This paper is published as part of a Dalton Transactions theme issue on:

Main group chemistry: from molecules to materials

Guest Editor Simon Aldridge University of Oxford, UK

Published in issue 26, 2008 of Dalton Transactions

Images reproduced with permission of Daniel M. German (left) and Vadim Kessler (right)

Papers published in this issue include:

<u>Heteroleptic metal alkoxide "oxoclusters" as molecular models for the sol-gel synthesis of perovskite nanoparticles for bio-imaging applications</u> Gulaim A. Seisenbaeva, Vadim G. Kessler, Robert Pazik and Wieslaw Strek, *Dalton Trans.*, 2008, <u>DOI: 10.1039/b801351a</u>

Hydride encapsulation by molecular alkali-metal clusters Joanna Haywood and Andrew E. H. Wheatley, *Dalton Trans.*, 2008, <u>DOI: 10.1039/b717563a</u>

Manipulation of molecular aggregation and supramolecular structure using self-assembled lithium mixed-anion complexes

J. Jacob Morris, Dugald J. MacDougall, Bruce C. Noll and Kenneth W. Henderson, *Dalton Trans.*, 2008, <u>DOI: 10.1039/b719565f</u>

Toward selective functionalisation of oligosilanes: borane-catalysed dehydrogenative coupling of silanes with thiols

Daniel J. Harrison, David R. Edwards, Robert McDonald and Lisa Rosenberg, *Dalton Trans.*, 2008, DOI: 10.1039/b806270f

Visit the *Dalton Transactions* website for more cutting-edge inorganic and organometallic research <u>www.rsc.org/dalton</u>

Synthesis and structures of crystalline Li, Al and Sn(II) 1-azaallyls and β -diketiminates derived from [Li{ $\mu,\eta^3-N(SiMe_3)C(Ad)C(H)SiMe_3$ }]₂ (Ad = 1-adamantyl)[†]

Laurence Bourget-Merle, Peter B. Hitchcock, Michael F. Lappert* and Philippe G. Merle

Received 4th December 2007, Accepted 31st January 2008 First published as an Advance Article on the web 11th March 2008 DOI: 10.1039/b718728a

The crystalline dimeric 1-azaallyllithium complex [Li{ μ , η^3 -N(SiMe_3)C(Ad)C(H)SiMe_3]₂ (1) was prepared from equivalent portions of Li[CH(SiMe_3)₂] and 1-cyanoadamantane (AdCN). Complex 1 was used as precursor to each of the crystalline complexes **2–8** which were obtained in good yield. By 1-azaallyl ligand transfer, **1** afforded (i) [Al{ η^3 -N(SiMe_3)C(Ad)C(H)SiMe_3}{ κ^1 -N(SiMe_3)C(Ad)= C(H)SiMe_3-*E*}Me] (**5**) with [AlCl₂Me]₂, (ii) [Sn{ η^3 -N(SiMe_3)C(Ad)C(H)SiMe_3}₂] (7) with Sn[N(Si-Me_3)₂]₂, and (iii) [Li(N{C(Ad)=C(H)SiMe_3-*E*}{Si(NN)SiMe_3})(thf)₂] (**8**) with the silylene Si[(NC-H₂Bu')₂C₆H₄-1,2] [= Si(NN)]. By insertion into the C≡N bond of the appropriate cyanoarene RCN, **1** gave the β-diketiminate [Li{ μ -N(SiMe_3)C(Ad)C(H)C(R)NSiMe_3]₂ [R = Ph (**2**), C₆H₄Me-4 (**3**)], and **5** yielded [Al{ κ^2 -N(SiMe_3)C(Ad)C(H)C(Ph)NSiMe_3} κ^1 -N(SiMe_3)C(Ad)=C(H)SiMe_3-*E*}Me] (**6**). The β-diketiminate [Al{ κ^2 -N(SiMe_3)C(Ad)C(H)C(Ph)NSiMe_3}Me₂] (**4**) was prepared from **2** and [AlClMe₂]₂. The X-ray structures of **1** and **3–8** are presented. Multinuclear NMR spectra in C₆D₆ or C₆D₅CD₃ have been recorded for each of **1–8**; such data on **8** revealed that in solution two minor isomers were also present.

