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Tris(trichlorosilyl)tetrelide Anions and a Comparative Study of 
Their Donor Qualities 

Julian Teichmann,[a]# Chantal Kunkel,[a]# Isabelle Georg,[a] Maximilian Moxter,[a] Tobias Santowski,[a] 

Michael Bolte,[a] Hans-Wolfram Lerner,[a] Stefan Bade,[b] Matthias Wagner*[a] 

Abstract: Trichlorosilylated tetrelides [(Cl3Si)3E]− have been 

prepared by adding 1 equiv of a soluble Cl− salt to (Cl3Si)4Si (E = Si) 

or 4 Si2Cl6/GeCl4 (E = Ge). To assess their donor qualities, the 

anions [(Cl3Si)3E]− (E = C, Si, Ge) have been treated with BCl3, AlCl3, 

and GaCl3. BCl3 and GaCl3 give 1:1 adducts with the anionic centers. 

AlCl3 leads to Cl− abstraction from [(Cl3Si)3E]− with formation of 

(Cl3Si)4E (E = Si or Ge). (Cl3Si)4Ge  is cleanly converted to the 

perhydrogenated (H3Si)4Ge by use of Li[AlH4]. Another case of Cl− 

abstraction was observed for [(Cl3Si)3Ge·GaCl3]−, which reacts with 

GaCl3 to afford the neutral dimer ((Cl3Si)3Ge−GaCl2)2. 

Oligosilanes are precursors in the chemical vapor deposition 
(CVD) of amorphous Si-based materials for use in thin-film solar 
cells. The spectrum of absorbed light can be widened to shorter 
or longer wavelengths through the incorporation of C or Ge 
atoms, respectively.[1] Yet, the simultaneous deposition of 
individual silanes and germanes suffers from separation effects, 
which lead to Si- and Ge-enriched areas and thereby reduce the 
photovoltaic efficiency of the device. Mixed-element precursors 
containing Si and Ge covalently linked to each other offer a 
solution to the problem, but the number of available compounds 
is very limited.[2–5] Future progress in the field will therefore 
depend on the development of additional access routes to well-
defined Si-Ge oligomers.[6]  
Oligotetrels are also interesting in their own right, because of the 
−* conjugation along the oligomer backbones[7] and a 
tendency for skeletal rearrangements. To manipulate the 
electronic structures and reactivities of oligotetrels, one can 
decorate the chains with strongly electron-withdrawing 
substituents or incorporate low-valent, lone-pair bearing tetrel 
centers. Still today, most oligotetrels carry hydrogen or organyl 
substituents.[8] Far fewer examples are known of perhalogenated 
derivatives,[9] which means lost opportunities given that already 
the simplest member of the family, Si2Cl6, reacts substantially 
different from its methylated relative Si2Me6: (i) Tertiary amines 
suffice to catalyze the disproportionation of Si2Cl6 according to  4 
Si2Cl6 → (Cl3Si)4Si + 3 SiCl4 and thereby open an access route 
to the perchlorinated neo-pentasilane.[10,11] (ii) In the presence of 
soluble chloride salts, Si2Cl6 undergoes heterolytic cleavage of 
its Si−Si bond to form SiCl4 and the [SiCl3]− anion,[12,13] a 
versatile intermediate for the in situ generation of higher oligo- 
and organosilanes.[14] (iii) The challenging activation of Si2Me6, 
on the other hand, requires the presence of powerful transition-
metal catalysts.[15] Representatives of exhaustively Cl3Si-
substituted tetrelides are the methanide [(Cl3Si)3C]− ([1]−)[16–18] 
and the silanide [(Cl3Si)3Si]− ([2]−).[19,20] A corresponding 
uncharged species A also exists (Figure 1).[21] The related 

germanium compound was obtained through catenation of the 
Ge(II) adducts GeCl2(IDipp) and GeCl2(dioxane), which stops at 
the stage of ((IDipp)Cl2Ge)Ge(GeCl3)2 (B; IDipp = 1,3-bis(2,6-
diisopropylphenyl)imidazol-2-ylidene).[22] A comparable 
compound, [(Cl3Si)2P]− ([C]−), has also been reported for the 
pnictogens.[23] 

 

Figure 1. Cl3Si/Cl3Ge substituted main-group compounds. 

