First Synthesis of 5-Cyanosalicylates by Formal [3+3] Cyclocondensations of 1,3-Bis(silyloxy)-1,3-butadienes

Abdolmajid Riahi,^{a,b} Olumide Fatunsin,^a Mohanad Shkoor,^a Rüdiger Dede,^a Helmut Reinke,^a Christine Fischer,^{a,b} Peter Langer^{*a,b}

^b Leibniz-Institut für Katalyse, Universität Rostock e.V., Albert Einstein Str. 29a, 18059 Rostock, Germany Fax +49(381)4986412; E-mail: peter.langer@uni-rostock.de

Received 28 November 2008; revised 19 January 2009

Abstract: A variety of functionalized benzonitriles were regioselectively prepared by formal [3+3] cyclocondensation of 1,3-bis(silyloxy)-1,3-butadienes with 3-ethoxy- and 3-silyloxy-2-cyano-2en-1-ones.

Key words: arenes, benzonitriles, cyclizations, regioselectivity, silyl enol ethers

Functionalized benzonitriles represent important building blocks for fine chemical synthesis. In addition, they are important substructures of various dyes, pharmaceuticals, agrochemicals, herbicides, and pesticides.¹ The present paper is focussed on the synthesis of functionalized 5-cyanosalicylates, which can be regarded as functionalized 4cyanophenols. This substructure is present in a great variety of pharmacologically active compounds; in fact, a Beilstein database search reveals more than 900 4-cyanophenols which show a broad spectrum of pharmacological activities. 5-Cyanosalicylates and 2-acyl-4cyanophenols are the specific derivatives studied in the present report. Their pharmacological properties include, for example, antiallergic activity,² inhibition of HIV-1,³ anti-dopaminergic activity,⁴ vasorelaxing activity,⁵ inhibition of LTD4-induced contraction of lung membranes,⁶ leukotriene D4 inhibitory activity,⁷ antibacterial activity,⁸ binding to CHO cell membranes,⁹ antagonistic activity against βTC3 cells,¹⁰ inhibition of recombinant human aldehyde reductase,¹¹ or inhibition of catechol O-methyltransferase.12

Simple benzonitriles are prepared on industrial scales by ammoxidation of toluenes. In addition, 'classical' reactions of copper(I) cyanide with aryl halides or aryl diazonium salts using, for example, the Rosenmund-von-Braun or the Sandmeyer reaction, are often used. In recent years, various catalytic variants have been developed.^{13,14} Substituted 5-cyanosalicylates represent highly functionalized arenes containing a nitrile, ester and hydroxy group. Due to their polyfunctional nature, they represent versatile synthetic building blocks. 5-Cyanosalicylates have been previously prepared by transformation of oximes into nitriles,¹⁵ by cyanation of aryl halides,¹⁶ by palladium(0)- catalyzed reaction of aryl halides with zinc or potassium cyanide,¹⁷ and by Grignard reaction of 4-hydroxy-3,5-diiodobenzonitrile with carbon dioxide.¹⁸

Despite their great synthetic utility, catalytic cyanations can suffer from several drawbacks, such as low turnover numbers. In addition, reactions of *ortho*-substituted aryl halides are often problematic or not possible at all or require the use of toxic thallium reagents.¹⁹ It is important to note that the synthesis of the required starting materials – functionalized or highly substituted aryl halides or triflates – can be a difficult and tedious task due to the low *ortho/para* regioselectivity of electrophilic substitutions, harsh reaction conditions, and several other drawbacks.

An interesting alternative approach to the synthesis of benzonitriles is based on the application of a 'buildingblock strategy'. Examples include the base-mediated cyclocondensation of ethoxymethylene-malononitrile with β -keto esters,²⁰ the cyclization of diethyl acetone-1,3-dicarboxylate with 3-oxopentanedioic acid diethyl ester,²¹ and the reaction of malodinitrile with methyl 2-acetyl-3methoxyacrylate.²² Another building-block approach to the synthesis of benzonitriles relies on [4+2] cycloaddition reactions of cyano-substituted dienes or dienophiles.²³ This includes, for example, the [4+2]cycloaddition of 3-cyano-2,4-bis(silyloxy)penta-1,3-diene with methyl propynoate.24 Recently, we have reported²⁵ the synthesis of functionalized 5-cyanosalicylates by formal [3+3] cyclocondensations^{26,27} of 1,3bis(silyloxy)-1,3-butadienes²⁸ with cyano-substituted 3ethoxy- and 3-silyloxy-2-en-1-ones. These reactions provide a convenient and regioselective approach to a variety of 5-cyanosalicylates which are not readily available by other methods. Herein, we report a comprehensive study on the preparative scope of this approach.

2-Cyano-3-ethoxy-2-en-1-ones **2a**–e were prepared, following a known procedure,²⁹ by reaction of ketonitriles **1a–e** with ethyl orthoformate and acetic anhydride (Table 1). 1,3-Bis(silyloxy)-1,3-butadienes **3a–k** were prepared from the corresponding β -keto esters in two steps.¹⁶ The titanium tetrachloride mediated cyclization of **2a** with **3a** afforded the 5-cyanosalicylate **4a** (Scheme 1). The cyclization proceeded with excellent regioselectivity. The formation of product **4a** might be explained by titanium tetrachloride mediated cyclization of the terminal carbon atom of **3a** to **2a**, to give intermediate **A**,

^a Institut für Chemie, Universität Rostock, Albert Einstein Str. 3a, 18059 Rostock, Germany

SYNTHESIS 2009, No. 10, pp 1623–1634 Advanced online publication: 25.03.2009 DOI: 10.1055/s-0028-1088043; Art ID: T20808SS © Georg Thieme Verlag Stuttgart · New York

cyclization via the central carbon of 3a to give intermediate **B** (S_N ' reaction), and subsequent aromatization. The formal [3+3] cyclization of 2-cyano-3-ethoxy-2-en-1ones 2a-e with 1,3-bis(silyloxy)-1,3-butadienes 3a-k afforded the 5-cyanosalicylates 4a-ac in 33-64% yields (Table 2). The substituent R^1 , located next to the carbonyl group of 2a-e, has some influence on the yields. Better yields were generally obtained for the products 4h-ac derived from 2b-e, containing an aryl group, compared to products 4a–g, derived from 2a, which contains a methyl group. The best yields were observed for the products derived from chloro- or bromo-substituted enones 2c and 2d. This might be explained by the fact that the electronwithdrawing halogen atoms increase the reactivity of the enone. The substitution pattern of the diene had no significant influence on the yield.

Table 1 Synthesis of 2a-e

^a Reaction conditions: **1a–e** (1.0 equiv), HC(OEt)₃ (3.0 equiv), Ac₂O, reflux, 2 h.

^a Yield of isolated products.

Scheme 1 Possible mechanism for formation of 4a

^a Yield of isolated products.

Table 2 Synthesis of 4a–ac

PAPER

Me ₃ SiO OSiMe ₃ R ² OR ³ 3a-i			TiCl ₄ CH ₂ Cl ₂	OH O R ²	OR ³			
+	EtO O R ¹		−78 to 20 °C 14 h	CN R ¹				
	CN 2a–e		4a–ac					
2	3	4	R^1	R ²	R ³	Yield (%) ^a		
a	а	a	Me	Н	Me	34		
a	b	b	Me	Н	Et	33		
a	c	c	Me	Me	Me	35		
a	d	d	Me	Et	Et	34		
a	e	e	Me	<i>n</i> -Bu	Me	35		
a	f	f	Me	<i>n</i> -Hex	Me	42		
a	g	g	Me	<i>n</i> -Hept	Me	34		
b	b	h	Ph	Н	Et	45		
b	c	i	Ph	Me	Me	43		
b	d	j	Ph	Et	Et	42		
b	e	k	Ph	<i>n</i> -Bu	Me	41		
b	g	l	Ph	n-Hept	Me	42		
b	h	m	Ph	<i>n</i> -Oct	Me	40		
b	k	n	Ph	$4-ClC_6H_4$	Me	44		
c	c	0	$4-ClC_6H_4$	Me	Me	61		
c	d	р	$4-ClC_6H_4$	Et	Et	62		
c	f	q	$4-ClC_6H_4$	<i>n</i> -Hex	Me	64		
c	h	r	$4-ClC_6H_4$	<i>n</i> -Oct	Me	59		
c	j	s	$4-ClC_6H_4$	<i>i</i> -Pent	Me	62		
d	c	t	$4-BrC_6H_4$	Me	Me	58		
d	d	u	$4-BrC_6H_4$	Et	Et	60		
d	f	v	$4-BrC_6H_4$	<i>n</i> -Hex	Me	55		
d	h	w	$4-BrC_6H_4$	<i>n</i> -Oct	Me	55		
d	i	x	$4-BrC_6H_4$	<i>n</i> -Non	Me	57		
e	b	у	4-(MeO)C ₆ H ₄	Н	Et	50		
e	c	z	4-(MeO)C ₆ H ₄	Me	Me	51		
e	d	aa	4-(MeO)C ₆ H ₄	Et	Et	49		
e	f	ab	4-(MeO)C ₆ H ₄	<i>n</i> -Hex	Me	52		
e	h	ac	4-(MeO)C ₆ H ₄	<i>n</i> -Oct	Me	50		

An optimization study was carried out for the synthesis of **4e** (Table 3). The best yields were obtained when the reaction was carried out in a highly concentrated solution, however, the stoichiometry (**2a**–**3e**–TiCl₄ = 1:1.1:1.1), the temperature (slow warming from –78 to 20 °C), and the reaction time also played important roles. The use of TMSOTf, BF₃·OEt₂, and SnCl₄ resulted in the formation of complex mixtures. The moderate yields might be explained by TiCl₄-mediated oxidative dimerization of the diene; this type of reaction has been previously reported.³⁰ In addition, some hydrolysis of the enone was observed.

Table 3Optimization of the Synthesis of 4e

Entry	2a:3e:TiCl ₄	Concn of 2a (mol/L) ^a	Temp (°C)	Time (h)	4e (%) ^b
1	1:1.1:1.1	0.5	-78→20	14	35
2	1:1:2	0.5	-78→20	14	20
3	1:2:1	0.5	-78→20	14	15
4	1:2:2	0.5	-78→20	14	29
5	1:1.1:1.1	0.2	-78→20	14	10
6	1:1.1:1.1	0.1	0→20	14	trace
7	1:1.1:1.1	0.5	0→20	14	0
8	1:1.1:1.1	0.5	-78→20	5	15

^a All experiments were carried out on a 1.0 mmol scale.

^b Isolated yields.

The configuration of all products was established by spectroscopic methods (2D NMR). The structures of benzonitriles **4b–d**,**i**,**o**,**t** were independently confirmed by X-ray crystal structure analyses – one of which is exemplarily depicted in Figure 1.³¹

Figure 1 Ortep plot of 4c (hydrogen at O3 found in the difference map and refined freely)

3-Cyano-4-(trimethylsilyloxy)pent-3-en-2-one (5) was prepared by silylation of known³² 3-cyano-acetylacetone. The TiCl₄-mediated [3+3] cyclocondensation of 5 with

3a,b,d,l–n afforded the 5-cyanosalicylates **6a–f** in moderate yields (except for **6d**) (Table 4). The best yields were again obtained when the reactions were carried out in a highly concentrated solution. The low yield of **6d** can be explained by $TiCl_4$ -mediated cleavage of the *tert*-butyl ester.

Table 4 Synthesis of 6a-f

^a Yields of isolated products.

In conclusion, we have reported a convenient and regioselective synthesis of functionalized benzonitriles by what are, to the best of our knowledge, the first formal [3+3] cyclizations of 1,3-bis(silyloxy)-1,3-butadienes with cyano-substituted enones. The products are not readily available by other methods. The reactions are easy to perform and the starting materials are readily available. We are currently studying the preparative scope of the methodology and applications to the synthesis of pharmacologically active products.

All solvents were dried by standard methods and all reactions were carried out under an Argon atmosphere. For ¹H and ¹³C NMR spectra, the deuterated solvents indicated were used. Mass spectrometric data (MS) were obtained by electron ionization (EI, 70 eV), chemical ionization (CI, *i*-Bu) or electrospray ionization (ESI). For preparative scale chromatography, silica gel 60 (0.063–0.200 mm, 70–230 mesh) was used.

2-Cyano-3-ethoxy-2-en-1-ones 2a-e; General Procedure

To a flask containing Ac_2O (2.5 mL/10.0 mmol of 1), was added ketonitrile **1a–e** (1.0 equiv) and $CH(OEt)_3$ (3.0 equiv). The mixture was stirred under reflux for 2 h, then Ac_2O was removed in vacuo and the solid residue was purified by crystallization from EtOH to give **2a–e**.

2-(Ethoxymethylene)-3-oxobutane-nitrile (2a)

Starting with **1a** (2.00 g, 24.4 mmol) and $CH(OEt)_3$ (12.17 mL, 73.1 mmol), **2a** was isolated after recrystallization from EtOH.

Yield: 3.387 g (100%); brown crystals; mp 70-71 °C.

IR (KBr): 2958 (w), 2922 (m), 2852 (w), 2253 (w), 2226 (w), 1693 (m), 1671 (m), 1612 (s), 1612 (s), 1590 (m), 1469 (w), 1445 (w), 1394 (w), 1383 (w), 1309 (m), 1294 (m), 1232 (s), 1153 (m), 1094 (m), 1075 (m), 999 (m), 957 (m), 908 (m), 877 (m), 784 (w), 728 (m), 648 (w), 638 (m), 624 (m), 608 (m), 537 (w) cm⁻¹.

¹H NMR (250 MHz, CDCl₃): δ = 1.44 (t, ³*J* = 7.2 Hz, 3 H, OCH₂CH₃), 2.38 (s, 3 H, CH₃), 4.36 (q, ³*J* = 7.2 Hz, 2 H, OCH₂CH₃), 8.0 (s, 1 H, CH).

¹³C NMR (75 MHz, CDCl₃): δ = 15.3, 28.2 (CH₃), 74.1 (OCH₂), 94.4 (*C*CN), 114.4 (CN), 171.8 (CH), 191.8 (CO).

