

CHEMISTRY A European Journal

Accepted Article Title: Tris(trichlorosilyl)tetrelide Anions and a Comparative Study of Their Donor Qualities Authors: Julian Teichmann, Chantal Kunkel, Isabelle Georg, Maximilian Moxter, Tobias Santowski, Michael Bolte, Hans-Wolfram Lerner, Stefan Bade, and Matthias Wagner This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article. To be cited as: Chem. Eur. J. 10.1002/chem.201806298 Link to VoR: http://dx.doi.org/10.1002/chem.201806298 **Supported by** ACES WILEY-VCH

WILEY-VCH

Tris(trichlorosilyl)tetrelide Anions and a Comparative Study of Their Donor Qualities

Julian Teichmann,^{[a]#} Chantal Kunkel,^{[a]#} Isabelle Georg,^[a] Maximilian Moxter,^[a] Tobias Santowski,^[a] Michael Bolte,^[a] Hans-Wolfram Lerner,^[a] Stefan Bade,^[b] Matthias Wagner*^[a]

Abstract: Trichlorosilylated tetrelides $[(Cl_3Si)_3E]^-$ have been prepared by adding 1 equiv of a soluble CI⁻ salt to $(Cl_3Si)_4Si$ (E = Si) or 4 Si₂Cl₆/GeCl₄ (E = Ge). To assess their donor qualities, the anions $[(Cl_3Si)_3E]^-$ (E = C, Si, Ge) have been treated with BCl₃, AlCl₃, and GaCl₃. BCl₃ and GaCl₃ give 1:1 adducts with the anionic centers. AlCl₃ leads to Cl⁻ abstraction from $[(Cl_3Si)_3E]^-$ with formation of $(Cl_3Si)_4E$ (E = Si or Ge). $(Cl_3Si)_4Ge$ is cleanly converted to the perhydrogenated (H₃Si)₄Ge by use of Li[AlH₄]. Another case of Cl⁻ abstraction was observed for $[(Cl_3Si)_3Ge-GaCl_3]^-$, which reacts with GaCl₃ to afford the neutral dimer $((Cl_3Si)_3Ge-GaCl_2)_2$.

Oligosilanes are precursors in the chemical vapor deposition (CVD) of amorphous Si-based materials for use in thin-film solar cells. The spectrum of absorbed light can be widened to shorter or longer wavelengths through the incorporation of C or Ge atoms, respectively.^[11] Yet, the simultaneous deposition of individual silanes and germanes suffers from separation effects, which lead to Si- and Ge-enriched areas and thereby reduce the photovoltaic efficiency of the device. Mixed-element precursors containing Si and Ge covalently linked to each other offer a solution to the problem, but the number of available compounds is very limited.^[2–5] Future progress in the field will therefore depend on the development of additional access routes to well-defined Si-Ge oligomers.^[6]

Oligotetrels are also interesting in their own right, because of the $\sigma\text{-}\sigma^{*}$ conjugation along the oligomer backbones^{[7]} and a tendency for skeletal rearrangements. To manipulate the electronic structures and reactivities of oligotetrels, one can decorate the chains with strongly electron-withdrawing substituents or incorporate low-valent, lone-pair bearing tetrel centers. Still today, most oligotetrels carry hydrogen or organyl substituents.^[8] Far fewer examples are known of perhalogenated derivatives,^[9] which means lost opportunities given that already the simplest member of the family, Si₂Cl₆, reacts substantially different from its methylated relative Si₂Me₆: (i) Tertiary amines suffice to catalyze the disproportionation of Si₂Cl₆ according to 4 $Si_2Cl_6 \rightarrow (Cl_3Si)_4Si + 3 SiCl_4$ and thereby open an access route to the perchlorinated *neo*-pentasilane.^[10,11] (ii) In the presence of soluble chloride salts, Si_2CI_6 undergoes heterolytic cleavage of its Si-Si bond to form SiCl₄ and the [SiCl₃]⁻ anion, [12,13] a versatile intermediate for the in situ generation of higher oligoand organosilanes.^[14] (iii) The challenging activation of Si₂Me₆, on the other hand, requires the presence of powerful transitionmetal catalysts.^[15] Representatives of exhaustively Cl₃Sisubstituted tetrelides are the methanide [(Cl₃Si)₃C]⁻ ([**1**]⁻)^[16-18] and the silanide [(Cl₃Si)₃Si]⁻ ([**2**]⁻).^[19,20] A corresponding uncharged species **A** also exists (Figure 1).^[21] The related