Introduction

There has been a long-standing interest in lithium 1-azaallyls (prepared *in situ* and generally not structurally characterised) because of their role in organic synthesis,¹ undergoing a number of C–C bond-forming reactions with electrophiles, as in controlled aldol condensation reactions and the regioselective α -functionalisation of ketones.¹ 1-Azaallylic anions have played a major role in heterocyclic chemistry.² A direct synthesis of enamines from olefins has recently been reported, as in PrⁿCH=CH₂ + HN(CH₂)₄CH₂ + CO + H₂ $\xrightarrow{Cat.}$ BuⁿCH=CHN(CH₂)₄CH₂.³

A 2001 review on 1-azaallylmetal complexes had 144 literature citations.⁴ A variety of metal–ligand coordination modes were identified, including the terminal η^3 - (I), terminal κ^1 - (enamido) (II) and *C*,*N*-chelating-*N*-bridging (III).

Our entry into this field began in 1994, with the disclosure that Li[CH(SiMe_3)_2] with Bu^tCN in Et₂O gave the X-raycharacterised crystalline compound IV;⁵ related reactions are shown in Scheme 1.⁶ Compound IV or its Na or K analogue was used as ligand transfer reagent; relevant to the present studies are data on tin(II),⁷ and aluminium⁸ compounds. The structures of crystalline bis(1-azaallyl)tin(II) complexes are sterically sensitive; *cf.* the X-ray-characterised compounds $Sn[\eta^3-N(SiMe_3)C(Bu^t)C(H)SiMe_3]_2$ (V), $Sn[\eta^3-N(SiMe_3)C(Ph)C(SiMe_3)_2][\kappa^1-N(SiMe_3)C(Ph)=C(SiMe_3)_2]$ and $Sn[\kappa^1-N(SiMe_3)C(Bu^t)=C(H)C_6H_3Me_2-2,5]_2$.⁷ The crystalline MeAl complex VI in solution underwent rapid 1-azaallyl ligand fluxionality^{8b} and, on the basis of multinuclear NMR spectra, the Me₂Al complex VII was assigned to have the ligand in the η^3 -bonding mode **I**.^{8b}

Results and discussion

The results and discussion is divided into two parts, each based on [Li{ $\mu,\eta^3-N(SiMe_3)C(Ad)C(H)SiMe_3$]₂ (1). [Its preparation, from Li[C(H)(SiMe_3)_2]⁹ and AdCN (Ad = 1-adamantyl), has previously been mentioned in outline^{10a} and it has been used as a precursor to P{N(SiMe_3)C(Ad)C(H)SiMe_3}Ph_2.^{10b}] The first part deals with the preparation of 1 and its conversion into two lithium β -diketiminates. Succeeding sections are concerned with its role as precursor to (i) three methylaluminium compounds, (ii) a homoleptic tin(II) 1-azaallyl and (iii) a bulky lithium amide derived from the reaction of 1 with the bis(amino)silylene Si[(NCH₂Bu¹)₂C₆H₄-1,2].

Department of Chemistry, University of Sussex, Brighton, United Kingdom BN1 9QJ. E-mail: m.f.lappert@sussex.ac.uk; Tel: +44 (0)1273 678316 † CCDC reference numbers 668981–668987. For crystallographic data in CIF or other electronic format see DOI: 10.1039/b718728a

Scheme 1 Synthesis of 1-azaallyllithium (IV)⁵ and some of its reactions.⁶

Synthesis and structures of the lithium 1-azaallyl 1 and the β -diketiminates 2 and 3

Their syntheses are shown in Scheme 2; yields (as for **4**-**8**) were not optimised and refer to X-ray-quality crystalline materials. The procedures used are related to those leading to the *tert*-butyl compound **IV** and the β -diketiminate [Li{ μ,κ^2- {N(SiMe₃)C(Ph)CHC(Bu^t)NSiMe₃}]₂ rather than [Li{ μ,κ^2- (N(SiMe₃)C(Ph))₂C(H)}]₂.⁶ Each of **1**-**3** was characterised by satisfactory C, H and N analyses, multinuclear NMR solution spectra, mass spectra and for **1** and **3** by single crystal X-ray diffraction studies.