GC–MS (EI, 70 eV): *m/z* (%) = 139 (50) [M⁺], 124 (8), 111 (21), 96 (100), 83 (81), 68 (93), 52 (10).

HRMS (EI): m/z [M⁺] calcd for C₇H₉O₂N: 139.06278; found: 139.063030.

2-Benzoyl-3-ethoxyacrylonitrile (2b)

Starting with **1b** (2.00 g, 13.8 mmol) and $CH(OEt)_3$ (6.9 mL, 41.3 mmol), **2b** was isolated after recrystallization from EtOH.

Yield: 2.43 g (88%); brown solid; mp 70-71 °C.

IR (KBr): 3060 (w), 2985 (w), 2937 (w), 2219 (w), 1645 (m), 1598 (s), 1577 (s), 1492 (w), 1472 (w), 1446 (m), 1393 (m), 1376 (m), 1352 (m), 1301 (m), 1288 (m), 1231 (s), 1180 (m), 1153 (m), 1104 (m), 1004 (m), 922 (m), 909 (m), 870 (w), 796 (w), 716 (m), 698 (m), 670 (m), 611 (w), 555 (w) cm⁻¹.

¹H NMR (250 MHz, CDCl₃): δ = 1.41 (t, ³*J* = 7.2 Hz, 3 H, OCH₂CH₃), 4.34 (q, ³*J* = 7.2 Hz, 2 H, OCH₂CH₃), 7.40–7.52 (m, 3 H, CH_{Ar}), 7.77–7.82 (m, 2 H, CH_{Ar}), 8.03 (s, 1 H, CH).

¹³C NMR (75 MHz, CDCl₃): δ = 15.4 (CH₃), 74.3 (OCH₂), 94.1 (CCN), 114.7 (CN), 128.5 (2 × CH_{Ar}), 128.7 (2 × CH_{Ar}), 133.1 (CH_{Ar}), 136.9 (C_{Ar}), 174.4 (CH), 187.9 (CO).

GC–MS (EI, 70 eV): *m*/*z* (%) = 201 (13) [M⁺], 200 (14), 183 (2), 172 (19), 158 (2), 145 (3), 116 (3), 105 (100), 89 (5), 77 (43), 51 (13), 29 (7).

HRMS (EI): m/z [M⁺] calcd for C₁₂H₁₁O₂N: 201.07843; found: 201.078326.

2-(4-Chlorobenzoyl)-3-ethoxyacrylonitrile (2c)

Starting with 1c (2.00 g, 11.1 mmol) and CH(OEt)₃ (5.56 mL, 33.4 mmol), 2c was isolated after recrystallization from EtOH.

Yield: 2.57 g (98%); pink crystals; mp 95–97 °C.

IR (KBr): 3026 (w), 2982 (w), 2937 (w), 2227 (m), 1921 (w), 1642 (m), 1594 (m), 1487 (m), 1394 (m), 1373 (w), 1354 (m), 1308 (m), 1258 (s), 1180 (m), 1157 (m), 1106 (m), 1090 (m), 1005 (m), 965 (w), 955 (m), 914 (m), 867 (m), 836 (m), 785 (m), 753 (s), 730 (m), 694 (m), 628 (w), 585 (m), 563 (m) cm⁻¹.

¹H NMR (250 MHz, CDCl₃): $\delta = 1.42$ (t, ³*J* = 7.2 Hz, 3 H, OCH₂CH₃), 4.36 (q, ³*J* = 7.2 Hz, 2 H, OCH₂CH₃), 7.37–7.41 (m, 2 H, CH_{Ar}), 7.75–7.79 (m, 2 H, CH_{Ar}), 8.05 (s, 1 H, CH).

¹³C NMR (75 MHz, CDCl₃): δ = 14.4 (CH₃), 73.6 (OCH₂), 92.7 (CCN), 113.6 (CN), 128.0 (2 × CH_{Ar}), 129.2 (2 × CH_{Ar}), 134.1, 138.5 (C_{Ar}), 173.8 (CH), 185.4 (CO).

GC–MS (EI, 70 eV): m/z (%) = 235 (13) [³⁵Cl; M⁺], 234 (8) [³⁷Cl; M⁺], 206 (14), 172 (8), 139 (100), 123 (3), 111 (31), 75 (17), 50 (5), 29 (8).

HRMS (EI): m/z [M⁺] calcd for C₁₂H₁₀O₂NCl: 235.03946; found: 235.039090.

2-(4-Bromobenzoyl)-3-ethoxyacrylonitrile (2d)

Starting with **1d** (2.00 g, 8.9 mmol) and CH(OEt)₃ (4.46 mL, 26.8 mmol), **2d** was isolated after crystallization from EtOH.

Yield: 2.40 g (96%); pink crystals; mp 99-102 °C.

IR (KBr): 3073 (w), 3042 (w), 2920 (w), 2852 (w), 2221 (m), 1921 (w), 1621 (m), 1586 (m), 1537 (m), 1504 (m), 1483 (m), 1384 (m), 1317 (m), 1245 (m), 1184 (m), 1166 (m), 1116 (m), 1071 (m), 1021 (m), 1010 (m), 980 (m), 906 (m), 827 (s), 749 (s), 689 (m), 626 (m), 604 (m), 576 (m), 559 (m), 533 (m) cm⁻¹.

¹H NMR (250 MHz, CDCl₃): $\delta = 1.42$ (t, ³*J* = 7.1 Hz, 3 H, OCH₂CH₃), 4.36 (q, ³*J* = 7.4 Hz, 2 H, OCH₂CH₃), 7.53–7.58 (m, 2 H, CH_{Ar}), 7.67–7.72 (m, 2 H, CH_{Ar}), 8.05 (s, 1 H, CH).

¹³C NMR (75 MHz, CDCl₃): δ = 15.2 (CH₃), 74.4 (OCH₂), 93.5 (CCN), 114.4 (CN), 128.1 (C_{Ar}), 130.2 (2 × CH_{Ar}), 131.9 (2 × CH_{Ar}), 135.5 (C_{Ar}), 174.7 (CH), 186.5 (CO).

GC–MS (EI, 70 eV): m/z (%) = 281 (16) [⁸¹Br; M⁺], 279 (16) [⁷⁹Br; M⁺], 278 (11), 252 (15), 238 (4), 225 (6), 200 (10), 185 (97), 183 (100), 172 (12), 157 (29), 155 (29), 143 (8), 115 (5), 96 (4), 76 (21), 68 (6), 50 (12), 29 (12).

HRMS (EI): m/z [M⁺] calcd for C₁₂H₁₀O₂NBr: 278.98894; found: 278.988999.

3-Ethoxy-2-(4-methoxybenzoyl)acrylonitrile (2e)

Starting with 1e (2.00 g, 11.4 mmol) and CH(OEt)₃ (5.70 mL, 34.3 mmol), 2e was isolated after recrystallization from EtOH.

Yield: 2.50 g (95%); reddish-brown solid; mp 45–50 °C.

IR (KBr): 3066 (w), 2929 (w), 2844 (w), 2215 (m), 1911 (w), 1738 (w), 1682 (w), 1631 (m), 1597 (m), 1574 (m), 1556 (m), 1504 (m), 1462 (m), 1450 (m), 1423 (m), 1377 (m), 1308 (m), 1255 (s), 1167 (s), 1125 (m), 1022 (s), 974 (m), 960 (m), 838 (s), 812 (m), 800 (m), 751 (m), 700 (m), 632 (m), 605 (m), 541 (m), 531 (m) cm⁻¹.

¹H NMR (250 MHz, CDCl₃): δ = 1.41 (t, ³*J* = 7.1 Hz, 3 H, OCH₂CH₃), 3.80 (s, 3 H, OCH₃), 4.33 (q, ³*J* = 7.0 Hz, 2 H, OCH₂CH₃), 6.87–6.90 (m, 2 H, CH_{Ar}), 7.86–7.89 (m, 2 H, CH_{Ar}), 8.02 (s, 1 H, CH).

¹³C NMR (75 MHz, CDCl₃): δ = 15.3 (CH₃), 55.6 (OCH₃), 74.0 (OCH₂), 93.6 (*C*CN), 113.8 (2 × CH_{Ar}), 115.1 (CN), 131.3 (2 × CH_{Ar}), 161.2, 163.7 (C_{Ar}), 174.0 (CH), 185.8 (CO).

GC–MS (EI, 70 eV): *m*/*z* (%) = 231 (23) [M⁺], 216 (2), 202 (6), 188 (4), 174 (3), 160 (2), 136 (9), 135 (100), 107 (6), 92 (11), 77 (13), 64 (5), 50 (2).

HRMS (EI): m/z [M⁺] calcd for C₁₃H₁₃O₃N: 231.08899; found: 231.089338.

Cyanosalicylates 4a-ac; General Procedure

To a stirred solution of **2a–e** in CH₂Cl₂ (2.0 mL/1.0 mmol of **2**), was added **3a–k** (1.1 mmol) and, subsequently, TiCl₄ (1.1 mmol) at -78 °C under an argon atmosphere. The temperature of the reaction mixture was allowed to rise to 20 °C during 14 h with stirring. To the solution was added HCl (10%, 20 mL) and the organic and the aqueous layer were separated. The latter was extracted with CH₂Cl₂ (3 × 20 mL) and the combined organic layers were dried (Na₂SO₄), filtered and the filtrate was concentrated in vacuo. The residue was purified by column chromatography (silica gel; heptanes–EtOAc) to give **4a–ac**.

Methyl 3-Cyano-6-hydroxy-2-methylbenzoate (4a)

Starting with **2a** (0.209 g, 1.5 mmol) and **3a** (0.430 g, 1.7 mmol), **4a** was isolated after chromatography (silica gel; heptanes–EtOAc).

Yield: 0.097 g (34%); yellow solid; mp 84-85 °C.

IR (KBr): 2957 (w), 2927 (w), 2854 (w), 2252 (w), 2222 (w), 1737 (w), 1669 (m), 1590 (m), 1469 (m), 1442 (m), 1385 (w), 1352 (m), 1323 (m), 1303 (m), 1224 (m), 1172 (w), 1135 (w), 1057 (w), 1019 (w), 940 (w), 910 (m), 835 (w), 811 (w), 773 (w), 731 (s), 649 (w), 606 (w), 562 (w) cm⁻¹.

¹H NMR (250 MHz, CDCl₃): δ = 2.71 (s, 3 H, CH₃), 3.95 (s, 3 H, OCH₃), 6.85 (d, ³*J* = 8.9 Hz, 1 H, CH_{Ar}), 7.54 (d, ³*J* = 8.9 Hz, 1 H, CH_{Ar}), 11.69 (s, 1 H, OH).

¹³C NMR (75 MHz, CDCl₃): δ = 21.9 (CH₃), 52.9 (OCH₃), 105.9 (CCN), 113.4 (CCOOCH₃), 117.0 (CH_{Ar}), 118.4 (CN), 137.8 (CH_{Ar}), 146.5 (C_{Ar}), 165.7 (COH), 171.1 (CO).

GC–MS (EI, 70 eV): *m*/*z* (%) = 191 (76) [M⁺], 160 (68), 159 (100), 131 (55), 130 (48), 103 (21), 77 (21), 76 (15), 63 (4), 51 (11).

HRMS (EI): m/z [M⁺] calcd for C₁₀H₉O₃N: 191.05769; found: 191.057322.

Ethyl 3-Cyano-6-hydroxy-2-methylbenzoate (4b)

Starting with **2a** (0.209 g, 1.5 mmol) and **3b** (0.446 g, 1.7 mmol), **4b** was isolated after chromatography (silica gel; heptanes–EtOAc).

Yield: 0.101 g (33%); white solid; mp 86–87 °C.

IR (KBr): 3072 (w), 2991 (w), 2923 (w), 2851 (w), 2777 (w), 2692 (w), 2589 (w), 2224 (w), 1660 (s), 1588 (m), 1570 (w), 1476 (m), 1450 (w), 1398 (m), 1375 (s), 1348 (m), 1318(m), 1302 (m), 1231 (s), 1182 (w), 1146 (m), 1108 (w), 1057 (w), 1021 (m), 996 (w), 909 (w), 856 (m), 831 (m), 723 (w), 632 (w), 609 (w), 558 (w) cm⁻¹.

¹H NMR (250 MHz, CDCl₃): δ = 1.39 (t, ³*J* = 7.0 Hz, 3 H, OCH₂CH₃), 2.72 (s, 3 H, CH₃), 4.42 (q, ³*J* = 7.3 Hz, 2 H, OCH₂CH₃), 6.84 (d, ³*J* = 8.8 Hz, 1 H, CH), 7.53 (d, ³*J* = 8.9 Hz, 1 H, CH), 11.78 (s, 1 H, OH).

¹³C NMR (75 MHz, CDCl₃): δ = 13.1 (CH₃), 20.8 (OCH₂CH₃), 61.7 (OCH₂), 104.8 (*C*CN), 112.6 (*C*COOCH₂CH₃), 116.0 (CH), 117.4 (CN), 136.7 (CH), 145.5 (*C*CH₃), 164.8 (*C*OH), 169.62 (CO).

GC–MS (70 eV): *m/z* (%) = 205 (26) [M⁺], 159 (100), 130 (22), 103 (8), 77 (12), 51 (6).

HRMS (EI): m/z [M⁺] calcd for C₁₁H₁₁O₃N: 205.07334; found: 205.073572.

Methyl 3-Cyano-6-hydroxy-2,5-dimethylbenzoate (4c)

Starting with **2a** (0.208 g, 1.5 mmol) and **3c** (0.457 g, 1.7 mmol), **4c** was isolated after chromatography (silica gel; heptanes–EtOAc).

Yield: 0.107 g (35%); white solid; mp 134-136 °C.

IR (KBr): 2990 (w), 2956 (w), 2926 (w), 2851 (w), 2217 (m), 1667 (s), 1605 (m), 1592 (m), 1580 (m), 1444 (s), 1413 (m), 1377 (m), 1334 (s), 1264 (s), 1199 (s), 1166 (s), 1077 (m), 1019 (m), 979 (m), 910 (m), 889 (m), 803 (s), 770 (m), 688 (m), 659 (m).

