaining good conversion
and enantioselectivity.

Figure 1 Structures of dinucleaing Schiff base 1 and homodinuclear
Schiff base complexes

Because the Ni2–1 complex is bench-stable and storable,
the substrate scope of the reaction (Table 3) was investi-
gated using a catalyst stored for more than 3 months.12

Various a-substituted nitroacetates were applicable under
the optimized reaction conditions in toluene with the 5 Å
MS additive. In addition to methyl-substituted nitroace-
tate 3b (entry 1), ethyl, n-propyl, and benzyl-substituted
nitroacetates 3c–e gave products in good isolated yields
and 84–82% ee (entries 2–4). It is noteworthy that the
reaction proceeded nicely using functionalized nitro-
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acetate 3f with a phthalimide moiety. Product 4af was ob-
tained in 81% yield and 93% ee (entry 5). Benzyl and allyl
groups were also applicable as protecting groups of bis-
phosphonic acid (entries 6 and 7), although the reactivity
was somewhat decreased, possibly due to steric hin-
drance. As a donor, not only nitroacetates, but also b-keto
ester 5 was applicable, giving product 6 in 80% ee
(Scheme 1).13 Although the precise reaction mechanism is

not yet clear, we speculate that a Lewis acid/Brønsted
base cooperative mechanism might be involved, as in oth-
er reactions promoted by dinuclear Schiff base complex-
es.10 A Ni-aryloxide moiety would function as a Brønsted
base to deprotonate the a-proton of nitroacetate 3 or b-
keto ester 5 to generate a Ni-enolate. The other Ni Lewis
acidic metal center would interact with ethylidenebispho-
sphonate 2. Mechanistic studies are required to determine
the origin of the stereoselectivity.

Scheme 1 Catalytic asymmetric 1,4-addition of b-keto ester 5 to
vinylidenebisphosphonate 2a

To demonstrate the utility of the present reaction, trans-
formations of the Michael adduct 4ab were investigated
(Scheme 2). Conversion of the bisphosphonate moiety
into a biologically active bisphosphonic acid was success-
fully performed with TMSBr at 50 °C. The tert-butyl ester
moiety remained unchanged when the reaction was per-
formed in the presence of N,O-bis(trimethylsilyl)acet-
amide,4b and bisphosphonic acid 7ab was obtained in
quantitative yield. The nitro group in 4ab was reduced us-
ing NiCl2 and NaBH4 to afford bisphosphonate 8ab with
an a-amino ester group in 92% yield. Because BP with
both a-hydroxy and g-amino moieties have higher biolog-
ical activities,6,14 we investigated the introduction of a-
hydroxy group to 4ab. By treatment of 4ab with KOt-Bu
and dimethyldioxirane at –78 °C for 10 minutes, desired
9ab was obtained in 48% isolated yield. The isolated yield

Table 1 Catalyst Screening for the Reaction of Ethylidenebisphos-
phonate 2a with Nitroacetate 3a

Entry M1 M2 Time (h) Conv. (%)a ee (%)

1 Ni Ni 41 >95 38

2 CoIIIOAc CoIIIOAc 41 >95 21

3 Cu Cu 83 >95 0

4 Pd Pd 83 >95 0

5 Ni La(Oi-Pr) 41 >95 3

6 Ni Sm(Oi-Pr) 41 >95 5

7 Ni Gd(Oi-Pr) 41 >95 7

a Conversion yield determined by 1H NMR analysis of crude reaction 
mixture.
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Table 2 Optimization of Reaction Conditions

Entry Nitro-
acetate

Solvent Additive Catalyst 
(x mol%)

Time 
(h)

Conv. 
(%)a

ee 
(%)

1 3a THF none 10 41 >95 38

2 3b THF none 10 45 >95 58

3 3b EtOH none 10 45 >95 3

4 3b CH2Cl2 none 10 45 >95 20

5 3b toluene none 10 45 >95 75

6 3b toluene 5 Å MS 10 45 >95 83

7 3b toluene 5 Å MS 3 48 95 84

a Conversion yield determined by 1H NMR analysis of crude reaction 
mixture.
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Scheme 2 Transformation of product 4ab. Reagents and conditi-
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–78 °C, 10 min, 48% (9ab), 26% (10ab).
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of 9ab was moderate due to the formation of byproducts,
such as rearranged adduct 10ab.14b,c

In summary, we developed catalytic asymmetric access to
optically active nitrogen-containing bisphosphonates. A
homodinuclear Ni2–Schiff base 1 complex promoted cat-
alytic asymmetric 1,4-additions of a-substituted nitroace-
tates 3 to ethylidenebisphosphonates 2, giving products in
up to 94% yield and 93% ee.15
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