Scheme 2 Synthesis of the crystalline lithium compounds 1–3.

An ORTEP representation of the molecular structure of crystalline 1 is shown in Fig. 1a; its skeletal core, with bond distances, is found in Fig. 1b. From the latter it is evident that each of the ligands is bound to its lithium atom in an η^3 - rather than the enamido (κ^1)-fashion. The central Li₂N₂ ring is almost planar with the endocyclic angle subtended at each lithium atom (106.4 ±

Fig. 1 (a) ORTEP representation of the structure of 1 (50% thermal ellipsoids) (top); (b) bond distances (Å) in the skeletal core of $[\text{Li}\{\mu,\eta^3-N(SiMe_3)C(Ad)C(H)SiMe_3\}]_2$ (1) (bottom).

 0.9°) wider that at each nitrogen atom (73.6 \pm 0.2 °). The relative disposition of the 1-adamantyl and the adjacent *C*–SiMe₃ is *cisoid* (C9 *vs.* Si2) or *transoid* (C27 *vs.* Si4). Some further geometric parameters of **1** are compared with those of **8** in Table 4.

An ORTEP representation of the molecular structure of the centrosymmetric dimeric lithium β -diketiminate **3** is shown in Fig. 2a; its step-like fused tricyclic skeletal core is sketched in 2D in Fig. 2b. Selected geometric parameters for **3** are compared with those of $[\text{Li}\{\mu,\kappa^2-(N(\text{SiMe}_3)C(\text{Ph}))_2C(\text{H})\}]_2^6$ in Table 1. A less accurate structure of crystalline $[\text{Li}\{\mu,\kappa^2-\{N(\text{SiMe}_3)C(\text{Ph})C(\text{HC})(\text{Bu}^{'})N\text{SiMe}_3\}]_2$ is also available.⁶ The central Li₂N₂ ring of **3** is rhomboidal and the adjacent fused sixmembered rings are boat-shaped with the Li and C2 atoms 0.83 and 0.11 Å out of the N1N2C1C3 plane respectively. The Li atom

Table 1 Bond distances (Å) and selected angles (°) in the skeletal core of $[Li\{\mu,\kappa^2-N(SiMe_3)C(Ad)C(H)C(C_6H_4Me-4)NSiMe_3\}]_2$ (3) and $[Li\{\mu,\kappa^2-(N(SiMe_3)C(Ph))_2C(H)\}]_2^{-6}$

Compound	3	$[Li\{(N(SiMe_3)C(Ph))_2C(H)\}]_2$
Li–N1	1.996(2)	1.952(10)
Li–N2	2.015(5)	1.965(9)
N1-C1	1.303(4)	1.299(6)
N2-C3	1.365(3)	1.337(6)
C1-C2	1.448(4)	1.439(6)
C2-C3	1.378(4)	1.394(7)
Li–N2–Li′	78.3(2)	75.0(4)
N2–Li–N2′	101.7(2)	103.0(4)
N1-Li-N2	101.2(2)	105.0(4)

Fig. 2 (a) ORTEP representation of the structure of 3 (50% thermal ellipsoids) (top); (b) the centrosymmetric core of $[Li{\mu,\kappa^2-N(SiMe_3)C(Ad)C(H)C(C_6H_4Me-4)NSiMe_3}]_2$ (3) (bottom).

has relatively close contacts to the C1 [2.702(6) Å], C3 [2.775(6) Å] and C24 [2.861(6) Å] atoms.

Synthesis and structures of the aluminium compounds 4, 5 and 6

The routes to the crystalline methylaluminium compounds **4–6** are illustrated in Scheme 3. Two dimethylaluminium β -diketiminates related to **4** had previously been reported, albeit using a different methodology: [Al{(N(SiMe₃)C(Ph))₂CH}Me₂] (VIII) had been obtained by methane elimination from AlMe₃ and the appropriate β -diketimine,¹¹ and CH₂[C{C(C₆H₄Me-4)N(SiMe₃)}₂AlMe₂]₂ was similarly prepared from 2AlMe₃ and the corresponding CH₂-bridged bis(β -diketimine).¹² The synthesis of the methylaluminium bis(1-azaallyl) **5** involved the same strategy (Cl/ligand exchange)

as formerly employed for $[Al\{N(SiMe_3)C(Bu^t)C(H)SiMe_3\}_2Me]$ (VI).⁸⁶ The compound **6**, chiral at the Al atom, containing both 1azaallyl and β -diketiminato ligands is currently without precedent.