Beckmann, Ketkov, and Mebs characterized the silanide [2]− as 
weakly coordinating anion with an inert lone pair. Likewise, 
Rivard’s GeCl2 catenation does not proceed beyond B, which 
indicates a low nucleophilicity of this compound, too. 
Considering the fundamental importance of such low-valent Si 
and Ge species, a more thorough assessment of their Lewis 
basicities is nevertheless worthwhile. Herein, we first extend the 
series of tetrelides [(Cl3Si)3E]− (E = C, Si) to the germanide 
[(Cl3Si)3Ge]− ([3]−). We then show that all three anions [1]−−[3]− 
are surprisingly reactive toward various electrophiles and 
structurally characterize their adducts [(Cl3Si)3E·GaCl3]− (E = C, 
Si, Ge]. Finally, we disclose the neutral species 
((Cl3Si)3Ge−GaCl2)2 and (Cl3Si)4Ge, which are relevant for the 
preparation of single-source, mixed-element CVD precursors 
such as (H3Si)4Ge. 
The methanide [1]− is accessible in >90% yield from CCl4 and in 

situ-generated [SiCl3]− (Scheme 1).[18] The silanide [2]− was first 

identified on the basis of 29Si NMR spectroscopy[13] and later 

structurally characterized by Beckmann, Ketkov, and Mebs,[19] 

who isolated [2]− as a side product of the synthesis of 

SiCl2(IDipp).[24] Their subsequent targeted protocol involves two 

steps: (i) (Cl3Si)4Si in SiCl4 is subjected to a protodesilylation 

reaction using 1 equiv of ethereal HCl.[25] (ii) The obtained 

(Cl3Si)3SiH is then deprotonated with PMP to obtain [PMP−H][2] 

in yields of 96% (PMP = 1,2,2,6,6-pentamethylpiperidine; less 

bulky, more nucleophilic amines were found not suitable for this 

reaction).[19] To save the deprotonation step, we performed the 

desilylation of (Cl3Si)4Si using Cl− ions without H+ present: The 

reaction of 1 equiv of [R4N]Cl with (Cl3Si)4Si resulted in the 

heterolytic cleavage of one Si−Si bond and directly furnished the 

silanide salts [R4N][2] (R = Et, nBu).[9,20] The germanide salt 

[nBu4N][3] was prepared by adding 4 equiv of Si2Cl6 to an 

equimolar mixture of GeCl4 and [nBu4N]Cl in CH2Cl2.[26] A 1:1:1 

mixture of Si2Cl6, GeCl4, and [nBu4N]Cl in CH2Cl2 cleanly gave 

SiCl4 and [nBu4N][GeCl3] (Scheme 1), as proven by X-ray 

crystallography.[26,27] Treatment of [nBu4N][GeCl3] in CH2Cl2 with 

3 equiv of Si2Cl6 again resulted in the formation of [nBu4N][3], 

which confirmed the role of [GeCl3]− as the first intermediate of 

[a] [*] M. Sc. J. Teichmann, M. Sc. C. Kunkel, M. Sc. I. Georg, Dr. M. 

Moxter, M. Sc.T Santowski, Dr. M. Bolte, Dr. H.-W. Lerner, Prof. Dr. 

M. Wagner 

Institut für Anorganische Chemie 

Goethe-Universität Frankfurt 

Max-von-Laue-Strasse 7, 60438 Frankfurt (Main) (Germany) 

E-mail: Matthias.Wagner@chemie.uni-frankfurt.de 

 

[b] Dr. S. Bade 

Evonik Resource Efficiency GmbH, Untere Kanalstraße 3, 79618 

Rheinfelden, Germany 

 

# These authors contributed equally 

  

10.1002/chem.201806298

A
cc

ep
te

d 
M

an
us

cr
ip

t

Chemistry - A European Journal

This article is protected by copyright. All rights reserved.