 [a] [*] M. Sc. J. Teichmann, M. Sc. C. Kunkel, M. Sc. I. Georg, Dr. M. Moxter, M. Sc.T Santowski, Dr. M. Bolte, Dr. H.-W. Lerner, Prof. Dr. M. Wagner
Institut für Anorganische Chemie
Goethe-Universität Frankfurt
Max-von-Laue-Strasse 7, 60438 Frankfurt (Main) (Germany)
E-mail: Matthias.Wagner@chemie.uni-frankfurt.de

- [b] Dr. S. Bade Evonik Resource Efficiency GmbH, Untere Kanalstraße 3, 79618 Rheinfelden, Germany
- # These authors contributed equally

germanium compound was obtained through catenation of the Ge(II) adducts GeCl₂(IDipp) and GeCl₂(dioxane), which stops at the stage of ((IDipp)Cl₂Ge)Ge(GeCl₃)₂ (**B**; IDipp = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene).^[22] A comparable compound, [(Cl₃Si)₂P]⁻ ([**C**]⁻), has also been reported for the pnictogens.^[23]

Beckmann, Ketkov, and Mebs characterized the silanide [2] - as weakly coordinating anion with an inert lone pair. Likewise, Rivard's GeCl₂ catenation does not proceed beyond B, which indicates a low nucleophilicity of this compound, too. Considering the fundamental importance of such low-valent Si and Ge species, a more thorough assessment of their Lewis basicities is nevertheless worthwhile. Herein, we first extend the series of tetrelides $[(Cl_3Si)_3E]^-$ (E = C, Si) to the germanide $[(Cl_3Si)_3Ge]^-$ ([3]⁻). We then show that all three anions [1]⁻-[3]⁻ are surprisingly reactive toward various electrophiles and structurally characterize their adducts $[(Cl_3Si)_3E \cdot GaCl_3]^-$ (E = C, Finally, we disclose Si. Gel. the neutral species ((Cl₃Si)₃Ge-GaCl₂)₂ and (Cl₃Si)₄Ge, which are relevant for the preparation of single-source, mixed-element CVD precursors such as (H₃Si)₄Ge.

The methanide [1]⁻ is accessible in >90% yield from CCl₄ and in situ-generated [SiCl₃]⁻ (Scheme 1).^[18] The silanide [2]⁻ was first identified on the basis of ²⁹Si NMR spectroscopy^[13] and later structurally characterized by Beckmann, Ketkov, and Mebs.^[19] who isolated [2] as a side product of the synthesis of SiCl₂(IDipp).^[24] Their subsequent targeted protocol involves two steps: (i) (Cl₃Si)₄Si in SiCl₄ is subjected to a protodesilylation reaction using 1 equiv of ethereal HCI.[25] (ii) The obtained (Cl₃Si)₃SiH is then deprotonated with PMP to obtain [PMP-H][2] in yields of 96% (PMP = 1,2,2,6,6-pentamethylpiperidine; less bulky, more nucleophilic amines were found not suitable for this reaction).^[19] To save the deprotonation step, we performed the desilvlation of (Cl₃Si)₄Si using Cl⁻ ions without H⁺ present: The reaction of 1 equiv of [R₄N]Cl with (Cl₃Si)₄Si resulted in the heterolytic cleavage of one Si-Si bond and directly furnished the silanide salts [R₄N][2] (R = Et, nBu).^[9,20] The germanide salt [nBu₄N][3] was prepared by adding 4 equiv of Si₂Cl₆ to an equimolar mixture of GeCl₄ and [nBu₄N]Cl in CH₂Cl₂.^[26] A 1:1:1 mixture of Si₂Cl₆, GeCl₄, and [nBu₄N]Cl in CH₂Cl₂ cleanly gave SiCl₄ and [*n*Bu₄N][GeCl₃] (Scheme 1), as proven by X-ray crystallography.^[26,27] Treatment of [nBu₄N][GeCl₃] in CH₂Cl₂ with 3 equiv of Si_2Cl_6 again resulted in the formation of $[nBu_4N][3]$, which confirmed the role of [GeCl₃]⁻ as the first intermediate of

