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Abstract

The reaction of the sodium salt of the monoanion, nido-[2,3-(Si(CH3)3)2-2,3-C2B4H5]
�, with (chloromethyl)dimethylchlorosilane

in a 1:1 molar ratio produced the BðcageÞ-substituted cluster, nido-5-ClCH2Si(CH3)2-2,3-(Si(CH3)3)2-2,3-C2B4H5 (1), in 81% yield.

This product (1) was reacted further with the lithium salt of [closo-1-R-1,2-C2B10H10]
� monoanion (R¼Me, Ph) to give the novel

linked and mixed C2B4/C2B10 carborane species, 1-Me-2-[50-SiMe2CH2-2
0,30-(SiMe3)2-2

0,30-C2B4H5]-1,2-C2B10H10 (2), 1-Ph-2-[50-
SiMe2CH2-2

0,30-(SiMe3)2-2
0,30-C2B4H5]-1,2-C2B10H10 (3), in yields of 76% and 81%, respectively.

� 2003 Elsevier B.V. All rights reserved.
The study of the coordination chemistry of carborane

clusters derived from the 1-R-2-R0-1,2-C2B10H10 and 2-

R-n-R0-2,n-C2B4H6 (n ¼ 3, 4; R, R0 ¼H or a CðcageÞ
derivative) cage systems have most often been studied

separately [1–7]. Since each cage system offers its own

attractions, the targeted syntheses of specific linked-

carborane compounds containing both large and small

coordinating cages capable of having charges ranging
from )1 to )4 could lead to a series of ligands having

unique properties. As a first step in the development of

such compounds, we report herein the synthesis and

characterization of the novel linked and mixed C2B4/

C2B10 carborane cages that are envisioned to be the

precursors to the desired ligands for a number of un-

usual metallacarborane complexes.
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The reaction of the sodium salt of the [nido-2,3-

(Si(CH3)3)2-2,3-C2B4H5]
� anion [8,9] with (chlorom-

ethyl)dimethylchlorosilane, in a 1:1 molar ratio in

diethyl ether, followed by extraction and purification,

produced a new unique-BðcageÞ-substituted small cage

carborane, nido-5-ClCH2Si(CH3)2-2,3-(Si(CH3)3)2-2,3-

C2B4H5 (1) in 81% yield (Scheme 1) [10]. The reaction of

1 with the lithium salt of the [closo-1-R-1,2-C2B10H10]
�

anion (R¼Me, Ph) in 1:1 molar ratio in diethyl ether,

followed by extraction and purification, produced the

novel silyl-bridged, mixed carborane species, 1-R-2-

[50-SiMe2CH2-2
0; 30-(SiMe3)2-2

0; 30-C2B4H5]-1,2-C2B10H10

[R¼Me (2) and Ph (3)], in yields of 76% and 81%, re-

spectively [11,12]. Unfortunately, compounds 2 and 3

are viscous liquids, so they could not be structurally

characterized by X-ray diffraction. However, their ele-
mental analyses and spectroscopic data are all consistent

with the structures shown for these compounds in

Scheme 1. The 1H NMR spectra of all the three com-

pounds show resonances in the d ¼ �1:82 to )1.20 ppm

range, which are characteristic for the B–H–B bridge

hydrogens of the smaller cage [8,9]. In addition, reso-

nances for the hydrogens in the various alkyl and/or aryl
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Scheme 1.

Y. Zhu et al. / Inorganic Chemistry Communications 6 (2003) 1344–1346 1345
groups (CH3, C6H5, Si–CH3 and CH2) were all found in

their expected regions of the 1H NMR spectra. The 13C

NMR spectra of compounds 2 and 3 confirm the pres-

ence of both the C2B4 and C2B10-cage carbons, as well
as those in the different substituent groups and are all

consistent with the proposed structures. The 11B{H}

NMR spectrum of 1 shows three resonances with a 1:2:1

peak area ratio. The broad singlet at d ¼ 14:87 ppm is

due to the unique boron [B(5) in the usual numbering

system], while the doublets at d ¼ 0:91 and d ¼ �50:21
ppm are due to the basal and apical BHs, respectively.

This spectrum is quite typical for the nido-5-R-2,3-
(SiMe3)2-2,3-C2B4H5 carboranes [13]. As expected,

these peaks are still retained essentially in their same

positions of the 11B{H} NMR spectra of 2 and 3, in

addition to those observed for the C2B10-cages [14].

The synthesis shown in Scheme 1 is a general one that

could be used to couple different carborane polyhedra to

produce a series of interesting and potentially useful

ansa-ligands. Such work is currently underway in our
laboratories.
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