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Abstract—Reaction of trans- and cis-d-silyl-c,d-epoxy-a,b-unsaturated acylsilanes 1 and 9 with cyanide ion in the presence of an
electrophile affords double Brook rearrangement products 10 in an E/Z ratio depending on the cis/trans geometry of the
epoxysilanes.
� 2005 Elsevier Ltd. All rights reserved.
During our investigation of chirality transfer in twofold
Brook rearrangement-mediated tandem reactions of
d-silyl-c,d-epoxy-a,b-unsaturated acylsilanes 1a1 with a
cyanide ion (1a!2) (Scheme 1), we observed that gener-
ation of an alkoxide, a possible intermediate in the reac-
tion, by treatment of a-silyl alcohol (2Z,4E)-31 with
KN(SiMe3)2 (KHMDS) in the presence of MeI afforded
O-silyl cyanohydrin derivatives 4 in 78% yield with an
5E:5Z ratio of 1:5.0, in sharp contrast to the fact that
only (3E,5E)-2 was obtained from the reaction of 1a
with KCN/MeI (Scheme 2).1,2 A similar trend was also
observed for other bases and for the addition of 18-
crown-6. Interestingly, the E/Z ratio in 4 was dependent
upon the olefin geometries in 3. Thus, (2E,4E)-3 affor-
ded 4 in an 5E:5Z ratio of 1:33. These striking results
prompted us to study this in some detail.3,4

The observed Z-selectivities can be rationalized in terms
of the ground-state conformation at C6 and the transi-
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Scheme 1. Tandem reaction of 1a with an electrophile.
tion structures in the Brook rearrangement5 (Scheme
3). X-ray analysis of (2Z,4E)-3 indicates that a
ground-state conformation has a silyl group aligned
almost perpendicularly to the plane of the olefin and
an OH group in an inside position (Fig. 1).6,7 Assuming
that the conformation in the solid state is similar to the
conformation in solution, the most plausible pathway
from 3 to 4 may involve the formation of a silicate inter-
mediate 6a,8 which can be directly derived from the most
stable conformation of 3, and the C–Si bond adopts a
coplanar arrangement with the p-orbitals of the double
bond, followed by Brook rearrangement and reaction
with an electrophile. These findings are in good agree-
ment with those reported by Panek9 on the catalytic
osmylation of C1-oxygenated allylsilanes and with those
described in the literature for allylsilanes.10

On the other hand, the result for epoxysilane 1a, in
which only (E)-2 was formed, suggests that an alkoxide
nes; Electrophilic substitution.
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Figure 1. ORTEP drawing of (2Z,4E)-3.
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5 was not involved as an intermediate in the major path-
way or that it was involved but was too short-lived to
change its conformation to the most stable one 5a.
One possible explanation of this result is that the C–O
bond cleavage of epoxide and Si–O bond formation in
silicate intermediate 8, generated from addition of cya-
nide ion to 1a, occur in a concerted fashion to provide
silicates 6a and b, leading to (5Z)-7 and (5E)-7, respec-
tively.11 Although the migrating silyl groups in both
6a and b are located in the position to ensure best over-
lap with the p-bond, the latter seems to be formed faster
with rotation about the C5–C6 bond from 8.12 To test
this possibility and to preclude the possibility that the
difference in the stereochemical outcome between the
reactions of 1a and 3 is due to the difference in the reac-
tion conditions used,13 we conducted the reaction using
cis-epoxide derivatives 9a, which would give an (5Z)-7
as a major product if the above assumption is true.
When 9a was treated with KCN/NCCO2Et under the
same conditions as those employed for 1a, (5Z)-10a
was obtained as a major isomer (E/Z = 1/2.8),14 sup-
porting our assumption mentioned above (Scheme 4).
The lower selectivity observed for the cis derivative
may be explained by eclipsing interaction between the
hydrogen at C-4 and the tert-butyldimethylsilyl group
in the formation of silicate as shown in 11.

Next, to obtain further support for our assumption of
silicate intermediacy, we carried out reactions using
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1b,c and 9b,c, which bear electronically and sterically
different silyl groups, with the expectation that in the
case of 9c, the silicate ion 6a would have a sufficiently
long lifetime for conversion to rotamer 6b, leading to
a thermodynamically stable E-isomer, by introduction
of a phenyl group on the silyl group, and consequently
the E/Z ratio in 10 would increase (Scheme 5).15 While
in the case of triisopropylsilyl derivatives 1b and 9b,
more sterically demanding than tert-butyldimethylsilyl
group, essentially the same stereochemical outcome as
that observed for tert-butyldimethylsilyl derivatives 1a
and 9a was observed, tert-butyldiphenylsilyl derivative
9c, more sterically demanding but more silicate ion-sta-
bilizing than the tert-butyldimethylsilyl group, afforded
10c in an increased ratio (E/Z: 1/1.5 vs 1/2.8) of E-iso-
mer to Z-isomer, supporting the above assumption.

In conclusion, we demonstrated the possibility that a
c-anion-induced ring opening in a,b-epoxysilanes pro-
vides an allylsilicate intermediate in a concerted fashion
and demonstrated that the intermediate does not have a
sufficient lifetime to allow it to rotate freely about the
C(a)–C(b) bond and undergoes Brook rearrangement
according to the least motion principle16 to give prod-
ucts in an E/Z ratio depending on the geometry of the
epoxysilanes.
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