COMMUNICATION          

 
 
 
 

the reaction cascade leading to [3]−: analogous to the case of 

CCl4,[18] chlorophilic attack of [SiCl3]− on GeCl4 removes a Cl+ 

cation. However, while [CCl3]− is nucleophilic enough to bite 

back into SiCl4 and form Cl3C−SiCl3,[18] [GeCl3]− behaves inert 

toward SiCl4.[28] Toward the more reactive Si2Cl6, [GeCl3]− likely 

acts as a Cl− donor to afford GeCl2 and [SiCl3]−/SiCl4, which 

subsequently combine to establish a first Ge−Si bond in a 

putative [Cl2GeSiCl3]− anion. A repetition of analogous steps 

ultimately furnishes the anion [(Cl3Si)3Ge]− ([3]−). [R4N][1] and 

[R4N][3] are stable over the long term under inert conditions, 

whereas [R4N][2] decomposes in CH2Cl2 solution at room 

temperature over a period of several days to give the 

cyclohexasilane-chloride diadduct [R4N]2[1,1-

(Cl3Si)2Si6Cl10⋅2Cl][12] as the main product. 

Scheme 1 compiles the solid-state structures of the anions 

[1]−−[3]−. For a discussion of the trigonal-planar [1]−, see 

references[17,18] and the Supporting Information of this paper. 

The Si and Ge centers in [2]− and [3]− are strongly pyramidalized 

((SiSiSi) = 290.0°, (SiGeSi) = 285.5°). The average Si−Si 

(2.321 Å) and Ge−Si (2.373 Å) bond lengths are alike those in 

the permethylated analogs [(Me3Si)3Si]− (2.331 Å) and 

[(Me3Si)3Ge]− (2.384 Å).[29,30] Contrary to the sp2-hybridized C 

atom of [1]− with its π-donation into the σ*(Si–Cl) bonds,[31] the 

anionic centers of [2]−/[3]− avoid hybridization and keep their 

lone pairs essentially localized in 3s/4s orbitals.[32] 

 

 

Scheme 1. Synthesis of [Ph4P][1], [Et4N][2], and [Et4N][3] in CH2Cl2 solutions. 

Solid-state structures of [Ph4P][1], [Et4N][2], and [Et4N][3] (shown as ball-and-

stick models; for ORTEP plots, see the ESI). 

 

Scheme 2. Adduct formation of [1]−−[3]− with GaCl3 (rt, CH2Cl2). Solid-state 

structures of [Ph4P][1·GaCl3], [nBu4N][2·GaCl3]·0.5 SiCl4, and [Ph4P][3·GaCl3] 

(shown as ball-and-stick models; for ORTEP plots, see the ESI; 

[Ph4P]+/[nBu4N]+ cations and co-crystallized SiCl4 molecules are omitted for 

clarity). 

It is known that [1]− and [2]− accept protons to afford H[1] and 

H[2].[18,19] We now disclose that they also react with the group III 

Lewis acids E’Cl3 (E’ = B, Al, Ga). Of those, only GaCl3 (1 equiv) 

gave adducts with all three anions that were sufficiently stable 

and well-ordered in the solid state to allow X-ray crystallography 

([Ph4P][1·GaCl3], [nBu4N][2·GaCl3], [Ph4P][3·GaCl3]; Scheme 

2).[33] We observe fully pyramidalized GaCl3 moieties, indicating 

strong donor-acceptor interactions (Cl–Ga–Cl = 107.5(1)° 

−110.8(3)°). Also the [1]− moiety is no longer planar (av. Si–C–Si 

= 110.9°), because the lone pair is now localized between the C 

and Ga atoms. In contrast, the Si–Si–Si and Si–Ge–Si angles in 

[2·GaCl3]− (av. 106.0°) and [3·GaCl3]− (av. 106.1°) are wider than 

those of the free Lewis bases [2]− (av. 96.7°) and [3]− (av. 95.2°) 

and approach the value of the ideal tetrahedral angle (109.5°; cf. 