¹H NMR (250 MHz, CDCl₃): δ = 2.15 (s, 3 H, CH₃), 2.66 (s, 3 H, CH₃), 3.93 (s, 3 H, OCH₃), 7.40 (s, 1 H, CH_{Ar}), 11.99 (s, 1 H, OH).

¹³C NMR (75 MHz, CDCl₃): δ = 15.6, 21.6 (CH₃), 52.6 (OCH₃), 104.9 (*C*CN), 112.7 (*C*COOCH₃), 118.7 (CN), 126.5 (C_{Ar}), 138.2 (CH_{Ar}), 143.7 (C_{Ar}), 164.5 (COH), 171.6 (CO).

GC–MS (EI, 70 eV): m/z (%) = 205 (37) [M⁺], 174 (25), 173 (100), 145 (90), 144 (20), 116 (19), 91 (11), 90 (14), 89 (19).

HRMS (EI): m/z [M⁺] calcd for C₁₁H₁₁O₃N: 205.07334; found: 205.073468.

Ethyl 3-Cyano-5-ethyl-6-hydroxy-2-methylbenzoate (4d)

Starting with **2a** (0.209 g, 1.5 mmol) and **3d** (0.498 g, 1.7 mmol), **4d** was isolated after chromatography (silica gel; heptanes–EtOAc).

Yield: 0.119 g (34%); white solid; mp 72-73 °C.

IR (KBr): 2975 (w), 2933 (w), 2221 (w), 1658 (m), 1610 (w), 1577 (w), 1559 (w), 1541 (w), 1507 (w), 1437 (m), 1398 (w), 1376 (m), 1352 (w), 1325 (m), 1293 (w), 1265 (w), 1244 (m), 1188 (s), 1086 (w), 1019 (w), 909 (m), 874 (w), 811 (w), 733 (s), 686 (w), 667 (w), 649 (w) cm⁻¹.

¹H NMR (250 MHz, CDCl₃): $\delta = 1.14$ (t, ³*J* = 8.1 Hz, 3 H, CH₃), 1.38 (t, ³*J* = 6.9 Hz, 3 H, OCH₂CH₃), 3.43 (q, ³*J* = 8.1 Hz, 2 H, CH₂), 2.68 (s, 3 H, CH₃), 4.41 (q, ³*J* = 6.3 Hz, 2 H, OCH₂CH₃), 7.40 (s, 1 H, CH_{Ar}), 12.10 (s, 1 H, OH).

¹³C NMR (75 MHz, CDCl₃): δ = 12.1, 13.2, 20.5 (CH₃), 21.6 (CH₂), 61.6 (OCH₂), 104.0 (*C*CN), 111.9 (*C*COOCH₂CH₃), 118.0 (CN), 130.9 (C_{Ar}), 135.4 (CH_{Ar}), 142.7 (C_{Ar}), 163.1 (COH), 170.3 (CO).

GC–MS (EI, 70 eV): *m*/*z* (%) = 233 (28) [M⁺], 187 (60), 172 (9), 159 (100), 144 (7), 130 (7), 116 (8), 103 (7), 89 (9), 77 (8), 51 (3), 29 (5).

HRMS (EI): m/z [M⁺] calcd for C₁₃H₁₅O₃N: 233.10464; found: 233.104263.

Methyl 3-Butyl-5-cyano-2-hydroxy-6-methylbenzoate (4e)

Starting with **2a** (0.209 g, 1.5 mmol) and **3e** (0.522 g, 1.7 mmol), **4e** was isolated after chromatography (silica gel; heptanes–EtOAc).

Yield: 0.130 g (35%); slightly yellowish oil.

IR (KBr): 2957 (m), 2931 (m), 2862 (w), 2222 (m), 1717 (w), 1666 (s), 1609 (w), 1577 (w), 1559 (w), 1541 (w), 1507 (w), 1456 (m), 1438 (m), 1384 (w), 1354 (m), 1338 (m), 1299 (m), 1262 (w), 1234 (w), 1203 (m), 1171 (m), 1105 (w), 1077 (w), 988 (w), 911 (w), 812 (m), 772 (w), 733 (m), 695 (w), 649 (w) cm⁻¹.

¹H NMR (250 MHz, CDCl₃): $\delta = 0.86$ [t, ³*J* = 7.3 Hz, 3 H, (CH₂)₃CH₃], 1.24–1.33 (m, 2 H, CH₂), 1.45–1.52 (m, 2 H, CH₂), 2.54 (t, ³*J* = 7.3 Hz, 2 H, CH₂), 2.65 (s, 3 H, CH₃), 3.93 (s, 3 H, OCH₃), 7.38 (s, 1 H, CH_{Ar}), 11.98 (s, 1 H, OH).

¹³C NMR (75 MHz, CDCl₃): δ = 13.1, 20.6 (CH₃), 21.6, 28.3, 30.2 (CH₂), 52.0 (OCH₃), 104.1 (CCN), 112.0 (CCOOCH₃), 118.0 (CN), 129.9 (C_{Ar}), 136.3 (CH_{Ar}), 143.0 (C_{Ar}), 163.2 (COH), 170.9 (CO).

GC–MS (EI, 70 eV): *m/z* (%) = 247 (32) [M⁺], 215 (29), 198 (16), 186 (19), 173 (100), 159 (3), 145 (36), 130 (5), 116 (11), 103 (6), 89 (19), 77 (6), 63 (4), 51 (3), 39 (5), 29 (3).

HRMS (EI): m/z [M⁺] calcd for C₁₄H₁₇O₃N: 247.12029; found: 247.119876.

Methyl 3-Cyano-5-hexyl-6-hydroxy-2-methylbenzoate (4f)

Starting with **2a** (0.208 g, 1.5 mmol) and **3f** (0.568 g, 1.7 mmol), **4f** was isolated after chromatography (silica gel; heptanes–EtOAc).

Yield: 0.173 g (42%); yellowish oil.

IR (KBr): 2955 (m), 2927 (m), 2856 (w), 2221 (w), 1665 (m), 1608 (w), 1579 (w), 1438 (m), 1334 (m), 1245 (w), 1201 (m), 1170 (m), 1077 (w), 989 (w), 908 (m), 812 (w), 731 (s), 649 (w) cm⁻¹.

¹H NMR (250 MHz, CDCl₃): $\delta = 0.67$ [t, ³*J* = 7.4 Hz, 3 H, (CH₂)₅CH₃], 1.06–1.13 (m, 6 H, 3×CH₂), 1.31–1.42 (m, 2 H, CH₂), 2.39 (t, ³*J* = 7.5 Hz, 2 H, CH₂), 2.52 (s, 3 H, CH₃), 3.79 (s, 3 H, OCH₃), 7.25 (s, 1 H, CH_{Ar}), 11.83 (s, 1 H, OH).

¹³C NMR (75 MHz, CDCl₃): δ = 13.9, 21.6 (CH₃), 22.6, 28.7, 29.0, 29.4, 31.6 (CH₂), 52.8 (OCH₃), 104.9 (CCN), 112.7 (CCOOCH₃), 118.7 (CN), 130.7 (C_{Ar}), 137.2 (CH_{Ar}), 143.5 (C_{Ar}), 164.0 (COH), 171.6 (CO).

GC–MS (EI, 70 eV): *m/z* (%) = 275 (37) [M⁺], 244 (12), 243 (29), 226 (13), 215 (15), 214 (33), 200 (13), 187 (13), 186 (22), 174 (20), 173 (100), 145 (36), 144 (15), 116 (11), 89 (19) cm⁻¹.

HRMS (EI): m/z [M⁺] calcd for C₁₆H₂₁NO₃: 275.15160; found: 275.151528.

Methyl 3-Cyano-5-heptyl-6-hydroxy-2-methylbenzoate (4g)

Starting with **2a** (0.209 g, 1.5 mmol) and **3g** (0.420 g, 1.7 mmol), **4g** was isolated after chromatography (silica gel; heptane–EtOAc).

Yield: 0.148 g (34%); yellow oil.

IR (KBr): 2955 (m), 2926 (m), 2855 (m), 2222 (w), 1665 (m), 1609 (w), 1579 (w), 1438 (m), 1384 (w), 1354 (m), 1335 (m), 1262 (w), 1238 (w), 1202 (m), 1171 (m), 1122 (w), 1077 (w), 988 (w), 908 (m), 812 (w), 772 (w), 732 (m), 696 (w), 649 (w) cm⁻¹.

¹H NMR (250 MHz, CDCl₃): $\delta = 0.81$ [t, ³*J* = 6.7 Hz, 3 H, (CH₂)₆CH₃], 1.21–1.25 (m, 8 H, 4×CH₂), 1.48–1.55 (m, 2 H, CH₂), 2.54 (t, ³*J* = 7.4 Hz, 2 H, CH₂), 2.67 (s, 3 H, CH₃), 3.94 (s, 3 H, OCH₃), 7.39 (s, 1 H, CH_{Ar}), 11.98 (s, 1 H, OH).

¹³C NMR (75 MHz, CDCl₃): δ = 14.1, 21.6 (CH₃), 22.7, 28.9, 29.1, 29.3, 29.5, 31.8 (CH₂), 52.9 (OCH₃), 104.9 (CCN), 112.8 (CCOOCH₃), 118.8 (CN), 130.7 (C_{Ar}), 137.1 (CH_{Ar}), 143.6 (C_{Ar}), 164.0 (COH), 171.7 (CO).

GC–MS (EI, 70 eV): *m*/*z* (%) = 289 (38) [M⁺], 257 (29), 240 (12), 214 (33), 200 (11), 186 (21), 173 (100), 159 (9), 145 (34), 130 (5), 116 (12), 103 (6), 89 (19), 77 (6), 55 (4), 41 (11).

HRMS (EI): m/z [M⁺] calcd for C₁₇H₂₃O₃N: 289.17507; found: 289.17512.

Ethyl 6-Cyano-3-hydroxybiphenyl-2-carboxylate (4h)

Starting with **2b** (0.302 g, 1.5 mmol) and **3b** (0.446 g, 1.7 mmol), **4h** was isolated after chromatography (silica gel; heptanes–EtOAc).

Yield: 0.180 g (45%); yellow solid; mp 122-124 °C.

IR (KBr): 3061 (w), 2984 (w), 2939 (w), 2227 (w), 1730 (w), 1668 (m), 1584 (m), 1548 (w), 1462 (m), 1444 (m), 1400 (w), 1376 (m), 1324 (m), 1222 (s), 1140 (w), 1097 (w), 1075 (w), 1013 (w), 910 (w), 836 (w), 759 (m), 731 (m), 716 (m), 699 (m), 645 (w), 598 (w), 550 (w) cm⁻¹.

¹H NMR (250 MHz, CDCl₃): $\delta = 0.64$ (t, ³*J* = 8.3 Hz, 3 H, OCH₂CH₃), 3.89 (q, ³*J* = 7.0 Hz, 2 H, OCH₂CH₃), 7.01 (d, ³*J* = 8.2 Hz, 1 H, CH_{Ar}), 7.14–7.19 (m, 2 H, CH_{Ph}), 7.34–7.37 (m, 3 H, CH_{Ph}), 7.64 (d, ³*J* = 8.6 Hz, 1 H, CH_{Ar}), 11.47 (s, 1 H, OH).

¹³C NMR (75 MHz, CDCl₃): δ = 12.8 (CH₃), 61.9 (OCH₂), 105.7 (CCN), 113.5 (CCOOEt), 117.7 (CN), 118.1 (CH_{Ar}), 128.0 (3 × CH_{Ph}), 128.3 (2 × CH_{Ph}), 137.4 (CH_{Ar}), 138.9, 149.6 (C_{Ar}), 164.7 (COH), 169.9 (CO).

GC–MS (EI, 70 eV): *m*/*z* (%) = 267 (34) [M⁺], 221 (100), 193 (41), 164 (21), 139 (11), 114 (3), 88 (2), 63 (3).

HRMS (EI): m/z [M⁺] calcd for C₁₆H₁₃O₃N: 267.08899; found: 267.088732.

Methyl 6-Cyano-3-hydroxy-4-methylbiphenyl-2-carboxylate (4i)

Starting with **2b** (0.302 g, 1.5 mmol) and **3c** (0.457 g, 1.65 mmol), the product was isolated after chromatography (silica gel; heptanes–EtOAc).

Yield: 0.172 g (43%); light-yellowish solid; mp 105-107 °C.

IR (KBr): 3071 (w), 3027 (w), 2954 (w), 2924 (w), 2217 (w), 1722 (m), 1673 (m), 1594 (w), 1566 (w), 1461 (m), 1434 (s), 1377 (m), 1322 (s), 1259 (m), 1241 (m), 1162 (m), 1076 (m), 1022 (m), 983 (m), 848 (m), 809 (s), 757 (s), 702 (s), 677 (m), 552 (m) cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 2.24 (s, 3 H, CH₃), 3.37 (s, 3 H, OCH₃), 7.12–7.17 (m, 2 H, CH_{Ph}), 7.30–7.35 (m, 3 H, CH_{Ph}), 7.51 (s, 1 H, CH_{Ar}), 11.53 (s, 1 H, OH).

¹³C NMR (75 MHz, CDCl₃): δ = 15.7 (CH₃), 52.2 (OCH₃), 104.9 (CCN), 112.6 (CCOOCH₃), 118.2 (CN), 127.6 (C_{Ar}), 127.9 (2 × CH_{Ph}), 128.1 (3 × CH_{Ph}), 137.9 (CH_{Ar}), 138.9, 147.2 (C_{Ar}), 163.1 (COH), 170.6 (CO).

GC–MS (EI, 70 eV): *m*/*z* (%) = 267 (32) [M⁺], 236 (19), 235 (100), 234 (15), 207 (12), 206 (16), 179 (10), 178 (14), 151 (10), 76 (7).

HRMS (EI): m/z [M⁺] calcd for C₁₆H₁₃O₃N: 267.08899; found: 267.088902.

Synthesis 2009, No. 10, 1623–1634 © Thieme Stuttgart · New York

Ethyl 6-Cyano-4-ethyl-3-hydroxybiphenyl-2-carboxylate (4j) Starting with 2b (0.302 g, 1.5 mmol) and 3d (0.498 g, 1.7 mmol), 4j was isolated after chromatography (silica gel; heptanes–EtOAc).