the reaction cascade leading to [3]-: analogous to the case of CCl₄,^[18] chlorophilic attack of [SiCl₃]⁻ on GeCl₄ removes a Cl⁺ cation. However, while [CCl3]⁻ is nucleophilic enough to bite back into SiCl₄ and form Cl₃C-SiCl₃,^[18] [GeCl₃]⁻ behaves inert toward SiCl₄.^[28] Toward the more reactive Si₂Cl₆, $[GeCl_3]^-$ likely acts as a Cl⁻ donor to afford GeCl₂ and [SiCl₃]⁻/SiCl₄, which subsequently combine to establish a first Ge-Si bond in a putative [Cl₂GeSiCl₃]⁻ anion. A repetition of analogous steps ultimately furnishes the anion $[(Cl_3Si)_3Ge]^-$ ([3]⁻). [R₄N][1] and [R₄N][3] are stable over the long term under inert conditions, whereas [R₄N][2] decomposes in CH₂Cl₂ solution at room temperature over a period of several days to give the cyclohexasilane-chloride diadduct [R₄N]₂[1,1-(Cl₃Si)₂Si₆Cl₁₀·2Cl]^[12] as the main product.

Scheme 1 compiles the solid-state structures of the anions [1]⁻–[3]⁻. For a discussion of the trigonal-planar [1]⁻, see references^[17,18] and the Supporting Information of this paper. The Si and Ge centers in [2]⁻ and [3]⁻ are strongly pyramidalized (Σ (SiSiSi) = 290.0°, Σ (SiGeSi) = 285.5°). The average Si–Si (2.321 Å) and Ge–Si (2.373 Å) bond lengths are alike those in the permethylated analogs [(Me₃Si)₃Si]⁻ (2.331 Å) and [(Me₃Si)₃Ge]⁻ (2.384 Å).^[29,30] Contrary to the sp²-hybridized C atom of [1]⁻ with its π -donation into the σ^* (Si–Cl) bonds,^[31] the anionic centers of [2]⁻/[3]⁻ avoid hybridization and keep their lone pairs essentially localized in 3s/4s orbitals.^[32]

 $\label{eq:Scheme 1. Synthesis of [Ph_4P][1], [Et_4N][2], and [Et_4N][3] in CH_2Cl_2 solutions. Solid-state structures of [Ph_4P][1], [Et_4N][2], and [Et_4N][3] (shown as ball-and-stick models; for ORTEP plots, see the ESI). \\$

Scheme 2. Adduct formation of $[1]^-[3]^-$ with GaCl₃ (rt, CH₂Cl₂). Solid-state structures of [Ph₄P][1·GaCl₃], [*n*Bu₄N][2·GaCl₃].0.5 SiCl₄, and [Ph₄P][3·GaCl₃] (shown as ball-and-stick models; for ORTEP plots, see the ESI; [Ph₄P]⁺[*n*Bu₄N]⁺ cations and co-crystallized SiCl₄ molecules are omitted for clarity).