Compounds **4–6** were characterised by microanalysis (**5**, **6**), multinuclear (¹H, ¹³C, ²⁹Al and ²⁹Si) NMR spectra in C_6D_6 at 293 K (**4**, like **VIII**, ¹¹ was fluxional) and mass spectra (**5**, **6**), as well as single crystal X-ray diffraction.

ORTEP representations of the molecular structures of crystalline complexes **4–6** are shown in Fig. 3, 4 and 5, respectively. Selected geometrical data for the AlN1C1C2C3N2 rings of **4**, **VIII**,¹¹ and **6** are listed in Table 2. The Al atom is 1.0 (**4**), 0.95 (**VIII**) and 1.01 (**6**) Å out of the N1C1C3N2 plane, respectively; for **4** the C2 atom is coplanar with the latter but for the shallowboat rings of **VIII** and **6**, the C2 atom is 0.12 (**VIII**) or 0.17 (**6**) Å out of the N1C1N2 plane.

Fig. 3 ORTEP representation of the structure of 4 (50% thermal ellipsoids).

Comparative geometric data for (i) the enamido fragments of $[Al\{\eta^3-N(SiMe_3)C(R)C(H)SiMe_3\}\{\kappa^1-N(SiMe_3)C(R)=C(H)-SiMe_3-E\}Me]$ [R = Ad (5), R = Bu^t (VI)⁸⁶] and $[Al\{\kappa^2-N(SiMe_3)C(Ph)C(H)C(Ad)NSiMe_3\}\{\kappa^1-N(SiMe_3)C(Ad)=C-(H)SiMe_3-E\}Me]$ (6) and (ii) the η^3 -1-azaallyl fragment of 5 and VI⁸⁶ are listed in Table 3. That the two isomeric 1-azaallyl ligands in

Scheme 3 Synthesis of the crystalline aluminium compounds 4–6.

Fig. 4 ORTEP representation of the structure of 5 (50% thermal ellipsoids).

Fig. 5 ORTEP representation of the structure of 6 (50% thermal ellipsoids).

crystalline **5** and **VI** are distinct is attributed to steric factors which make the formation of the isomeric bis(η^3 -azaallyl)methylalanes energetically unfavourable for steric reasons. Regarding the η^3 -1-azaallylaluminium moiety, the Al atom is 1.55 Å out of the N3C29C30 plane for **6**, 0.76 Å out of the N1C1C2 plane and

Table 2 Selected bond distances (Å) and angles (°) for the $[Al{\kappa^2-N(SiMe_3)C(R)C(H)C(Ph)NSiMe_3}]$ fragment of 4, 6 (R = Ad) and of $[Al{\kappa^2-(N(SiMe_3)C(Ph))_2C(H)}Me_2]$ (VIII) (R = Ph)¹¹

Compound	4	6	VIII
Al-N1	1.9417(12)	1.959(2)	1.914(4)
Al–N2	1.9235(11)	1.924(2)	1.928(4)
N1-C1	1.3350(16)	1.341(3)	1.331(6)
N2-C3	1.3569(15)	1.359(3)	1.336(6)
C1-C2	1.4124(18)	1.415(3)	1.394(6)
C2-C3	1.4018(4)	1.383(3)	1.406(6)
N1-Al-N2	97.01(5)	95.12(9)	97.1(2)
C1C2C3	128.51(12)	126.4(2)	126.8(4)

1.45 Å out of the N2C19C20 plane for **5**, and 0.66 Å out of the N1C1C2 plane or 1.63 Å out of the N2C13C14 plane for **VI**.⁸⁶ The dihedral angles between the N1C1C2 and the N2C19C20 plane of 80° for **5** is to be compared with the 35° between the N1C1C2 and N2C13C14 planes of **VI**.⁸⁶