Yield: 0.186 g (42%); yellow crystalline solid; mp 47–48 °C.

IR (KBr): 3061 (w), 2972 (w), 2937 (w), 2877 (w), 2252 (w), 2226 (w), 1663 (s), 1601 (w), 1567 (w), 1445 (m), 1424 (m), 1401 (m), 1376 (m), 1329 (m), 1306 (m), 1269 (w), 1242 (m), 1196 (s), 1147 (m), 1113 (w), 1096 (w), 1067 (w), 1021 (w), 909 (m), 841 (w), 819 (m), 762 (m), 732 (s), 701 (m), 649 (w), 549 (w) cm⁻¹.

¹H NMR (250 MHz, CDCl₃): $\delta = 0.58$ (t, ³*J* = 7.4 Hz, 3 H, CH₂CH₃), 1.15 (t, ³*J* = 7.4 Hz, 3 H, OCH₂CH₃), 2.61 (q, ³*J* = 7.2 Hz, 2 H, CH₂CH₃), 3.83 (q, ³*J* = 6.9 Hz, 2 H, OCH₂CH₃), 7.08–7.11 (m, 2 H, CH_{Ph}), 7.25–7.29 (m, 3 H, CH_{Ph}), 7.46 (s, 1 H, CH_{Ar}), 11.65 (s, 1 H, OH).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 12.8, 13.1 (CH₃), 22.7 (CH₂), 61.6 (OCH₂), 105.1 (CCN), 112.8 (CCOOEt), 118.2 (CN), 127.9 (2 \times CH_{Ph}), 128.0 (CH_{Ph}), 128.2 (2 \times CH_{Ph}), 133.4 (C_{Ar}), 136.1 (CH_{Ar}), 139.2, 146.9 (C_{Ar}), 162.9 (COH), 170.2 (CO).

GC–MS (EI, 70 eV): *m*/*z* (%) = 295 (48) [M⁺], 249 (59), 231 (100), 220 (12), 203 (21), 190 (9), 177 (14), 165 (12), 151 (13), 139 (4), 102 (2), 77 (3), 51 (2).

HRMS (EI): m/z [M⁺] calcd for C₁₈H₁₇O₃N: 295.12029; found: 295.120225.

Methyl 4-Butyl-6-cyano-3-hydroxybiphenyl-2-carboxylate (4k) Starting with 2b (0.302 g, 1.5 mmol) and 3e (0.522 g, 1.7 mmol), 4k was isolated after chromatography (silica gel; heptanes–EtOAc).

Yield: 0.190 g (41%); slightly yellow viscous oil.

IR (KBr): 2954 (w), 2920 (w), 2223 (w), 1742 (w), 1663 (m), 1593 (w), 1565 (w), 1494 (w), 1435 (s), 1333 (m), 1314 (m), 1261 (m), 1205 (s), 1170 (m), 1074 (w), 1029 (w), 985 (w), 856 (w), 815 (m), 759 (s), 699 (s), 658 (m), 549 (m) cm⁻¹.

¹H NMR (250 MHz, CDCl₃): $\delta = 0.86$ [t, ³*J* = 7.5 Hz, 3 H, (CH₂)₃CH₃], 1.26–1.35 (m, 2 H, CH₂), 1.46–1.55 (m, 2 H, CH₂), 2.59 (t, ³*J* = 7.9 Hz, 2 H, CH₂), 3.33 (s, 3 H, OCH₃), 7.08–7.13 (m, 2 H, CH_{Ph}), 7.27–7.31 (m, 3 H, CH_{Ph}), 8.46 (s, 1 H, CH_{Ar}), 11.45 (s, 1 H, OH).

 $\label{eq:constraint} \begin{array}{l} ^{13}\text{C NMR (75 MHz, CDCl_3): } \delta = 13.9 \ (CH_3), 22.5, 29.2, 31.2 \ (CH_2), \\ 52.2 \ (OCH_3), 105.2 \ (CCN), 112.7 \ (CCOOCH_3), 118.1 \ (CN), 127.9 \\ (2 \times CH_{Ph}), \ 128.1 \ (3 \times CH_{Ph}), \ 132.1 \ (C_{Ar}), \ 137.0 \ (CH_{Ar}), \ 139.1, \\ 146.6 \ (C_{Ar}), 163.0 \ (COH), \ 170.9 \ (CO). \end{array}$

GC–MS (EI, 70 eV): *m/z* (%) = 309 (40) [M⁺], 277 (27), 259 (18), 244 (10), 236 (17), 235 (100), 234 (35), 221 (8), 206 (10), 178 (11), 177 (15), 151 (18).

HRMS (EI): m/z [M⁺] calcd for C₁₉H₁₉O₃N: 309.13594; found: 309.135859.

Methyl 6-Cyano-4-heptyl-3-hydroxybiphenyl-2-carboxylate (41)

Starting with **2b** (0.302 g, 1.5 mmol) and **3g** (0.591 g, 1.7 mmol), **4l** was isolated after chromatography (silica gel; heptanes–EtOAc).

Yield: 0.221 g (42%); light yellowish oil.

IR (neat): 2952 (w), 2924 (m), 2854 (w), 2223 (w), 1745 (w), 1664 (m), 1599 (w), 1566 (w), 1439 (m), 1335 (m), 1234 (m), 1204 (s), 1146 (m), 1074 (w), 990 (w), 897 (w), 815 (m), 760 (s), 724 (w), 699 (s), 549 (w) cm⁻¹.

¹H NMR (250 MHz, CDCl₃): $\delta = 0.82$ [t, ³*J* = 7.6 Hz, 3 H, (CH₂)₆CH₃], 1.26–1.35 (m, 8 H, 4×CH₂), 1.51–1.61 (m, 2 H, CH₂), 2.62 (t, ³*J* = 7.6 Hz, 2 H, CH₂), 3.37 (s, 3 H, OCH₃), 7.12–7.17 (m, 2 H, CH_{Ph}), 7.30–7.36 (m, 3 H, CH_{Ph}), 7.49 (s, 1 H, CH_{Ar}), 11.49 (s, 1 H, OH).

¹³C NMR (75 MHz, CDCl₃): δ = 14.0 (CH₃), 22.6, 28.9, 29.1, 29.4, 29.5, 31.8 (CH₂), 52.2 (OCH₃), 104.9 (CCN), 112.7 (CCOOCH₃), 118.1 (CN), 127.9 (2 × CH_{Ph}), 128.1 (3 × CH_{Ph}), 132.1 (C_{Ar}), 137.1 (CH_{Ar}), 139.1, 147.0 (C_{Ar}), 162.9 (COH), 170.8 (CO).

GC–MS (EI, 70 eV): *m*/*z* (%) = 351 (39) [M⁺], 320 (9), 319 (32), 236 (23), 235 (100), 234 (45), 231 (9), 219 (13), 206 (10), 178 (10), 177 (13), 151 (15), 41 (7).

HRMS (EI): m/z [M⁺] calcd for C₂₂H₂₅O₃N: 351.18290; found: 351.183058.

Methyl 6-Cyano-3-hydroxy-4-octylbiphenyl-2-carboxylate (4m)

Starting with **2b** (0.302 g, 1.5 mmol) and **3h** (0.614 g, 1.7 mmol), **4m** was isolated after chromatography (silica gel; heptanes– EtOAc).

Yield: 0.219 g (40%); yellowish oil.

IR (neat): 2952 (w), 2923 (m), 2853 (m), 2224 (w), 1749 (w), 1665 (m), 1600 (w), 1567 (w), 1436 (m), 1335 (m), 1234 (m), 1205 (s), 1146 (m), 1074 (w), 999 (w), 907 (w), 816 (m), 760 (s), 727 (w), 700 (s), 549 (w) cm⁻¹.

¹H NMR (250 MHz, CDCl₃): $\delta = 0.83$ [t, ³*J* = 7.5 Hz, 3 H, (CH₂)₇CH₃], 1.06–1.08 (m, 10 H, 5×CH₂), 1.52–1.62 (m, 2 H, CH₂), 2.50 (t, ³*J* = 7.3 Hz, 2 H, CH₂), 3.46 (s, 3 H, OCH₃), 7.13–7.18 (m, 2 H, CH_{Ph}), 7.31–7.37 (m, 3 H, CH_{Ph}), 7.50 (s, 1 H, CH_{Ar}), 11.50 (s, 1 H, OH).

¹³C NMR (75 MHz, CDCl₃): δ = 14.0 (CH₃), 22.6, 28.8, 29.2, 29.3, 29.4, 29.5, 31.8 (CH₂), 52.2 (OCH₃), 105.0 (*C*CN), 112.7 (*C*COOCH₃), 118.1 (CN), 127.9 (2 × CH_{Ph}), 128.1 (3 × CH_{Ph}), 132.1 (C_{Ar}), 137.0 (CH_{Ar}), 139.0, 147.0 (C_{Ar}), 162.9 (COH), 170.9 (CO).

GC–MS (EI, 70 eV): m/z (%) = 365 (21) [M⁺], 333 (29), 236 (26), 235 (100), 234 (47), 231 (13), 222 (11), 221 (10), 219 (24), 218 (12), 207 (15), 206 (18), 190 (11), 179 (11), 178 (17), 177 (18), 152 (12), 151 (25), 129 (20), 116 (39), 101 (12), 98 (10), 97 (11), 85 (11), 81 (9), 71 (20), 69 (32), 57 (42), 55 (34).

HRMS (EI): m/z [M⁺] calcd for C₂₃H₂₇O₃N: 365.19885; found: 365.198427.

Methyl 6-Cyano-3-hydroxy-4-(4-chlorophenyl)biphenyl-2-carboxylate (4n)

Starting with **2b** (0.302 g, 1.5 mmol) and **3k** (0.612 g, 1.7 mmol), **4n** was isolated after chromatography (silica gel; heptanes–EtOAc).

Yield: 0.240 g (44%); yellow solid; mp 149-151 °C.

IR (KBr): 3086 (w), 3061 (w), 3027 (w), 2954 (w), 2929 (w), 2852 (w), 2252 (w), 2226 (w), 1737 (w), 1667 (m), 1593 (w), 1553 (w), 1493 (w), 1437 (m), 1393 (m), 1330 (m), 1249 (w), 1208 (m), 1182 (m), 1094 (m), 1081 (w), 1031 (w), 1015 (w), 987 (w), 909 (m), 834 (m), 764 (m), 732 (s), 704 (m), 661 (w), 650 (w), 544 (w) cm⁻¹.

¹H NMR (250 MHz, CDCl₃): δ = 3.40 (s, 3 H, OCH₃), 7.17–7.23 (m, 2 H, CH_{ph}), 7.28–7.47 (m, 7 H, CH_{ClPh,Ph}), 7.67 (s, 1 H, CH_{Ar}), 11.73 (s, 1 H, OH).

¹³C NMR (75 MHz, CDCl₃): δ = 53.6 (OCH₃), 106.9 (*C*CN), 114.9 (*C*COOCH₃), 118.6 (CN), 128.9 (2 × CH_{Ph}), 129.0 (2 × CH_{Ph}), 129.3 (CH_{Ph}), 129.6 (2 × CH_{ClPh}), 130.7 (C_{Ar}), 131.5 (2 × CH_{ClPh}), 134.4, 135.3 (C_{Ar}), 138.7 (CH_{Ar}), 139.4, 149.5 (C_{Ar}), 162.7 (COH), 171.7 (CO).

MS (ESI+): m/z [M + H]⁺ calcd for C₂₁H₁₅ClNO₃: 364.0735; found: 364.07353.

MS (ESI+): m/z [M + Na]⁺ calcd for C₂₁H₁₄ClNNaO₃: 386.05544; found: 386.05531.

Methyl 4'-Chloro-6-cyano-3-hydroxy-4-methylbiphenyl-2-carboxylate (40)

Starting with 2c (0.353 g, 1.5 mmol) and 3c (0.457 g, 1.7 mmol), 4o was isolated after chromatography (silica gel; heptanes–EtOAc).

Yield: 0.275 g (61%); white solid; mp 167–169 °C.

IR (KBr): 3034 (w), 2958 (w), 2848 (w), 2227 (w), 1932 (w), 1837 (w), 1667 (m), 1597 (m), 1557 (w), 1500 (w), 1435 (m), 1353 (m), 1332 (s), 1268 (m), 1203 (m), 1169 (m), 1147 (m), 1042 (w), 1017 (m), 981 (m), 902 (w), 868 (w), 809 (s), 771 (m), 659 (w), 613 (m), 548 (m) cm⁻¹.

¹H NMR (250 MHz, CDCl₃): δ = 2.24 (s, 3 H, CH₃), 3.42 (s, 3 H, OCH₃), 7.06–7.10 (m, 2 H, CH_{CIPh}), 7.31–7.35 (m, 2 H, CH_{CIPh}), 7.51 (s, 1 H, CH_{Ar}), 11.61 (s, 1 H, OH).

¹³C NMR (75 MHz, CDCl₃): δ = 14.7 (CH₃), 51.4 (OCH₃), 103.9 (CCN), 111.3 (CCOOCH₃), 116.8 (CN), 127.2 (C_{Ar}), 127.9 (2 × CH_{CIPh}), 128.5 (2 × CH_{CIPh}), 133.2, 136.3 (C_{Ar}), 136.6 (CH_{Ar}), 144.7 (C_{Ar}), 162.4 (COH), 169.4 (CO).

GC–MS (EI, 70 eV): m/z (%) = 303 (11) [³⁷Cl; M⁺], 301 (31) [³⁵Cl; M⁺], 271 (21), 270 (13), 269 (61), 235 (17), 234 (100), 178 (9), 177 (14), 151 (11).

HRMS (EI): m/z [M⁺] calcd for C₁₆H₁₂O₃ClN: 301.5002; found: 301.050144.

$Ethyl\ 4'-Chloro-6-cyano-4-ethyl-3-hydroxybiphenyl-2-carboxylate\ (4p)$

Starting with **2c** (0.353 g, 1.5 mmol) and **3d** (0.499 g, 1.7 mmol), **4p** was isolated after chromatography (silica gel; heptanes–EtOAc).

Yield: 0.306 g (62%); light-yellow solid; mp 165–167 °C.