It is known that [1]⁻ and [2]⁻ accept protons to afford H[1] and H[2].^[18,19] We now disclose that they also react with the group III Lewis acids $E'Cl_3$ (E' = B, AI, Ga). Of those, only $GaCl_3$ (1 equiv) gave adducts with all three anions that were sufficiently stable and well-ordered in the solid state to allow X-ray crystallography $([Ph_4P][\mathbf{1}\cdot GaCl_3], [nBu_4N][\mathbf{2}\cdot GaCl_3], [Ph_4P][\mathbf{3}\cdot GaCl_3]; Scheme$ 2).^[33] We observe fully pyramidalized GaCl₃ moieties, indicating strong donor-acceptor interactions (CI-Ga-CI = 107.5(1)° -110.8(3)°). Also the [1]⁻ moiety is no longer planar (av. Si-C-Si = 110.9°), because the lone pair is now localized between the C and Ga atoms. In contrast, the Si-Si-Si and Si-Ge-Si angles in [2·GaCl₃]⁻ (av. 106.0°) and [3·GaCl₃]⁻ (av. 106.1°) are wider than those of the free Lewis bases [2]⁻ (av. 96.7°) and [3]⁻ (av. 95.2°) and approach the value of the ideal tetrahedral angle (109.5°; cf. Bent's rule^[34]).^[27] The C-Ga, Si-Ga, and Ge-Ga bond lengths amount to 2.094(9) Å,[35] av. 2.422 Å,[36] and 2.460(4) Å, respectively. The first value is larger by 0.09 Å than that of the corresponding bond in $[Li(thf)_2][(PhMe_2Si)_3C\cdot GaCl_3]$ (2.00(1) Å),[37] which contains a more Lewis basic methanide donor. The length of the dative Si-Ga bond in [2·GaCl3] compares well to that of the covalent Si-Ga bond in the sterically crowded dimer (tBu₃Si-GaCl₂)₂ (av. 2.413 Å).^[36,38] Suitable systems for comparison with $[\mathbf{3} \cdot GaCl_3]^-$ are lacking.^[27]

Differences in the bond orders between the C–Si bond and the (Si/Ge)–Si bonds of [1]⁻–[3]⁻ also become evident from the SiCl₃ NMR resonances: [1]⁻ resonates at δ ⁽²⁹Si) = –10.9 ppm, whereas the signals of [2]⁻ and [3]⁻ are detected at lower field

10.1002/chem.201806298

WILEY-VCH

strengths with almost identical chemical shift values of δ ⁽²⁹Si) = 29.5 and 29.7 ppm, respectively. In the case of $[1 \cdot \text{GaCl}_3]^- \text{ vs.}$ [1]⁻, the SiCl₃ resonance undergoes a downfield shift to δ ⁽²⁹Si) = -3.4 ppm (*cf.* H[1]: -2.6 ppm).^[18] The resonances of the other two adducts experience almost identical upfield shifts to δ ⁽²⁹Si) = 11.9 ppm ([2 \cdot \text{GaCl}_3]^-; *cf.* H[2]: 5.5 ppm)^[19] and 11.3 ppm ([3 \cdot \text{GaCl}_3]^-). The smaller spread in the chemical shift values of the three adducts compared to the free anions reflects a smaller difference in the bond orders between the respective central atom and its SiCl₃ substituents.

Compounds of the type $[2 \cdot GaCl_3]^-$ and $[3 \cdot GaCl_3]^-$ are promising precursors for the fabrication of Ga-doped Si and Si/Ge layers. However, the gas-phase deposition of such materials requires uncharged, volatile species. Taking $[3 \cdot GaCl_3]^-$ as a representative example, we tested whether one Cl⁻ ion is abstracted by excess GaCl_3. Indeed, the neutral dimer ((Cl_3Si)_3Ge-GaCl_2)_2, (4)_2, forms in a one-pot reaction from a mixture of [Et_4N][3] and 2 equiv of GaCl_3 in CH_2Cl_2. After extraction with *n*-hexane, (4)₂ crystallized from the extract in 40% yield. The centrosymmetric solid-state structure features a Ga_2Cl_2 ring with tetracoordinate Ga atoms (Scheme 3).

Scheme 3. Cl⁻ abstraction reactions of [3]⁻ with GaCl₃ and AlCl₃ (rt, CH₂Cl₂) and hydrogenation reaction of 5 to give 5^H. Solid-state structures of the neutral products (4)₂ and 5 (shown as ball-and-stick models; for ORTEP plots, see the ESI).

The covalent Ge–Ga bond (2.4071(6) Å) is shorter by 0.053 Å than the related dative bond in $[3 \cdot GaCl_3]^-$ and the Si–Ge–Si bond angle (av. 109.9°) is expanded a little further compared to the situation in the adduct. The ²⁹Si NMR signal of the dimer appears at 7.8 ppm, and is even more upfield-shifted than the signal of $[3 \cdot GaCl_3]^-$.