Synthesis and structure of the bis(η^3 -1-azaallyl)tin(II) complex 7

The crystalline homoleptic 1-azaallyltin(II) compound 7 was prepared in high yield as shown in eqn (1). The use of a metal bis(trimethylsily)amide in a hydrocarbon solvent as precursor is novel in 1-azaallylmetal chemistry and is likely to have some generality and not only in this area of chemistry; it has the advantage that the co-product Li[N(SiMe₃)₂] is volatile and hence readily separated *in vacuo*. We have previously used such a strategy for the synthesis of the homoleptic group 14 metal alkyls M[CH(SiMe₃)₂]₂ (M = Ge, Sn); for the germanium alkyl, in particular, it was the method of choice.¹³

Compound 7 was characterised by microanalysis, EI-mass spectrometry and ¹H, ¹³C, ²⁹Si and ¹¹⁹Sn NMR spectra in deuteriotoluene. The ¹¹⁹Sn chemical shift (δ –377.3 ppm) establishes that in solution both the ligands are bound to the tin atom in the η^3 -1-azaallyl mode I, as also found in the crystal (Fig. 6). In support, it is noted that similar solutions of Sn[η^3 -N(SiMe_3)C(Bu¹)C(H)SiMe_3]₂ (V), Sn[κ^1 -N(SiMe_3)C(Bu¹)= C(H)C₆H₃Me₂-2,5]₂, and Sn[η^3 -N(SiMe₃)C(Ph)=C(SiMe_3)₂][κ^1 -N(SiMe_3)C(Ph)=C(SiMe_3)₂] had ¹¹⁹Sn chemical shifts of δ –387.2, 61.5 and –37.3 ppm, respectively.⁷

An ORTEP representation of the molecular structure of crystalline 7 is shown in Fig. 6, together with selected geometric parameters of its core skeletal atoms. The tin atom is 1.39 Å out of both the N1C2C1 and N2C20C19 planes; the dihedral angle between these two planes is 18° . The core structure of 7 is similar to that of V⁷ or Sn[{N(C₆H₃Prⁱ₂-2,6)}₂CMe]₂ (obtained from Sn[N(SiMe₃)₂]₂ and H[{N(C₆H₃Prⁱ₂-2,6)}₂CMe]).¹⁴

Synthesis, reaction pathway and structure of the crystalline lithium silylamide 8

The crystalline lithium compound **8** was obtained in good yield from equivalent portions of the 1-azaallyllithium compound **1** and the thermally stable bis(amino)silylene Si[(NCH₂Bu^t)₂C₆H₄-1,2] (**IX**)¹⁵ [abbreviated as Si(NN)] in thf, eqn (2).

Table 3 Selected bond lengths (Å) and angles (°) for the enamidoAl fragment of 5, 6 and VI^{8b} and the 1-azaallylAl fragments of 5 and VI^{8b}

C17

 \mathscr{S}

C15

C5

C6

C4

C11

C18

C13

Si2

C16

C.2

СЗ

C8

C12 C7

Compound	6	EnamidoAl of 5	EnamidoAl of VI	1-AzaallylAl of 5	1-AzaallylAl of VI
Al-N3	1.856(2)	1.8471(16) [Al–N2]	1.839(2)	1.9945(15) [Al–N1]	1.998(2) [Al–N1]
$\begin{array}{c} AI \cdots C29 \\ AI \cdots C30 \end{array}$	2.910(2) 3.736(3)	2.8314(18) [AI · · · C19] 3.683(2) [AI · · · C20]	2.816(2) [A1C13] 3.564(2) [A1C14]	2.3748(17) [AI–C1] 2.0399(17) [AI–C2]	2.380(2) [Al–C1] 2.022(2) [Al–C2]
N3-C29	1.451(3)	1.441(2) [N2–C19]	1.445(3) [N2–C13]	1.326(2) [N1–C2]	1.320(3) [N1–C1]
C29-C30	1.348(4)	1.353(2) [C19–C20]	1.34/(3) [C13–C14]	1.46/(2) [C1–C2]	1.468(3) [C1–C2]
Al-N3-C29	122.83(17)	118.38(11) [Al-N2-C19]	117.56(14) [Al-N2-C13]	88.96(10) [Al-N1-C1]	89.2(2) [Al-N1-C1]
N3-C29-C30	119.4(2)	119.50(16) [N2-C19-C20]	119.3(2) [N2-C13-C14]	111.71(14) [N1–C1–C2]	111.8(2) [N1-C1-C2]
N3–Al–C30	33.49(8)	34.96(5) [N2–Al–C20]	38.4(1) [N2–Al–C14]	69.95(7) [N1–A1–C2]	70.1(7) [N1–Al–C2]