IR (KBr): 2978 (w), 2876 (w), 2227 (w), 1910 (w), 1654 (m), 1568 (w), 1498 (m), 1444 (m), 1420 (m), 1374 (m), 1326 (s), 1274 (w), 1223 (m), 1194 (s), 1142 (m), 1111 (w), 1006 (m), 948 (w), 906 (w), 808 (s), 775 (m), 665 (w), 605 (m), 547 (m) cm⁻¹.

¹H NMR (250 MHz, CDCl₃): $\delta = 0.71$ (t, ³*J* = 6.7 Hz, 3 H, CH₂CH₃), 1.19 (t, ³*J* = 7.4 Hz, 3 H, OCH₂CH₃), 2.65 (q, ³*J* = 7.4 Hz, 2 H, CH₂CH₃), 3.92 (q, ³*J* = 7.4 Hz, 2 H, OCH₂CH₃), 7.07–7.11 (m, 2 H, CH_{ClPh}), 7.31–7.34 (m, 2 H, CH_{ClPh}), 7.50 (s, 1 H, CH_{Ar}), 11.77 (s, 1 H, OH).

¹³C NMR (75 MHz, CDCl₃): δ = 12.9, 13.1 (CH₃), 22.7, 62.0 (CH₂), 104.9 (CCN), 112.5 (CCOOEt), 117.9 (CN), 128.2 (2 × CH_{CIPb}), 129.6 (2 × CH_{CIPb}), 133.8, 134.2 (C_{Ar}), 136.1 (CH_{Ar}), 137.7, 145.7 (C_{Ar}), 163.0 (COH), 170.0 (CO).

GC–MS (EI, 70 eV): m/z (%) = 331 (9) [³⁷Cl; M⁺], 329 (26) [³⁵Cl; M⁺], 285 (12), 283 (35), 249 (18), 248 (100), 177 (11).

HRMS (EI): m/z [M⁺] calcd for C₁₈H₁₆O₃ClN: 329.08183; found: 329.081140.

Methyl 4'-Chloro-6-cyano-4-hexyl-3-hydroxybiphenyl-2-carboxylate (4q)

Starting with **2c** (0.353 g, 1.5 mmol) and **3f** (0.568 g, 1.7 mmol), **4q** was isolated after chromatography (silica gel; heptanes–EtOAc).

Yield: 0.357 g (64%); white solid; mp 45–46 °C.

IR (KBr): 2955 (w), 2929 (w), 2857 (w), 2225 (w), 1668 (m), 1601 (w), 1575 (w), 1496 (w), 1439 (m), 1397 (w), 1345 (m), 1207 (m), 1171 (w), 1148 (w), 1091 (w), 908 (m), 825 (w), 732 (s), 649 (w) cm⁻¹.

¹H NMR (300 MHz, CDCl₃): $\delta = 0.82$ [t, ³*J* = 7.5 Hz, 3 H, (CH₂)₅CH₃], 1.18–1.32 (m, 6 H, 3×CH₂), 1.50–1.57 (m, 2 H, CH₂), 2.62 (t, ³*J* = 7.6 Hz, 2 H, CH₂), 3.42 (s, 3 H, OCH₃), 7.07–7.10 (m, 2 H, 2×CH_{ph}), 7.31–7.35 (m, 2 H, 2×CH_{ph}), 7.49 (s, 1 H, CH_{Ar}), 11.59 (s, 1 H, OH).

¹³C NMR (75 MHz, CDCl₃): δ = 13.1 (CH₃), 21.6, 27.8, 28.1, 28.6, 30.7 (CH₂), 51.5 (OCH₃), 103.9 (CCN), 111.5 (CCOOCH₃), 116.9 (CN), 127.3 (2 × CH_{ph}), 128.6 (2 × CH_{ph}), 131.7, 133.3 (C_{Ar}), 136.0 (CH_{Ar}), 136.4, 144.5 (C_{Ar}), 162.0 (COH), 169.5 (CO).

GC–MS (EI, 70 eV): *m*/*z* (%) = 371 (23) [M⁺], 304 (39), 268 (18), 235 (18), 234 (100), 177 (16).

HRMS (EI): m/z [M⁺] calcd for C₂₁H₂₂O₃NCl: 371.12827; found: 371.127801.

Methyl 4'-Chloro-6-cyano-3-hydroxy-4-octylbiphenyl-2-carboxylate (4r)

Starting with **2c** (0.353 g, 1.5 mmol) and **3h** (0.614 g, 1.7 mmol), **4r** was isolated after chromatography (silica gel; heptanes–EtOAc).

Yield: 0.354 g (59%); pale-yellow solid; mp 68-71 °C.

IR (KBr): 2953 (w), 2925 (m), 2854 (w), 2224 (w), 1666 (m), 1600 (w), 1576 (w), 1496 (w), 1438 (m), 1397 (m), 1342 (m), 1341 (m), 1259 (w), 1206 (m), 1172 (m), 1091 (m), 1016 (w), 990 (w), 906 (m), 816 (w), 730 (s), 649 (w) cm⁻¹.

¹H NMR (300 MHz, CDCl₃): $\delta = 0.81$ [t, ³*J* = 7.4 Hz, 3 H, (CH₂)₇CH₃], 1.17–1.34 (m, 10 H, 5×CH₂), 1.49–1.58 (m, 2 H, CH₂), 2.61 (t, ³*J* = 7.4 Hz, 2 H, CH₂), 3.42 (s, 3 H, OCH₃), 7.06–7.12 (m, 2 H, 2×CH_{ph}), 7.31–7.35 (m, 2 H, 2×CH_{ph}), 7.51 (s, 1 H, CH_{Ar}), 11.59 (s, 1 H, OH).

¹³C NMR (75 MHz, CDCl₃): δ = 14.1 (CH₃), 22.6, 28.8, 29.2, 29.3, 29.4, 29.6, 31.9 (CH₂), 52.5 (OCH₃), 104.9 (CCN), 112.5 (CCOOCH₃), 117.9 (CN), 128.3 (2 × CH_{Ph}), 129.5 (2 × CH_{Ph}), 132.7, 134.1 (C_{Ar}), 137.0 (CH_{Ar}), 137.4, 145.5 (C_{Ar}), 163.2 (COH), 170.6 (CO).

GC–MS (EI, 70 eV): *m*/*z* (%) = 399 (22) [M⁺], 332 (38), 270 (10), 268 (21), 235 (18), 234 (100), 177 (15).

HRMS (EI): m/z [M⁺] calcd for C₂₃H₂₆O₃NCl: 399.15957; found: 399.159574.

Methyl 4'-Chloro-6-cyano-3-hydroxy-4-isopentylbiphenyl-2carboxylate (4s)

Starting with **2c** (0.353 g, 1.5 mmol) and **3j** (0.522 g, 1.7 mmol), **4s** was isolated after chromatography (silica gel; heptanes–EtOAc).

Yield: 0.319 g (62%); light-yellow solid; mp 74-76 °C.

IR (KBr): 2955 (m), 2928 (m), 2868 (w), 2224 (w), 1741 (w), 1665 (s), 1599 (m), 1575 (w), 1496 (m), 1436 (s), 1397 (m), 1385 (w), 1345 (m), 1325 (m), 1314 (m), 1263 (m), 1204 (s), 1169 (m), 1148 (m), 1089 (s), 1016 (m), 1000 (m), 981 (m), 945 (w), 904 (w), 888 (w), 861 (w), 820 (m), 771 (m), 738 (m), 660 (m), 634 (m), 545 (m) cm⁻¹.

¹H NMR (250 MHz, CDCl₃): $\delta = 0.89$ (d, ³*J* = 6.7 Hz, 6 H, 2 × CH₃), 1.90–1.99 [m, 1 H, C*H*(CH₃)₂], 2.51 (d, ³*J* = 7.2 Hz, 2 H, CH₂), 3.43 (s, 3 H, OCH₃), 7.08–7.13 (m, 2 H, CH_{ClPh}), 7.32–7.36 (m, 2 H, CH_{ClPh}), 7.47 (s, 1 H, CH_{Ar}), 11.57 (s, 1 H, OH).

¹³C NMR (75 MHz, CDCl₃): δ = 21.4 (2 × CH₃), 27.0 [*C*H(CH₃)₂], 37.8 (CH₂), 51.5 (OCH₃), 103.8 (*C*CN), 111.6 (*C*COOCH₃), 116.9 (CN), 127.3 (2 × CH_{ClPh}), 128.6 (2 × CH_{ClPh}), 130.5, 133.3, 136.4 (C_{Ar}), 137.0 (CH_{Ar}), 144.6 (C_{Ar}), 162.2 (COH), 169.6 (CO).

GC–MS (EI, 70 eV): *m*/*z* (%) = 343 (29) [M⁺], 277 (20), 276 (100), 270 (16), 268 (44), 234 (39), 177 (24), 151 (5), 130 (2), 88 (2), 43 (5).

HRMS (EI): m/z [M⁺] calcd for C₁₉H₁₈O₃NCl: 343.09697; found: 343.096981.

Methyl 4'-Bromo-6-cyano-3-hydroxy-4-methylbiphenyl-2-carboxylate (4t)

Starting with **2d** (0.420 g, 1.5 mmol) and **3c** (0.457 g, 1.7 mmol), the product was isolated after chromatography (silica gel; heptanes–EtOAc).

Yield: 0.301 g (58%); white crystalline solid; mp 199–200 °C.

IR (KBr): 3082 (w), 2957 (w), 2852 (w), 2227 (m), 1933 (w), 1667 (m), 1591 (w), 1555 (w), 1496 (w), 1435 (m), 1353 (m), 1331 (m), 1267 (m), 1201 (m), 1167 (m), 1146 (m), 1042 (w), 1012 (m), 987 (m), 902 (m), 861 (w), 807 (s), 770 (m), 659 (w), 600 (m), 548 (m) cm⁻¹.

 1H NMR (250 MHz, CDCl₃): δ = 2.24 (s, 3 H, CH₃), 3.42 (s, 3 H, OCH₃), 7.00–7.04 (m, 2 H, CH_{BrPh}), 7.47 (s, 1 H, CH_{Ar}), 7.50–7.52 (m, 2 H, CH_{BrPh}), 11.61 (s, 1 H, OH).

¹³C NMR (75 MHz, CDCl₃): δ = 15.8 (CH₃), 52.6 (OCH₃), 104.9 (CCN), 112.2 (CCOOCH₃), 117.8 (CN), 122.5, 128.3 (C_{Ar}), 129.9 (2 × CH_{BrPh}), 131.5 (2 × CH_{BrPh}), 137.7 (CH_{Ar}), 137.8, 145.4 (C_{Ar}), 163.2 (COH), 170.4 (CO).

GC–MS (EI, 70 eV): m/z (%) = 347 (29) [⁸¹Br; M⁺], 345 (29) [⁷⁹Br; M⁺], 316 (10), 315 (60), 314 (12), 313 (60), 235 (20), 234 (100), 206 (12), 178 (10), 177 (19), 151 (17).

HRMS (EI): m/z [⁷⁹Br; M⁺] calcd for C₁₆H₁₂O₃BrN: 344.99951; found: 344.999038.

HRMS (EI): m/z [⁸¹Br; M⁺] calcd for C₁₆H₁₂O₃BrN: 346.99746; found: 346.997318.

Ethyl 4'-Bromo-6-cyano-4-ethyl-3-hydroxybiphenyl-2-carboxylate (4u)

Starting with **2d** (0.420 g, 1.5 mmol) and **3d** (0.499 g, 1.7 mmol), **4u** was isolated after chromatography (silica gel; heptanes–EtOAc).

Yield: 0.453 g (60%); yellowish oil; mp 197-199 °C.

IR (KBr): 2970 (w), 2874 (w), 2224 (w), 1898 (w), 1659 (s), 1573 (w), 1492 (w), 1421 (m), 1393 (m), 1327 (s), 1268 (m), 1239 (m), 1190 (s), 1146 (m), 1100 (w), 1004 (m), 906 (w), 809 (s), 727 (m), 652 (w), 599 (m), 547 (m) cm⁻¹.

¹H NMR (250 MHz, CDCl₃): $\delta = 0.71$ (t, ³*J* = 7.5 Hz, 3 H, CH₂CH₃), 1.19 (t, ³*J* = 7.0 Hz, 3 H, OCH₂CH₃), 2.65 (q, ³*J* = 7.5 Hz, 2 H, CH₂CH₃), 3.93 (q, ³*J* = 7.5 Hz, 2 H, OCH₂CH₃), 7.01–7.05 (m, 2 H, CH_{BrPh}), 7.47 (s, 1 H, CH_{Ar}), 7.50–7.52 (m, 2 H, CH_{BrPh}), 11.78 (s, 1 H, OH).

 $\label{eq:constraint} \begin{array}{l} ^{13}\text{C NMR (75 MHz, CDCl_3): } \delta = 12.9, 13.0 (CH_3), 22.7, 62.0 (CH_2), \\ 104.8 (CCN), 112.4 (CCOOCH_3), 117.9 (CN), 122.3 (C_{\text{Ar}}), 129.5 \\ (2 \times CH_{\text{BrPh}}), 131.2 (2 \times CH_{\text{BrPh}}), 133.8 (C_{\text{Ar}}), 136.0 (CH_{\text{Ar}}), 138.2, \\ 145.5 (C_{\text{Ar}}), 163.2 (COH), 170.0 (CO). \end{array}$

GC–MS (EI, 70 eV): m/z (%) = 375 (20) [⁸¹Br; M⁺], 373 (21) [⁷⁹Br; M⁺], 329 (32), 327 (32), 249 (19), 248 (100), 190 (10), 177 (12).

HRMS (EI): m/z [⁷⁹Br; M⁺] calcd for C₁₈H₁₆O₃BrN: 373.03081; found: 373.030467.

HRMS (EI): m/z [⁸¹Br; M⁺] calcd for C₁₈H₁₆O₃BrN: 375.02876; found: 375.028656.

Methyl 4'-Bromo-6-cyano-4-hexyl-3-hydroxybiphenyl-2-carboxylate (4v)

Starting with **2d** (0.420 g, 1.5 mmol) and **3f** (0.568 g, 1.7 mmol), the product was isolated after chromatography (silica gel; *n*-heptane–EtOAc).