Different from the cases of $BCl_3^{[33]}$ and $GaCl_3$, no adducts of $[1]^--[3]^-$ with the stronger Lewis acid AlCl₃ could be isolated so far. The ²⁹Si NMR spectrum of equimolar mixtures of AlCl₃ and $[nBu_4N][2]$ in CH₂Cl₂ rather showed two resonances assignable to (Cl₃Si)₄Si (3.5, -80.9 ppm),^[11] which was obtained in 36%

yield. The analogous experiment repeated with [Ph₄P][**3**] led to ²⁹Si NMR signals at 14.2 and 3.8 ppm. The first signal possesses a similar chemical shift value as the corresponding resonances of [**3**·BCl₃]⁻ and [**3**·GaCl₃]⁻ and is thus tentatively assigned to a Ge \rightarrow Al adduct [**3**·AlCl₃]⁻. The signal at 3.8 ppm arises from the previously unknown compound (Cl₃Si)₄Ge (**5**). Removal of all volatiles under reduced pressure and extraction of the solid residue with *n*-hexane ultimately gave single crystals of (Cl₃Si)₄Ge in 24% yield (unoptimized; Scheme 3). Compound **5** possesses a tetrahedral structure with an average Ge–Si bond length of 2.366 Å^[36] (*cf.* (Me₃Si)₄Ge: av. Ge–Si = 2.371 Å^[39]).

With regard to the mechanism underlying the assembly of **5**, the following facts are important: (i) A conversion of the putative $[\mathbf{3} \cdot \text{AlCl}_3]^-$ adduct to **5** was never observed, even at 50 °C (sealed NMR tube). It thus seems unlikely that $[\mathbf{3} \cdot \text{AlCl}_3]^-$ plays a significant role for product formation. (ii) $[\text{Ph}_4\text{P}][\text{AlCl}_4]$ was repeatedly isolated as byproduct of **5**, thereby indicating that AlCl₃ abstracts one $[\text{Cl}]^-$ ion directly from $[\mathbf{3}]^-$ to generate $(\text{Cl}_3\text{Si})_2\text{Ge}=\text{SiCl}_2$. (iii) The yield of **5** is not increased by added SiCl₄, which rules out a mere "chlorosilylation" of the Ge=Si double bond. We rather envisage a more complex scenario involving oligomers of $(\text{Cl}_3\text{Si})_2\text{Ge}=\text{SiCl}_2$ and their subsequent rearrangement to afford **5**. A propensity of the Ge atom to occupy the central position of Si/Ge *neo*-structures is obvious from the AlCl₃-catalyzed rearrangement of (Me₃Si)₃Si(GeMe₃) to give (Me₃Si)₄Ge.^[40]

Quantitative CI/H exchange to furnish (H₃Si)₄Ge (5^H; Scheme 3) occurred upon treatment of 5 with Li[AlH₄] (¹H and ²⁹Si NMR spectroscopy, GC/MS). The only alternative route to 5^H available to-date uses finely dispersed Na metal together with pyrophoric and toxic SiH₄/GeH₄ to produce silylgermanides NaGeH_n(SiH₃)_{3-n} (n = 0-2; 4h, 100 °C). After silvlation with C₄F₉SO₃SiH₃, 5^H was isolated from the resulting mixture $GeH_n(SiH_3)_{4-n}$ (*n* = 0-2) by fractionating condensation and subsequent preparative gas chromatography.^[2] Our new threestep process $\text{GeCl}_4 \rightarrow [3]^- \rightarrow 5 \rightarrow 5^H$ is more practical than the previous protocol and thus represents a major advance toward the development of mixed oligotetrels.