Bent’s rule[34]).[27] The C–Ga, Si–Ga, and Ge–Ga bond lengths 

amount to 2.094(9) Å,[35] av. 2.422 Å,[36] and 2.460(4) Å, 

respectively. The first value is larger by 0.09 Å than that of the 

corresponding bond in [Li(thf)2][(PhMe2Si)3C·GaCl3] (2.00(1) 

Å),[37] which contains a more Lewis basic methanide donor. The 

length of the dative Si–Ga bond in [2·GaCl3]− compares well to 

that of the covalent Si–Ga bond in the sterically crowded dimer 

(tBu3Si–GaCl2)2 (av. 2.413 Å).[36,38] Suitable systems for 

comparison with [3·GaCl3]− are lacking.[27]  

Differences in the bond orders between the C–Si bond and the 

(Si/Ge)–Si bonds of [1]−−[3]− also become evident from the SiCl3 

NMR resonances: [1]− resonates at δ(29Si) = –10.9 ppm, 

whereas the signals of [2]− and [3]− are detected at lower field 
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strengths with almost identical chemical shift values of δ(29Si) = 

29.5 and 29.7 ppm, respectively. In the case of [1·GaCl3]− vs. 

[1]−, the SiCl3 resonance undergoes a downfield shift to δ(29Si) = 

–3.4  ppm (cf. H[1]: –2.6 ppm).[18] The resonances of the other 

two adducts experience almost identical upfield shifts to δ(29Si) = 

11.9 ppm ([2·GaCl3]−; cf. H[2]: 5.5 ppm)[19] and 11.3 ppm 

([3·GaCl3]−). The smaller spread in the chemical shift values of 

the three adducts compared to the free anions reflects a smaller 

difference in the bond orders between the respective central 

atom and its SiCl3 substituents. 
Compounds of the type [2·GaCl3]− and [3·GaCl3]− are promising 

precursors for the fabrication of Ga-doped Si and Si/Ge layers. 

However, the gas-phase deposition of such materials requires 

uncharged, volatile species. Taking [3·GaCl3]− as a 

representative example, we tested whether one Cl− ion is 

abstracted by excess GaCl3. Indeed, the neutral dimer 

((Cl3Si)3Ge−GaCl2)2, (4)2, forms in a one-pot reaction from a 

mixture of [Et4N][3] and 2 equiv of GaCl3 in CH2Cl2. After 

extraction with n-hexane, (4)2 crystallized from the extract in 40% 

yield. The centrosymmetric solid-state structure features a 

Ga2Cl2 ring with tetracoordinate Ga atoms (Scheme 3).  

 

Scheme 3. Cl− abstraction reactions of [3]− with GaCl3 and AlCl3 (rt, CH2Cl2) 

and hydrogenation reaction of 5 to give 5H. Solid-state structures of the neutral 

products (4)2 and 5 (shown as ball-and-stick models; for ORTEP plots, see the 

ESI). 

The covalent Ge−Ga bond (2.4071(6) Å) is shorter by 0.053 Å 

than the related dative bond in [3·GaCl3]− and the Si–Ge–Si 

bond angle (av. 109.9°) is expanded a little further compared to 

the situation in the adduct. The 29Si NMR signal of the dimer 

appears at 7.8 ppm, and is even more upfield-shifted than the 

signal of [3·GaCl3]−. 

Different from the cases of BCl3[33] and GaCl3, no adducts of 

[1]−−[3]− with the stronger Lewis acid AlCl3 could be isolated so 

far. The 29Si NMR spectrum of equimolar mixtures of AlCl3 and 

[nBu4N][2] in CH2Cl2 rather showed two resonances assignable 

to (Cl3Si)4Si (3.5, −80.9 ppm),[11] which was obtained in 36% 

yield. The analogous experiment repeated with [Ph4P][3] led to 
29Si NMR signals at 14.2 and 3.8 ppm. The first signal 

possesses a similar chemical shift value as the corresponding 

resonances of [3·BCl3]− and [3·GaCl3]− and is thus tentatively 

assigned to a Ge→Al adduct [3·AlCl3]−. The signal at 3.8 ppm 

arises from the previously unknown compound (Cl3Si)4Ge (5). 