Yield: 0.343 g (55%); yellowish oil.

IR (KBr): 2954 (w), 2927 (m), 2856 (w), 2224 (w), 1666 (m), 1601 (w), 1573 (w), 1493 (w), 1438 (m), 1392 (w), 1340 (m), 1262 (w), 1206 (m), 1171 (w), 1101 (w), 1071 (w), 1013 (w), 908 (m), 817 (w), 770 (w), 730 (s), 649 (w), 621 (w) cm⁻¹.

¹H NMR (300 MHz, CDCl₃): $\delta = 0.73$ [t, ³*J* = 7.5 Hz, 3 H, (CH₂)₇CH₃], 1.07–1.20 (m, 6 H, 3×CH₂), 1.42–1.50 (m, 2 H, CH₂), 2.51 (t, ³*J* = 7.5 Hz, 2 H, CH₂), 3.42 (s, 3 H, OCH₃), 6.90–6.95 (m, 2 H, 2×CH_{Ph}), 7.36–7.39 (m, 3 H, 3×CH_{Ar}), 11.49 (s, 1 H, OH).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 15.3 (CH₃), 23.8, 30.0, 30.3, 30.8, 32.9 (CH₂), 53.7 (OCH₃), 106.0 (CCN), 113.6 (CCOOCH₃), 119.1 (CN), 123.6 (C_{Ar}), 131.1, 132.4 (4 × CH_{Ph}), 133.9 (C_{Ar}), 138.2 (CH_{Ar}), 139.0, 146.6 (C_{Ar}), 164.2 (COH), 171.7 (CO).

GC–MS (EI, 70 eV): *m*/*z* (%) = 417 (17), 415 (17) [M⁺], 304 (26), 235 (17), 234 (100), 205 (11), 177 (12).

HRMS (EI): m/z [⁷⁹Br; M⁺] calcd for C₂₁H₂₂O₃NBr: 415.07776; found: 415.077792.

HRMS (EI): m/z [⁸¹Br; M⁺] calcd for C₂₃H₂₆O₃NBr: 417.07571; found: 417.076005.

Methyl 4'-Bromo-6-cyano-3-hydroxy-4-octylbiphenyl-2-carboxylate (4w)

Starting with **2d** (0.420 g, 1.5 mmol) and **3h** (0.614 g, 1.7 mmol), **4w** was isolated after chromatography (silica gel; heptanes– EtOAc).

Yield: 0.367 g (55%); yellowish solid; mp 73–75 °C.

IR (KBr): 2953 (w), 2924 (m), 2854 (w), 2224 (w), 1667 (m), 1602 (w), 1574 (w), 1493 (w), 1438 (m), 1392 (w), 1339 (m), 1259 (w), 1205 (m), 1172 (m), 1103 (w), 1071 (w), 1012 (w), 906 (m), 817 (w), 770 (w), 728 (s), 649 (w), 548 (w) cm⁻¹.

¹H NMR (300 MHz, CDCl₃): $\delta = 0.83$ [t, ³*J* = 7.4 Hz, 3 H, (CH₂)₇CH₃], 1.16–1.32 (m, 10 H, 5×CH₂), 1.49–1.61 (m, 2 H, CH₂), 2.61 (t, ³*J* = 7.6 Hz, 2 H, CH₂), 3.43 (s, 3 H, OCH₃), 7.01–7.05 (m, 2 H, 2×CH_{Ph}), 7.47–7.51 (m, 3 H, 3×CH_{Ar}), 11.59 (s, 1 H, OH).

¹³C NMR (75 MHz, CDCl₃): δ = 14.1 (CH₃), 22.6, 28.8, 29.2, 29.4, 29.5, 29.6, 31.8 (CH₂), 52.5 (OCH₃), 104.8 (CCN), 112.4 (CCOOCH₃), 117.9 (CN), 122.3 (C_{Ar}), 129.8, 131.3 (4 × H_{Ph}), 132.7 (C_{Ar}), 137.0 (CH_{Ar}), 137.8, 145.5 (C_{Ar}), 163.1 (COH), 170.6 (CO).

GC–MS (EI, 70 eV): *m*/*z* (%) = 445 (15), 443 (15), 332 (29), 235 (20), 234 (100).

HRMS (EI): m/z [⁷⁹Br; M⁺] calcd for C₂₃H₂₆O₃NBr: 443.10906; found: 443.109033.

HRMS (EI): m/z [⁸¹Br; M⁺] calcd for C₂₃H₂₆O₃NBr: 445.10701; found: 445.107259.

Methyl 4'-Bromo-6-cyano-3-hydroxy-4-nonylbiphenyl-2-carboxylate (4x)

Starting with **2d** (0.420 g, 1.5 mmol) and **3i** (0.638 g, 1.7 mmol), **4x** was isolated after chromatography (silica gel; heptanes–EtOAc).

Yield: 0.392 g (57%); yellow solid; mp 65-67 °C.

IR (KBr): 3333 (w), 2949 (m), 2921 (m), 2871 (m), 2847 (m), 2226 (w), 1911 (w), 1736 (m), 1714 (m), 1639 (w), 1599 (m), 1568 (m), 1493 (w), 1458 (m), 1428 (m), 1403 (m), 1392 (m), 1374 (w), 1356 (w), 1334 (w), 1301 (m), 1257 (m), 1237 (m), 1207 (m), 1187 (m), 1176 (m), 1148 (s), 1125 (m), 1072 (m), 1055 (w), 1038 (w), 1028 (w), 1012 (m) cm⁻¹.

¹H NMR (250 MHz, CDCl₃): $\delta = 0.82$ [t, ³*J* = 6.8 Hz, 3 H, (CH₂)₈CH₃], 1.18–1.24 (m, 12 H, 6×CH₂), 1.51–1.59 (m, 2 H, CH₂), 2.62 (t, ³*J* = 7.4 Hz, 2 H, CH₂), 3.43 (s, 3 H, OCH₃), 7.01–7.05 (m, 2 H, CH_{BrPh}), 7.48 (s, 1 H, CH_{Ar}), 7.49–7.51 (m, 2 H, CH_{BrPh}), 11.60 (s, 1 H, OH).

¹³C NMR (75 MHz, CDCl₃): δ = 13.1 (CH₃), 21.7, 27.8, 28.3, 28.4, 28.5, 28.6, 29.9, 30.9 (CH₂), 51.5 (OCH₃), 103.8 (*C*CN), 111.4 (*C*COOCH₃), 116.9 (CN), 121.4 (C_{Ar}), 128.8 (2 × CH_{BrPh}), 130.2 (2 × CH_{BrPh}), 131.7 (C_{Ar}), 136.0 (CH_{Ar}), 136.9, 144.5 (C_{Ar}), 162.1 (COH), 169.5 (CO).

GC–MS (EI, 70 eV): m/z (%) = 459 (41) [⁸¹Br; M⁺], 457 (41) [⁷⁹Br; M⁺], 427 (9), 390 (5), 368 (4), 346 (90), 330 (7), 314 (22), 288 (14), 235 (73), 224 (11), 205 (22), 177 (22), 158 (13), 129 (42), 116 (100), 97 (21), 85 (34), 71 (48), 57 (74).

HRMS (EI): m/z [M⁺] calcd for C₂₄H₂₈O₃NBr: 457.12471; found: 457.124229.

Ethyl 4'-Methoxy-6-cyano-3-hydroxy-biphenyl-2-carboxylate (4y)

Starting with **2e** (0.347 g, 1.5 mmol) and **3b** (0.453 g, 1.7 mmol), **4y** was isolated after chromatography (silica gel; heptanes–EtOAc).

Yield: 0.223 g (50%); yellow solid; mp 116–117 °C.

IR (KBr): 3306 (w, br), 3070 (w), 2987 (w), 2959 (w), 2921 (m), 2838 (w), 2537 (w), 2351 (w), 2225 (m), 2175 (w), 2050 (w), 1931 (w), 1682 (m), 1651 (w), 1609 (m), 1570 (m), 1517 (m), 1464 (m), 1455 (m), 1395 (m), 1372 (m), 1311 (m), 1294 (m), 1251 (m), 1174 (s), 1138 (m), 1112 (m), 1096 (m), 1028 (m), 1016 (m), 948 (m), 929 (w), 908 (w), 872 (w), 848 (m), 835 (s), 806 (m), 795 (m), 778 (m), 742 (m), 723 (m), 706 (m), 675 (m), 646 (m), 621 (m), 579 (m), 558 (m), 532 (m) cm⁻¹.

¹H NMR (250 MHz, CDCl₃): $\delta = 0.73$ (t, ³*J* = 7.0 Hz, 3 H, OCH₂CH₃), 3.79 (s, 3 H, OCH₃), 3.93 (q, ³*J* = 7.0 Hz, 2 H, OCH₂CH₃), 6.86–6.91 (m, 2 H, CH_{OMePh}), 6.99 (d, ³*J* = 8.7 Hz, 1 H, CH_{Ar}), 7.07–7.12 (m, 2 H, CH_{OMePh}), 7.62 (d, ³*J* = 9.0 Hz, 1 H, CH_{Ar}), 11.36 (s, 1 H, OH).

¹³C NMR (75 MHz, CDCl₃): δ = 13.1 (CH₃), 55.4 (OCH₃), 61.9 (OCH₂), 106.1 (*C*CN), 113.5 (2 × CH_{OMePh}), 113.9 (*C*COOCH₂CH₃), 117.9 (CH_{Ar}), 118.0 (CN), 129.4 (2 × CH_{OMePh}), 131.2 (C_{Ar}), 137.4 CH_{Ar}), 149.5, 159.8 (C_{Ar}), 164.7 (COH), 170.0 (CO).

GC–MS (EI, 70 eV): m/z (%) = 297 (44) [M⁺], 251 (100), 236 (5), 223 (16), 208 (9), 180 (9), 152 (7), 126 (5), 101 (1), 75 (2), 63 (2).

HRMS (EI): m/z [M⁺] calcd for C₁₇H₁₅O₄N: 297.09956; found: 297.099391.

Methyl 6-Cyano-3-hydroxy-4'-methoxy-4-methylbiphenyl-2carboxylate (4z)

Starting with **2e** (0.346 g, 1.5 mmol) and **3c** (0.457 g, 1.7 mmol), **4z** was isolated after chromatography (silica gel; heptanes–EtOAc).

Yield: 0.266 g (51%); yellowish solid; mp 85-87 °C.

IR (KBr): 2958 (w), 2843 (w), 2219 (w), 1659 (m), 1608 (m), 1555 (w), 1515 (m), 1427 (m), 1331 (m), 1308 (s), 1260 (m), 1202 (m), 1176 (m), 1145 (m), 1033 (m), 1019 (m), 983 (m), 902 (m), 862 (w), 808 (s), 767 (m), 661 (w), 648 (m), 535 (m) cm⁻¹.

¹H NMR (250 MHz, CDCl₃): δ = 2.23 (s, 3 H, CH₃), 3.42 (s, 3 H, OCH₃), 3.78 (s, 3 H, OCH₃), 6.85–6.89 (m, 2 H, CH_{OMePh}), 7.05–7.09 (m, 2 H, CH_{OMePh}), 7.49 (s, 1 H, CH_{Ar}), 11.43 (s, 1 H, OH).

¹³C NMR (75 MHz, CDCl₃): δ = 15.6 (CH₃), 52.4, 55.3 (OCH₃), 105.2 (CCN), 112.8 (CCOOCH₃), 113.5 (2 × CH_{OMePh}), 118.3 (CN), 127.4 (C_{Ar}), 129.2 (2 × CH_{OMePh}), 131.1 (C_{Ar}), 137.7 (CH_{Ar}), 146.9, 159.5 (C_{Ar}), 162.9 (COH), 170.9 (CO).

GC–MS (EI, 70 eV): *m*/*z* (%) = 297 (45) [M⁺], 266 (19), 265 (100), 264 (12), 250 (11), 222 (9), 166 (9), 140 (8), 39 (8).

HRMS (EI): m/z [M⁺] calcd for C₁₇H₁₅O₄N: 297.09956; found: 297.099657.

Ethyl 6-Cyano-4-ethyl-3-hydroxy-4'-methoxybiphenyl-2-carboxylate (4aa)

Starting with **2e** (0.346 g, 1.5 mmol) and **3d** (0.499 g, 1.7 mmol), **4aa** was isolated after chromatography (silica gel; heptanes– EtOAc).

Yield: 0.237 g (49%); yellowish solid; mp 54-56 °C.

IR (neat): 2968 (w), 2875 (w), 2223 (w), 1658 (m), 1608 (m), 1566 (w), 1515(s), 1434 (m), 1399 (m), 1373 (m), 1326 (m), 1302 (m), 1268 (m), 1239 (s), 1189 (s), 1145 (s), 1109 (m), 1065 (w), 1030 (m), 906 (w), 808 (s), 770 (m), 643 (w), 534 (m).

¹H NMR (250 MHz, CDCl₃): $\delta = 0.71$ (t, ³*J* = 7.2 Hz, 3 H, CH₂CH₃), 1.19 (t, ³*J* = 7.2 Hz, 3 H, OCH₂CH₃), 2.65 (q, ³*J* = 7.2 Hz, 2 H, CH₂CH₃), 3.92 (q, ³*J* = 7.2 Hz, 2 H, OCH₂CH₃), 3.77 (s, 3 H, OCH₃), 6.85–6.88 (m, 2 H, CH_{OMePh}), 7.06–7.09 (m, 2 H, CH_{OMePh}), 7.49 (s, 1 H, CH_{Ar}), 11.60 (s, 1 H, OH).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 12.9, 13.2 (CH₃), 22.7 (CH₂), 55.3 (OCH₃), 62.0 (OCH₂), 105.2 (CCN), 112.9 (CCOOCH₃), 113.5 (2 × CH_{OMePh}), 118.3 (CN), 129.2 (2 × CH_{OMePh}), 132.5 (C_{Ar}), 133.8 (C_{Ar}), 136.9 (CH_{Ar}), 146.9, 159.8 (C_{Ar}), 163.0 (COH), 170.5 (CO).