In summary, we have disclosed a facile protocol for the synthesis of the germanide [(Cl₃Si)₃Ge]⁻ ([3]⁻) and thereby extended the homologous series of trichlorosilylated tetrelides $[(Cl_3Si)_3E]^-$ (E = C, Si, Ge; $[1]^--[3]^-$). Contrary to a priori expectations, the anions readily form 1:1 adducts with BCl3 and GaCl₃. The addition of 2 equiv of GaCl₃ to [3]⁻ results in Cl⁻-ion abstraction from the primary product $[\mathbf{3} \cdot GaCl_3]^-$ and generates the neutral dimer ((Cl₃Si)₃Ge-GaCl₂)₂, (4)₂. Cl⁻ abstraction (this time from an SiCl₃ substituent) is also key to the reactivity of AICl₃ toward [2]⁻ and [3]⁻. Here, skeletal rearrangements afford the neo-pentatetrels (Cl₃Si)₄Si and (Cl₃Si)₄Ge (5), respectively. Compound 5 can quantitatively be transformed into its perhydrogenated congener 5^H, a promising precursor for the deposition of Si/Ge-based thin films. As an outlook, we emphasize that [nBu₄N][2] reacts with C₂Cl₆ to give the ethylenedianion salt [nBu₄N]₂[(Cl₃Si)₂C-C(SiCl₃)₂].^[18] The scope of this Si-C bond-forming reaction, which is conceptually similar to the use of [(Cl₃Si)₂P]⁻ and chloroalkanes for the formation of P-C bonds,^[23] will be explored in the future.

Competing interests: J.T., H.-W.-L. and M.W. are inventors on patent applications EP 17173940.2, EP 17173959.2, EP 18206148.1, and EP 18206150.7 submitted by Evonik Industries AG, which cover the synthesis and use of $[3]^-$, $[3\cdot GaCl_3]^-$, $(4)_2$, and 5.

Acknowledgements

The authors are grateful to the Evonik Resource Efficiency GmbH, Rheinfelden (Germany), for financial funding and the generous donation of GeCl₄ and Si₂Cl₆. I.G. wishes to thank the *Evonik Foundation* for a PhD grant.

Keywords: basicity • germanium • hydrogenation • main group elements • silicon •

- T. Lobreyer, J. Oeler, W. Sundermeyer, *Chem. Ber.* 1991, 124, 2405– 2410.
- T. Lobreyer, H. Oberhammer, W. Sundermeyer, Angew. Chem. Int. Ed. 1993, 32, 586–587; Angew. Chem. 1993, 105, 587-588.
- [3] T. Lobreyer, J. Oeler, W. Sundermeyer, H. Oberhammer, *Chem. Ber.* 1993, *126*, 665–668.
- [4] C. J. Ritter, C. Hu, A. V. G. Chizmeshya, J. Tolle, D. Klewer, I. S. T. Tsong, J. Kouvetakis, J. Am. Chem. Soc. 2005, 127, 9855–9864.
- [5] J. B. Tice, Y.-Y. Fang, J. Tolle, A. Chizmeshya, J. Kouvetakis, *Chem. Mater.* 2008, 20, 4374–4385.
- [6] Selected examples: a) L. Müller, W.-W. du Mont, F. Ruthe, P. G. Jones, H. C. Marsmann, J. Organomet. Chem. 1999, 579, 156–163; b) S. L. Hinchley, L. J. McLachlan, H. E. Robertson, D. W. H. Rankin, E. Seppälä, W.-W. du Mont, *Inorg. Chim. Acta* 2007, 360, 1323–1331; c) J. Hlina, R. Zitz, H. Wagner, F. Stella, J. Baumgartner, C. Marschner, *Inorg. Chim. Acta* 2014, 422, 120–133.
- [7] R. D. Miller, J. Michl, Chem. Rev. 1989, 89, 1359–1410.
- [8] Selected examples: a) J. Fischer, J. Baumgartner, C. Marschner, Science 2005, 310, 825–825; b) C. S. Weinert, Dalton Trans. 2009, 1691–1699; c) C. R. Samanamu, M. L. Amadoruge, A. C. Schrick, C. Chen, J. A. Golen, A. L. Rheingold, N. F. Materer, C. S. Weinert, Organometallics 2012, 31, 4374–4385; d) K. V Zaitsev, A. A. Kapranov, A. V Churakov, O. K. Poleshchuk, Y. F. Oprunenko, B. N. Tarasevich, G. S. Zaitseva, S. S. Karlov, Organometallics 2013, 32, 6500–6510; e) A. Tsurusaki, Y. Koyama, S. Kyushin, J. Am. Chem. Soc. 2017, 139, 3982–3985.
- [9] J. Teichmann, M. Wagner, Chem. Commun. 2018, 54, 1397–1412.
- [10] G. Urry, J. Inorg. Nucl. Chem. **1964**, 26, 409–414.
- [11] F. Meyer-Wegner, A. Nadj, M. Bolte, N. Auner, M. Wagner, M. C. Holthausen, H.-W. Lerner, *Chem. - Eur. J.* 2011, *17*, 4715–4719.
- [12] J. Tillmann, L. Meyer, J. I. Schweizer, M. Bolte, H.-W. Lemer, M. Wagner, M. C. Holthausen, *Chem. Eur. J.* 2014, 20, 9234–9239.
- [13] J. Teichmann, M. Bursch, B. Köstler, M. Bolte, H.-W. Lerner, S. Grimme, M. Wagner, *Inorg. Chem.* 2017, *56*, 8683–8688.
- [14] a) J. Tillmann, F. Meyer-Wegner, A. Nadj, J. Becker-Baldus, T. Sinke, M. Bolte, M. C. Holthausen, M. Wagner, H.-W. Lerner, *Inorg. Chem.* **2012**, *51*, 8599–8606; b) J. Tillmann, M. Moxter, M. Bolte, H.-W. Lerner, M. Wagner, *Inorg. Chem.* **2015**, *54*, 9611–9618; c) J. Tillmann, J. H. Wender, U. Bahr, M. Bolte, H.-W. Lerner, M. C. Holthausen, M. Wagner,