Removal of all volatiles under reduced pressure and extraction 

of the solid residue with n-hexane ultimately gave single crystals 

of (Cl3Si)4Ge in 24% yield (unoptimized; Scheme 3). Compound 

5 possesses a tetrahedral structure with an average Ge−Si bond 

length of 2.366 Å[36] (cf. (Me3Si)4Ge: av. Ge−Si = 2.371 Å[39]).  
With regard to the mechanism underlying the assembly of 5, the 

following facts are important: (i) A conversion of the putative 

[3·AlCl3]− adduct to 5 was never observed, even at 50 °C (sealed 

NMR tube). It thus seems unlikely that [3·AlCl3]− plays a 

significant role for product formation. (ii) [Ph4P][AlCl4] was 

repeatedly isolated as byproduct of 5, thereby indicating that 

AlCl3 abstracts one [Cl]− ion directly from [3]− to generate 

(Cl3Si)2Ge=SiCl2. (iii) The yield of 5 is not increased by added 

SiCl4, which rules out a mere “chlorosilylation” of the Ge=Si 

double bond. We rather envisage a more complex scenario 

involving oligomers of (Cl3Si)2Ge=SiCl2 and their subsequent 

rearrangement to afford 5. A propensity of the Ge atom to 

occupy the central position of Si/Ge neo-structures is obvious 

from the AlCl3-catalyzed rearrangement of (Me3Si)3Si(GeMe3) to 

give (Me3Si)4Ge.[40] 

Quantitative Cl/H exchange to furnish (H3Si)4Ge (5H; Scheme 3) 

occurred upon treatment of 5 with Li[AlH4] (1H and 29Si NMR 

spectroscopy, GC/MS). The only alternative route to 5H available 

to-date uses finely dispersed Na metal together with pyrophoric 

and toxic SiH4/GeH4 to produce silylgermanides 

NaGeHn(SiH3)3−n (n = 0−2; 4h, 100 °C). After silylation with 

C4F9SO3SiH3, 5H was isolated from the resulting mixture 

GeHn(SiH3)4−n (n = 0−2) by fractionating condensation and 

subsequent preparative gas chromatography.[2] Our new three-

step process GeCl4 → [3]− → 5 → 5H is more practical than the 

previous protocol and thus represents a major advance toward 

the development of mixed oligotetrels.  

In summary, we have disclosed a facile protocol for the 

synthesis of the germanide [(Cl3Si)3Ge]− ([3]−) and thereby 

extended the homologous series of trichlorosilylated tetrelides 

[(Cl3Si)3E]− (E = C, Si, Ge; [1]−−[3]−). Contrary to a priori 

expectations, the anions readily form 1:1 adducts with BCl3 and 

GaCl3. The addition of 2 equiv of GaCl3 to [3]− results in Cl−-ion 

abstraction from the primary product [3·GaCl3]− and generates 

the neutral dimer ((Cl3Si)3Ge−GaCl2)2, (4)2. Cl− abstraction (this 

time from an SiCl3 substituent) is also key to the reactivity of 

AlCl3 toward [2]− and [3]−. Here, skeletal rearrangements afford 

the neo-pentatetrels (Cl3Si)4Si and (Cl3Si)4Ge (5), respectively. 

Compound 5 can quantitatively be transformed into its 

perhydrogenated congener 5H, a promising precursor for the 

deposition of Si/Ge-based thin films. As an outlook, we 

emphasize that [nBu4N][2] reacts with C2Cl6 to give the ethylene-

dianion salt [nBu4N]2[(Cl3Si)2C−C(SiCl3)2].[18] The scope of this 

Si−C bond-forming reaction, which is conceptually similar to the 

use of [(Cl3Si)2P]− and chloroalkanes for the formation of P−C 

bonds,[23] will be explored in the future. 
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