GC–MS (EI, 70 eV): *m*/*z* (%) = 325 (84) [M⁺], 280 (23), 279 (100), 264 (29), 262 (12), 261 (52), 251 (10), 250 (10), 249 (12), 248 (60), 247 (12), 246 (30), 236 (15), 208 (9), 193 (8), 177 (8), 165 (9), 152 (8), 29 (9).

HRMS (EI): m/z [M⁺] calcd for C₁₉H₁₉O₄N: 325.13086; found: 325.130617.

Methyl 6-Cyano-4-hexyl-3-hydroxy-4'-methoxybiphenyl-2-carboxylate (4ab)

Starting with **2e** (0.346 g, 1.5 mmol) and **3f** (0.568 g, 1.7 mmol), **4ab** was isolated after chromatography (silica gel; heptanes– EtOAc).

Yield: 0.286 g (52%); yellowish solid; mp 43-44 °C.

IR (KBr): 2954 (w), 2927 (m), 2856 (w), 2223 (w), 1746 (w), 1665 (m), 1609 (m), 1579 (w), 1516 (m), 1436 (m), 1337 (m), 1289 (m), 1247 (s), 1205 (m), 1176 (m), 1147 (m), 1110 (w), 1034 (w), 906 (m), 830 (m), 768 (w), 728 (s), 649 (m) cm⁻¹.

¹H NMR (300 MHz, CDCl₃): $\delta = 0.82$ [t, ³*J* = 7.5 Hz, 3 H, (CH₂)₅CH₃], 1.18–1.32 (m, 6 H, 3×CH₂), 1.50–1.59 (m, 2 H, CH₂), 2.61 (t, ³*J* = 7.5 Hz, 2 H, CH₂), 3.40 (s, 3 H, OCH₃), 3.77 (s, 3 H, OCH₃), 6.83–6.88 (m, 2 H, 2×CH_{Ph}), 7.04–7.09 (m, 2 H, 2×CH_{Ph}), 7.46 (s, 1 H, CH_{Ar}), 11.39 (s, 1 H, OH).

¹³C NMR (75 MHz, CDCl₃): δ = 14.1 (CH₃), 22.6, 28.8, 29.1, 29.5, 31.6 (CH₂), 52.4, 55.2 (OCH₃), 105.6 (CCN), 113.0 (CCOOCH₃), 113.5 (2 × CH_{Ph}), 118.4 (CN), 129.4 (2 × CH_{Ph}), 131.1, 131.8 (C_{Ar}), 137.0 (CH_{Ar}), 146.6, 159.4 (C_{Ar}), 162.7 (COH), 170.9 (CO).

GC–MS (EI, 70 eV): *m/z* (%) = 368 (17), 367 (85) [M⁺], 336 (13), 335 (54), 266 (17), 265 (100), 264 (44), 234 (22).

HRMS (EI): m/z [M⁺] calcd for C₂₂H₂₅O₄N: 367.17781; found: 367.177574.

Methyl 6-Cyano-3-hydroxy-4'-methoxy-4-octylbiphenyl-2-carboxylate (4ac)

Starting with **2e** (0.346 g, 1.5 mmol) and **3h** (0.614 g, 1.7 mmol), **4ac** was isolated after chromatography (silica gel; heptanes– EtOAc).

Yield: 0.297 g (50%); yellowish oil.

IR (KBr): 2953 (w), 2924 (m), 2854 (w), 2223 (w), 1665 (m), 1609 (m), 1516 (m), 1436 (s), 1339 (m), 1290 (m), 1247 (s), 1205 (m), 1175 (m), 1034 (m), 991 (w), 906 (m), 829 (m), 767 (w), 729 (s), 649 (m), 536 (w) cm⁻¹.

¹H NMR (300 MHz, CDCl₃): $\delta = 0.81$ [t, ³*J* = 7.4 Hz, 3 H, (CH₂)₇CH₃], 1.17–1.32 (m, 10 H, 5×CH₂), 1.50–1.59 (m, 2 H,

Synthesis 2009, No. 10, 1623–1634 $\,$ © Thieme Stuttgart \cdot New York

 $\begin{array}{l} CH_2), 2.61 \; (t, \, {}^3J = 7.5 \; Hz, 2 \; H, \; CH_2), \; 3.42 \; (s, 3 \; H, \; OCH_3), \; 3.78 \; (s, 3 \; H, \; OCH_3), \; 6.84-6.90 \; (m, \; 2 \; H, \; 2 \times CH_{Ph}), \; 7.05-7.11 \; (m, \; 2 \; H, \; 2 \times CH_{Ph}), \; 7.48 \; (s, 1 \; H, \; CH_{Ar}), \; 11.49 \; (s, 1 \; H, \; OH). \end{array}$

 ^{13}C NMR (75 MHz, CDCl₃): δ = 13.1 (CH₃), 21.6, 27.9, 28.2, 28.3, 28.4, 28.6, 30.9 (CH₂), 51.3, 54.3 (OCH₃), 104.1 (*C*CN), 111.9 (*C*COOCH₃), 112.4 (2 × CH_{Ph}), 117.4 (CN), 128.4 (2 × CH_{Ph}), 130.1, 130.8 (C_{Ar}), 136.1 (CH_{Ar}), 145.5, 158.4 (C_{Ar}), 161.7 (COH), 170.0 (CO).

GC–MS (EI, 70 eV): *m*/*z* (%) = 396 (21), 395 (97) [M⁺], 364 (14), 363 (56), 266 (17), 265 (100), 264 (50), 234 (21).

HRMS (EI): m/z [M⁺] calcd for C₂₄H₂₉NO₄: 395.20911; found: 395.209162.

Benzonitriles 6a-f; General Procedure

To a solution of **5** in CH₂Cl₂, was added TiCl₄ at -78 °C in the presence of molecular sieves (4 Å). The appropriate bis(silyl enol ether) **3** was subsequently added and the reaction mixture was allowed to warm to 20 °C during 20 h then stirred for a further 4 h. To this solution was added CH₂Cl₂, the molecular sieves were removed by filtration and sat. aq NaHCO₃ was added. The organic layer was separated and the aqueous layer was repeatedly extracted with CH₂Cl₂ (3 × 100 mL). The combined organic layers were dried (Na₂SO₄), filtered, and the filtrate was concentrated in vacuo. The residue was purified by column chromatography (silica gel; heptanes–EtOAc) to give salicylates **6**.

Methyl 3-Cyano-6-hydroxy-2,4-dimethylbenzoate (6a)

Starting with **5** (188 mg, 1.0 mmol), CH_2Cl_2 (3.0 mL), molecular sieves (4 Å, 0.4 g), $TiCl_4$ (0.11 mL, 1.0 mmol), and **3a** (356 mg, 1.4 mmol), **6a** was obtained after 21 h and isolated by column chromatography (silica gel; heptanes–EtOAc, 10:1).

Yield: 67 mg (34%); colourless solid; mp 109–110 °C; $R_f = 0.21$ (heptanes–EtOAc, 10:1).

IR (KBr): 3431 (br, m), 2957 (m), 2217 (s), 1668 (s), 1601 (s), 1581 (s), 1442 (s), 1368 (s), 1358 (s), 1319 (s), 1241 (s), 810 (s) cm⁻¹.

¹H NMR (250 MHz, CDCl₃): δ = 2.48 (d, ⁴*J* = 0.9 Hz, 3 H, ArCH₃), 2.75 (s, 3 H, ArCH₃), 3.98 (s, 3 H, OCH₃), 6.76 (s, 1 H, CH_{Ar}), 11.72 (s, 1 H, OH).

¹³C NMR (75 MHz, CDCl₃): δ = 21.4, 21.8 (ArCH₃), 52.7 (OCH₃), 107.0, 111.0, 117.3 (2 × C_{Ar}, CN), 117.4 (CH_{Ar}), 146.6, 148.4 (C_{Ar}), 165.1, 171.0 (C_{Ar}OH, CO).

MS (EI, 70 eV): *m*/*z* (%) = 205 (83) [M⁺], 174 (76), 173 (100), 145 (66), 144 (37), 116 (20), 91 (14).

Anal. Calcd for $C_{11}H_{11}NO_3$: C, 64.38; H, 5.40; N, 6.83. Found: C, 64.64; H, 5.52; N, 6.65.

Ethyl 3-Cyano-6-hydroxy-2,4-dimethylbenzoate (6b)

Starting with **5** (196 mg, 1.0 mmol), CH_2Cl_2 (3.0 mL), molecular sieves (4 Å, 0.4 g), TiCl₄ (0.11 mL, 1.0 mmol), and **3b** (390 mg, 1.4 mmol), **6b** was obtained after 25 h and isolated by column chromatography (silica gel; heptanes–EtOAc, 10:1 \rightarrow 7:1).

Yield: 90 mg (41%); colourless solid; mp 114–115 °C; $R_f = 0.22$ (*n*-heptane–EtOAc, 10:1).

IR (KBr): 3426 (br, w), 2995 (m), 2213 (s), 1662 (s), 1373 (s), 1315 (s), 1239 (s), 809 (m) cm⁻¹.

¹H NMR (250 MHz, CDCl₃): δ = 1.45 (t, ³*J* = 7.2 Hz, 3 H, OCH₂CH₃), 2.49 (s, 3 H, ArCH₃), 2.78 (s, 3 H, ArCH₃), 4.46 (q, ³*J* = 7.2 Hz, 2 H, OCH₂CH₃), 6.77 (s, 1 H, Ar), 11.83 (s, 1 H, OH).

¹³C NMR (75 MHz, CDCl₃): δ = 14.1 (OCH₂CH₃), 21.4, 21.9 (ArCH₃), 62.4 (OCH₂CH₃), 106.9, 111.2, 117.3 (2×C_{Ar}, CN), 117.4 (CH_{Ar}), 146.7, 148.3 (C_{Ar}), 165.2, 170.6 (C_{Ar}OH, CO).

MS (EI, 70 eV): m/z (%) = 219 (64) [M⁺], 174 (63), 173 (100), 145 (42), 144 (17).

Anal. Calcd for $C_{12}H_{13}NO_3$: C, 65.74; H, 5.98; N, 6.39. Found: C, 65.92; H, 6.01; N, 6.17.

Isobutyl 3-Cyano-6-hydroxy-2,4-dimethylbenzoate (6c)

Starting with **5** (188 mg, 1.0 mmol), CH_2Cl_2 (3.0 mL), molecular sieves (4 Å, 0.4 g), $TiCl_4$ (0.11 mL, 1.0 mmol), and **3l** (394 mg, 1.3 mmol), **6c** was obtained after 22 h and isolated by column chromatography (silica gel; heptanes–EtOAc, 10:1).

Yield: 91 mg (39%); colourless solid; mp 51–52 °C; $R_f = 0.29$ (hep-tanes–EtOAc, 10:1).

IR (KBr): 3427 (br, w), 2960 (s), 2930 (m), 2875 (m), 2216 (m), 1656 (s), 1318 (s), 1242 (s), 1080 (s), 814 (m) cm⁻¹.

¹H NMR (250 MHz, CDCl₃): δ = 1.04 [d, ³*J* = 6.9 Hz, 6 H, CH(*CH*₃)₂], 2.12 (m, 1 H, OCH₂C*H*), 2.48 (s, 3 H, ArCH₃), 2.79 (s, 3 H, ArCH₃), 4.19 (d, ³*J* = 6.4 Hz, 2 H, OCH₂CH), 6.77 (s, 1 H, Ar), 11.88 (s, 1 H, OH).

¹³C NMR (75 MHz, CDCl₃): δ = 19.3 [CH(*C*H₃)₂], 21.4, 22.1 (ArCH₃), 27.6 (OCH₂*C*H), 72.7 (OCH₂*C*H), 106.9, 111.2, 117.3 (2 × C_{Ar}, CN), 117.5 (CH_{Ar}), 146.5, 148.3 (C_{Ar}), 165.3, 170.8 (C_{Ar}OH, CO).

MS (EI, 70 eV): m/z (%) = 247 (64) [M⁺], 191 (55), 174 (81), 173 (100), 145 (26), 91 (14), 57 (23).

Anal. Calcd for $C_{14}H_{17}NO_3:$ C, 68.00; H, 6.93; N, 5.66. Found: C, 67.95; H, 7.04; N, 5.36.

tert-Butyl 3-Cyano-6-hydroxy-2,4-dimethylbenzoate (6d)

Starting with **5** (300 mg, 1.52 mmol), CH_2Cl_2 (4.5 mL), molecular sieves (4 Å, 0.6 g), $TiCl_4$ (0.17 mL, 1.5 mmol), and **3m** (634 mg, 2.10 mmol), **6d** was obtained after 26 h and isolated by column chromatography (silica gel; *n*-heptane–EtOAc, 1:0–20:1).

Yield: 29 mg (8%); yellow solid; mp 92–94 °C; R_f 0.43 (*n*-heptane–EtOAc, 5:1).

IR (KBr): 2987 (m), 2928 (m), 2212 (m), 1661 (s), 1601 (m), 1575 (m), 1466 (m), 1377 (s), 1327 (s), 1245 (s), 1153 (s), 1080 (m), 839 (m), 813 (m) cm⁻¹.

¹H NMR (250 MHz, CDCl₃): δ = 1.63 [s, 9 H, C(CH₃)₃], 2.48 (d, ⁴*J* = 0.7 Hz, 3 H, ArCH₃), 2.75 (s, 3 H, ArCH₃), 6.75 (s, 1 H, CH_{Ar}), 11.93 (s, 1 H, OH).

¹³C NMR (75 MHz, CDCl₃): δ = 21.4, 22.1 (ArCH₃), 28.3 [OC(*C*H₃)₃], 85.0 [OC(CH₃)₃], 106.8, 112.5 (C), 117.4 (CH_{Ar}), 117.5 (C), 146.4, 147.9 (C_{Ar}), 165.2, 170.0 (C_{Ar}OH, CO).

MS (GC-EI, 70 eV): m/z (%) = 247 (4) [M⁺], 191 (34), 174 (40), 173 (100), 57 (29).

HRMS (EI, 70 eV): m/z [M⁺] calcd for C₁₄H₁₇NO₃: 247.12029; found: 247.12041.