Angew. Chem. Int. Ed. 2015, 54, 5429–5433; Angew. Chem. 2015, 127, 5519-5523.

- [15] M. B. Ansell, D. E. Roberts, F. G. N. Cloke, O. Navarro, J. Spencer, Angew. Chem. Int. Ed. 2015, 54, 5578–5582; Angew. Chem. 2015, 127, 5670–5674.
- [16] J. Tillmann, PhD thesis, Universität Frankfurt, Germany, 2015.
- [17] U. Böhme, M. Gerwig, F. Gründler, E. Brendler, E. Kroke, *Eur. J. Inorg. Chem.* 2016, 5028–5035.
- [18] I. Georg, J. Teichmann, M. Bursch, J. Tillmann, B. Endeward, M. Bolte, H. W. Lerner, S. Grimme, M. Wagner, J. Am. Chem. Soc. 2018, 140, 9696–9708.
- [19] M. Olaru, M. F. Hesse, E. Rychagova, S. Ketkov, S. Mebs, J. Beckmann, *Angew. Chemie Int. Ed.* **2017**, *56*, 16490–16494; *Angew. Chem.* **2017**, *129*, 16713-16717.
- [20] M. Moxter, PhD Thesis, Universität Frankfurt, Germany, 2017.
- [21] J. I. Schweizer, M. G. Scheibel, M. Diefenbach, F. Neumeyer, C. Würtele, N. Kulminskaya, R. Linser, N. Auner, S. Schneider, M. C. Holthausen, Angew. Chem. Int. Ed. 2016, 55, 1782–1786; Angew. Chem. 2016, 128, 1814-1818.
- [22] S. M. I. Al-Rafia, M. R. Momeni, R. McDonald, M. J. Ferguson, A. Brown, E. Rivard, Angew. Chem. Int. Ed. 2013, 52, 6390–6395; Angew. Chem. 2013, 125, 6518-6523.
- [23] M. B. Geeson, C. C. Cummins, Science 2018, 359, 1383–1385.
- [24] R. S. Ghadwal, H. W. Roesky, S. Merkel, J. Henn, D. Stalke, Angew. Chem. Int. Ed. 2009, 48, 5683–5686; Angew. Chem. 2009, 121, 5793-5796.
- [25] F. Höfler, R. Jannach, W. Raml, Z. Anorg. Allg. Chem. 1977, 428, 75– 82.
- [26] [3]- and [GeCl₃]- can equally well be prepared by using [Et₄N]Cl or [Ph₄P]Cl as Cl⁻ sources.
- [27] See the Supporting Information for more details.
- [28] An independent sample, prepared from [*n*Bu₄N][GeCl₃] and SiCl₄ in CD₂Cl₂, showed exclusively the ²⁹Si NMR signal of SiCl₄, even after prolonged storage and heating to 120 °C.
- [29] G. Becker, H.-M. Hartmann, A. Münch, H. Riffel, Z. Anorg. Allg. Chem. 1985, 530, 29–42.
- [30] W. Teng, K. Ruhlandt-Senge, Chem. Eur. J. 2005, 11, 2462–2470.
- [31] M. A. Brook, *Silicon in Organic, Organometallic and Polymer Chemistry*, John Wiley & Sons, New York, **2000**.
- [32] H. B. Wedler, P. Wendelboe, P. P. Power, Organometallics 2018, 37, 2929–2936.
- [33] For details regarding the syntheses and NMR spectra of the BCl₃ adducts of [2]⁻ and [3]⁻, see the Supporting Information. The solid-state structure of [nBu₄N][3·BCl₃] is also discussed in the Supporting Information; for the solid-state structure of [nBu₄N][2·BCl₃], which can only be taken as a confirmation of connectivity, see our private communication to the CCDC (no. 1879422).
- [34] H. A. Bent, Chem. Rev. 1961, 61, 275–311.
- [35] The molecule is disordered. Bond lengths and angles were measured only for the set of atoms located on the major occupied sites.
- [36] The asymmetric unit contains more than one crystallographically independent molecule. Bond lengths and angles were averaged over all non-disordered molecules.
- [37] J. L. Atwood, S. G. Bott, P. B. Hitchcock, C. Eaborn, R. S. Shariffudin, J. D. Smith, A. C. Sullivan, J. Chem. Soc., Dalton. Trans. 1987, 747–755.
- [38] N. Wiberg, K. Amelunxen, H.-W. Lerner, H. Nöth, J. Knizek, I. Krossing, Z. Naturforsch., B: J. Chem. Sci. 1998, 53, 333–348.
- [39] S. Freitag, R. Herbst-Irmer, L. Lameyer, D. Stalke, Organometallics 1996, 15, 2839–2841.
- [40] L. Albers, M. A. Meshgi, J. Baumgartner, C. Marschner, T. Müller, Organometallics 2015, 34, 3756–3763.