Fig. 6 ORTEP representation of the structure of 7 (50% thermal ellipsoids). Selected bond lengths (Å) and angles (°): Sn–N1 2.5466(16), Sn–N2 2.5156(16), Sn–C1 2.312(2), Sn–C19 2.313(2), Sn–C2 2.741(2), Sn–C20 2.718(2), N1–C2 1.309(2), N2–C20 1.309(2), C1–C2 1.454(3), C19–C20 1.451(3); N1–Sn–C1 57.18(6), N2–Sn–C19 57.63(6), N1–Sn–N2 147.88(5), C1–Sn–C19 92.83(7), C19–Sn–N1 99.99(6), N2–Sn–C1 98.24(6), N1–C2–C1 115.18(17), N2–C20–C19 115.42(17).

Plausible routes a, b and c from $1 + IX \rightarrow 8$ are shown in Scheme 4. The first step in pathways a and b is the formation of

the donor-acceptor adduct **X**. In *a*, this is succeeded by (i) the electrocyclic 1,3-N-Si(NN) bond-making with N-Li bond breaking yielding the intermediate **XI**, and (ii) a 1,2-SiMe₃ shift from **XI** with N-Li bond-making furnishing **8**. In *b*, **X** is converted directly into **8**, the electrocyclic rearrangement involving a 1,3-N \rightarrow Si SiMe₃ shift and Li-Si(NN) bond-breaking. As for route *c*, **1** and **IX** are converted directly into **8**, with **XII** as the transition state. The crucial part of *a* is the intermediate **XI**, which may alternatively be derived directly by a 1,1-addition of the fragments Li and N(SiMe₃)C(Ad)C(H)SiMe₃ from **1** to the silylene Si(NN) (**IX**).

There are precedents for the intermediates related to X and XI. As for X, among numerous examples of Si(NN) (IX) behaving as a ligand are the complexes $[Ni{Si(NN)}_4]$,^{16a} $[CuI(PPh_3)_2{Si(NN)}],^{16a}$ and $[Ln(\eta^5-C_5H_5)_3{Si(NN)}]$ (Ln = Y, Yb).^{16b} Related to XI are several compounds obtained from Si(NN) and various salts LiR' in thf, including $[Li{Si(NN)R'}(thf)_n] [R' = Bu', n = 3;^{17} R' = CH(SiMe_3)_2, n =$ 2^{17}_{27} R' = Si(SiMe₃)₃, $n = 2^{17}_{27}$ R' = NR₂, n = 3 (R = Me, Prⁱ)¹⁸]. In contrast to the formation of such 1,1-adducts of Li-R' to Si(NN), treatment of Si(NN) with Li[N(SiMe₃)₂] in thf gave XIIIa,¹⁹ an analogue of 8; likewise Si(NN) and Li[N(Bu¹)SiMe₃] gave XIIIb.¹⁹ Finally, a crucial experiment was that between Si(NN) and Li[N(C₆H₃Me₂-2,6)SiMe₃]: mixing the reagents below 0 $^{\circ}$ C gave XIV as the major product, but at higher temperatures XIV was isomerised yielding XIIIc.18 In the light of the cited earlier data, pathway a (or a') is the most appropriate to account for the formation of 8 from 1 + IX.