Methyl 3-Cyano-5-ethyl-6-hydroxy-2,4-dimethylbenzoate (6e)

Starting with **5** (186 mg, 0.9 mmol), CH_2Cl_2 (3.0 mL), molecular sieves (4 Å, 0.4 g), TiCl₄ (0.10 mL, 0.9 mmol), and **3n** (371 mg, 1.29 mmol), **6e** was obtained after 21 h and isolated by column chromatography (silica gel; *n*-heptane–EtOAc, 10:1).

Yield: 96 mg (44%); colourless solid; mp 95–96 °C; $R_f = 0.30$ (hep-tanes–EtOAc, 10:1).

IR (KBr): 3432 (br, m), 2974 (s), 2962 (s), 2216 (s), 1660 (s), 1571 (s), 1366 (s), 1326 (s), 1209 (s), 947 (m) cm⁻¹.

¹H NMR (250 MHz, CDCl₃): δ = 1.07 (t, ³*J* = 7.5 Hz, 3 H, CH₂CH₃), 2.49 (s, 3 H, ArCH₃), 2.67 (q, ³*J* = 7.5 Hz, 2 H, CH₂CH₃), 2.70 (s, 3 H, ArCH₃), 3.97 (s, 3 H, OCH₃), 12.05 (s, 1 H, OH).

¹³C NMR (75 MHz, CDCl₃): δ = 12.8 (CH₂CH₃), 18.2 (ArCH₃), 19.5 (CH₂), 21.7 (ArCH₃), 52.6 (OCH₃), 107.0, 110.6, 118.0 (2 × C_{Ar}, CN), 130.1, 143.4, 145.3 (C_{Ar}), 163.1, 171.6 (C_{Ar}OH, CO). MS (EI, 70 eV): *m/z* (%) = 233 (87) [M⁺], 202 (73), 201 (100), 186 (62), 174 (49), 173 (97), 158 (34), 130 (17).

Anal. Calcd for $C_{13}H_{15}NO_3$: C, 66.94; H, 6.48; N, 6.00. Found: C, 66.99; H, 6.64; N, 5.80.

Ethyl 3-Cyano-5-ethyl-6-hydroxy-2,4-dimethylbenzoate (6f)

Starting with **5** (189 mg, 1.0 mmol), CH_2Cl_2 (3.0 mL), molecular sieves (4 Å, 0.4 g), $TiCl_4$ (0.11 mL, 1.0 mmol), and **3d** (400 mg, 1.3 mmol), **6f** was obtained after 26 h and isolated by column chromatography (silica gel; *n*-heptane–EtOAc, 10:1).

Yield: 138 mg (58%); colourless solid; mp 48–49 °C; $R_f = 0.33$ (heptanes–EtOAc, 10:1).

IR (KBr): 3441 (br, m), 2978 (s), 2943 (m), 2879 (m), 2218 (s), 1654 (s), 1399 (s), 1377 (s), 1208 (s), 824 (m).

¹H NMR (250 MHz, CDCl₃): δ = 1.07 (t, ³*J* = 7.4 Hz, 3 H, ArCH₂CH₃), 1.44 (t, ³*J* = 7.1 Hz, 3 H, OCH₂CH₃), 2.49 (s, 3 H, ArCH₃), 2.68 (q, ³*J* = 7.4 Hz, 2 H, ArCH₂CH₃), 2.73 (s, 3 H, ArCH₃), 4.45 (q, ³*J* = 7.1 Hz, 2 H, OCH₂CH₃), 12.14 (s, 1 H, OH).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 12.8, 14.0 (CH₂CH₃), 18.2 (ArCH₃), 19.5 (ArCH₂), 21.8 (ArCH₃), 62.3 (OCH₂), 107.0, 110.7, 118.1 (2 \times C_{Ar}, CN), 130.1, 143.4, 145.2 (C_{Ar}), 163.2, 171.2 (C_{Ar}OH, CO).

MS (EI, 70 eV): *m*/*z* (%) = 247 (40) [M⁺], 202 (29), 201 (100), 186 (14), 173 (99), 158 (10).

Anal. Calcd for $C_{14}H_{17}NO_3$: C, 68.00; H, 6.93; N, 5.66. Found: C, 68.34; H, 7.07; N, 5.49.

Acknowledgment

Financial support by the State of Mecklenburg-Vorpommern (scholarship for M.S.) is gratefully acknowledged.

References

- Kleemann, A.; Engel, J.; Kutscher, B.; Reichert, D. *Pharmaceutical Substances: Syntheses, Patents, Applications*, 4th ed.; Thieme: Stuttgart, 2001, 241, 488, 553, 825, 1154, 1598.
- (2) Ford, R. E.; Knowles, P.; Lunt, E.; Marshall, S. M.; Penrose, A. J. J. Med. Chem. 1986, 29, 538.
- (3) Klunder, J. M.; Hargrave, K. D.; West, M. A.; Cullen, E.; Pal, K. J. Med. Chem. 1992, 35, 1887.
- (4) Collin, S.; El Tayar, N.; van de Waterbeemd, H.; Moureau, F.; Vercauteren, D. P.; Durant, F.; Langlois, M.; Testa, B. *Eur. J. Med. Chem.* **1989**, *24*, 163.
- (5) Benedini, F.; Bertolini, G.; Cereda, R.; Dona, G.; Gromo, G. J. Med. Chem. 1995, 38, 130.
- (6) Zwaagstra, M. E.; Timmerman, H.; Tamura, M.; Tohma, T.; Wada, Y. J. Med. Chem. 1997, 40, 1075.
- (7) Zwaagstra, M. E.; Timmerman, H.; Abdoelgafoer, R. S.; Zhang, M. Q. *Eur. J. Med. Chem.* **1996**, *31*, 861.
- (8) Pires, J. R.; Saito, C.; Gomes, S. L.; Giesbrecht, A. M.; Amaral, A. T. d. *J. Med. Chem.* **2001**, *44*, 3673.
- (9) Fletcher, S. R.; Burkamp, F.; Blurton, P.; Cheng, S. K. F.; Clarkson, R.; O' Connor, D.; Spinks, D.; Tudge, M.; van Niel, M. B.; Patel, S.; Chapman, K. *J. Med. Chem.* **2002**, *45*, 492.
- (10) Nielsen, F. E.; Jacobsen, P.; Worsaae, A.; Arkhammar, P. O. G.; Wahl, P.; Hansen, J. B. *Bioorg. Med. Chem. Lett.* 2004, *14*, 5727.

- (11) van Zandt, M. C.; Sibley, E. O.; McCann, E. E.; Combs, K. J.; Flam, B.; Sawicki, D. R.; Sabetta, A.; Carrington, A.; Sredy, J.; Howard, E.; Mitschler, A.; Podjarny, A. D. *Bioorg. Med. Chem.* **2004**, *12*, 5661.
- (12) Paulini, R.; Lerner, C.; Diederich, F.; Jakob-Roetne, R.; Zuercher, G.; Borroni, E. *Helv. Chim. Acta* 2006, *89*, 1856.
- (13) Zanon, J.; Klapars, A.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 2890.
- (14) (a) Ellis, G. P.; Romney-Alexander, T. M. Chem. Rev. 1987, 87, 779. (b) Sundermeier, M.; Zapf, A.; Beller, M. Eur. J. Inorg. Chem. 2003, 3513. (c) Cassar, L.; Foà, M.; Montanari, F.; Marinelli, G. P. J. Organomet. Chem. 1979, 173, 335. (d) Sakakibara, Y.; Okuda, F.; Shimoyabashi, A.; Kirino, K.; Sakai, M.; Uchino, N.; Takagi, K. Bull. Chem. Soc. Jpn. 1988, 61, 1985. (e) Sakakibara, Y.; Ido, Y.; Sasaki, K.; Sakai, M.; Uchino, N. Bull. Chem. Soc. Jpn. 1993, 66, 2776. (f) Takagi, K.; Okamoto, T.; Sakakibara, Y.; Oka, S. Chem. Lett. 1973, 471. (g) Sekiya, A.; Ishikawa, N. Chem. Lett. 1975, 277. (h) Takagi, K.; Okamoto, T.; Sakakibara, Y.; Ohno, A.; Oka, S.; Hayama, N. Bull. Chem. Soc. Jpn. 1975, 48, 3298. (i) Dalton, J. R.; Regen, S. L. J. Org. Chem. 1979, 44, 4443. (j) Akita, Y.; Shimazaki, M.; Ohta, A. Synthesis 1981, 974. (k) Chatani, N.; Hanafusa, T. J. Org. Chem. 1986, 51, 4714. (1) Takagi, K.; Sasaki, K.; Sakakibara, Y. Bull. Chem. Soc. Jpn. 1991, 64, 1118. (m) Anderson, Y.; Långström, B. J. Chem. Soc., Perkin Trans. 1 1994, 1395. (n) Anderson, B. A.; Bell, E. C.; Ginah, F. O.; Harn, N. K.; Pagh, K. M.; Wepsiec, J. P. J. Org. Chem. 1998, 63, 8224. (o) Okano, T.; Kiji, J.; Toyooka, Y. Chem. Lett. 1998, 425. (p) Maligres, P. E. Waters, M. S.; Fleitz, F.; Askin, D. Tetrahedron Lett. 1999, 40, 8193. (q) Jin, F.; Confalone, P. N. Tetrahedron Lett. 2000, 41, 3271. (r) Sundermeier, M.; Zapf, A.; Beller, M.; Sans, J. Tetrahedron Lett. 2001, 42, 6707. (s) Ramnauth, J.; Bhardwaj, N.; Renton, P.; Rakhit, S.; Maddaford, S. Synlett 2003, 2237. (t) Sundermeier, M.; Zapf, A.; Mutyala, S.; Baumann, W.; Sans, J.; Weiss, S.; Beller, M. Chem. Eur. J. 2003, 9, 1828. (u) Sundermeier, M.; Zapf, A.; Beller, M. Angew. Chem. Int. Ed. 2003, 42, 1661. (v) Sundermeier, J.; Mutyala, S.; Zapf, A.; Spannenberg, A.; Beller, M. J. Organomet. Chem. 2003, 684, 50. (w) Schareina, T.; Zapf, A.; Beller, M. Chem. Commun. 2004, 1388.
- (15) Houben, J.; Fischer, W. *Chem. Ber.* 1933, *66*, 339.
 (16) (a) Takashi, Y.; Shigeki, N.; Toshiyuki, O.; Toyoo, N.; Masateru, K. *Chem. Pharm. Bull.* 1984, *32*, 4466.
 (b) van Zandt, M. C.; Sibley, E. O.; McCann, E. E.; Combs, K. J.; Flam, B.; Sawicki, D. R.; Sabetta, A.; Carrington, A.;

Sredy, J.; Howard, E.; Mitschler, A.; Podjarny, A. D. *Bioorg. Med. Chem.* **2004**, *12*, 5661.

- (17) (a) Nelson, P. H.; Carr, S. F.; Devens, B. H.; Eugui, E. M.; Franco, F. J. Med. Chem. **1996**, *39*, 4181. (b) Srivastava, R. R.; Collibee, S. E. Tetrahedron Lett. **2004**, *45*, 8895.
- (18) Kopp, F.; Wunderlich, S.; Knochel, P. Chem. Commun. 2007, 20, 2075.
- (19) (a) Taylor, E. C.; Katz, A. H.; McKillop, A. *Tetrahedron Lett.* **1984**, 25, 5473. (b) Sargent, M. V. J. Chem. Soc., *Perkin Trans. 1* **1987**, 231.
- (20) (a) Schmidt, H.-W.; Junek, H. *Liebigs Ann. Chem.* 1979, 2005. (b) Schmidt, H.-W.; Klade, M. *Liebigs Ann. Chem.* 1988, 257.
- (21) Leaver, D.; Vass, J. D. R. J. Chem. Soc. 1965, 1629.
- (22) Baker, S. R.; Crombie, L.; Dove, R. V.; Slack, D. A. J. Chem. Soc., Perkin Trans. 1 1979, 677.
- (23) See for example: (a) Dilthey, W.; Schommer, W.; Trösken, O. *Chem. Ber.* 1933, 66, 1627. (b) Noland, W. E.; Kuryla, W. C.; Lange, R. F. J. Am. Chem. Soc. 1959, 81, 6010.
 (c) Boulton, A. J.; Mathur, S. S. J. Org. Chem. 1973, 38, 1054. (d) Ciganek, E. J. Org. Chem. 1969, 34, 1923.
 (e) Hopf, H.; Lenich, T. Chem. Ber. 1974, 107, 1891.
 (f) Sasaki, T.; Ishibashi, Y.; Ohno, M. J. Chem. Res., Miniprint 1984, 7, 1972.
- (24) Barbero, A.; Pulido, F. J. Synthesis 2004, 401.
- (25) Fatunsin, O.; Shkoor, M.; Riahi, A.; Dede, R.; Reinke, H.; Langer, P. Synlett 2009, 201.
- (26) For the first [3+3] cyclizations of 1,3-bis(silyloxy)-1,3butadienes, see: Chan, T.-H.; Brownbridge, P. J. Am. Chem. Soc. 1980, 102, 3534.
- (27) For a review of [3+3] cyclizations of 1,3-bis(silyloxy)-1,3butadienes, see: Feist, H.; Langer, P. *Synthesis* 2007, 327.
- (28) For a review of 1,3-bis(silyloxy)-1,3-butadienes in general, see: Langer, P. Synthesis 2002, 441.
- (29) Salon, J.; Milata, V.; Pronayova, N.; Lesko, J. Monatsh. Chem. 2000, 131, 293.
- (30) (a) Brownbridge, P.; Chan, T. H.; Brook, M. A.; Kang, G. J. *Can. J. Chem.* **1983**, *61*, 688. (b) Hirai, K.; Ojima, I. *Tetrahedron Lett.* **1983**, *24*, 785.
- (31) CCDC-716950 contain all crystallographic details of this publication and is available free of charge at: www.ccdc.cam.ac.uk/conts/retrieving.html or can be ordered from the following address: Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, UK; Fax: +44(1223)336033, or deposit@ccdc.cam.ac.uk.
- (32) Buttke, K.; Niclas, H.-J. Synth. Commun. 1994, 24, 3241.