WILEY-VCH

COMMUNICATION

Entry for the Table of Contents

COMMUNICATION

Julian Teichmann,^{[a]#} Chantal Kunkel,^{[a]#} Isabelle Georg,^[a] Maximilian Moxter,^[a] Tobias Santowski,^[a] Michael Bolte,^[a] Hans-Wolfram Lerner,^[a] Stefan Bade,^[b] Matthias Wagner^{*[a]}

Page No. – Page No.

Tris(trichlorosilyl)tetrelide Anions and a Comparative Study of Their Donor Qualities

Cornerstone added: The trichlorosilylated germanide $[(Cl_3Si)_3Ge]^$ readily accessible from GeCl₄ and Si₂Cl₆/Cl⁻. All tetrelides $[(Cl_3Si)_3E]^-$.^(r) = C, Si, Ge) were found surprisingly nucleophilic and form adducts vith BCl₃ and GaCl₃. The unique $(Cl_3Si)_4Ge$ was obtained through an Alc₁₃induced rearrangement of $[(Cl_3Si)_3Ge]^-$.

- [a] [*] M. Sc. J. Teichmann, M. Sc. C. Kunkel, M. Sc. I. Georg, Dr. M. Moxter, M. Sc.T Santowski, Dr. M. Bolte, Dr. H.-W. Lerner, Prof. Dr. M. Wagner Institut für Anorganische Chemie Goethe-Universität Frankfurt Max-von-Laue-Strasse 7, 60438 Frankfurt (Main) (Germany) E-mail: Matthias.Wagner@chemie.uni-frankfurt.de
- [b] Dr. S. Bade Evonik Resource Efficiency GmbH, Untere Kanalstraße 3, 79618 Rheinfelden, Germany
- # These authors contributed equally

10.1002/chem.201806298