The crystalline lithium amide 8 gave satisfactory microanalytical data (C, H, N). An ORTEP representation of

Scheme 4 Alternative routes [(a), (a'), (b), or (c)] from $0.5(1) + IX \rightarrow 8$.

its molecular structure is shown in Fig. 7. Skeletal geometrical parameters of the Li[N{Si(NN)SiMe₃}] and the [NC(Ad)=C(H)SiMe₃-*E*] fragments of **8** are compared with those in [Li(N{Si(NN)SiMe₃}SiMe₃)(tmeda)]¹⁹ (Table 4a) and [Li{ μ,η^3 -N(SiMe₃)C(Ad)C(H)SiMe₃}]₂ (1) (Table 4b), respectively. The three-coordinate Li and C17(Ad) atoms of **8** are each in a distorted trigonal planar environment, while the N3 atom is 0.16 Å out of the LiC17Si1 plane. The SiMe₃ and Ad substituents in **8** are arranged in a *cisoid* manner about the C=C bond. The geometrical parameters of the Li[N{Si(NN)SiMe₃}] fragment of **8** are similar to those of [Li(N{Si(NN)SiMe₃}SiMe₃)(tmeda)].¹⁹

Fig. 7 ORTEP representation of the structure of 7 (50% thermal ellipsoids).

Solutions of **8** in C_6D_6 were examined by various NMR spectral experiments. At ambient temperature, the ¹H NMR spectrum showed three sets of signals, which were assigned to *E*-**8** (major

component, *ca.* 55%), **Z-8** (*ca.* 19%) and the NH-containing compound (apparently due to adventitious hydrolysis of *E-8*); assignments have been made on the basis of NOE experiments. The presence of only two thf signals (α - and β -CH₂) suggests that the thf is not strongly bound and undergoes fast exchange even at this temperature. Two ⁷Li and nine ²⁹Si resonances are consistent with the above assignment. Heating to 90 °C simplified the ¹H NMR multiplets in the aromatic and adamantyl proton areas but no coalescence of the signals belonging to different isomers was observed.

In conclusion, the synthesis, structure and a variety of insertion and ligand transfer reactions of the crystalline dimeric μ , η^{3-1} azaallyllithium compound **1** are described. These furnished in high yield the new crystalline lithium, aluminium and tin(II) complexes **2–8**, five of which have been X-ray-characterised. The preparation of [Sn{ η^{3} -N(SiMe₃)C(Ad)C(H)SiMe₃}₂] (7) by the [N(SiMe₃)₂]⁻/[1-azaallyl]⁻ exchange reaction points to the wider use of metal bis(trimethylsilyl)amides. The reaction between **1** and the silylene Si[(NCH₂Bu^t)₂C₆H₄-1,2] [abbreviated as Si(NN)] in thf gave the crystalline lithium amide [Li(N{C(Ad)=C(H)SiMe₃-*E*}{Si(NN)SiMe₃})(thf)₂] (**8**).

Experimental

General remarks

All manipulations were carried out under argon using standard Schlenk and vacuum line techniques. Pentane and hexane were dried using a sodium–potassium alloy; diethyl ether and thf were dried and distilled from sodium–benzophenone. Solvents were then stored over a sodium mirror under argon. The nitriles and methylaluminium chlorides were commercial samples. The compounds Li[CH(SiMe₃)₂],⁹ Si[(NCH₂Bu⁺)C₆H₄-1,2]¹⁵ and Sn[N(SiMe₃)₂]¹³ were prepared by published procedures. Apart from ¹H, the NMR spectra were proton-decoupled and were recorded at 293 K in C₆D₆ unless otherwise stated on a Bruker

(a) Compound	8		[Li(N(SiMe ₃){Si	(NN)SiMe ₃ })(tmeda)] ¹	9	
	Li–N3 Si1–N3 Si1–Si3 Li–N3–Si1 N3–Si1–Si3	1.942(4) 1.6683(17) 2.3791(8) 113.48(15) 115.09(6)	Li–N3 Si1–N3 Si1–Si2 Li–N3–Si1 N3–Si1–Si2	1.936(6) 1.656(3) 2.3849(11) 113.2(2) 109.76(12)		
(b) Compound	8		1			
	N3-C17 C17-C18 C17-C25 C18-Si2 N3-C17-C18 N3-C17-C25 C17-C18-Si2 C18-C17-C25	$\begin{array}{c} 1.391(3) \\ 1.364(3) \\ 1.548(3) \\ 1.850(2) \\ 123.22(18) \\ 113.52(16) \\ 141.69(17) \\ 123.25(18) \end{array}$	N1-C1 C1-C2 C1-C9 C2-Si2 N1-C1-C2 N1-C1-C9 C1-C2-Si2 C2-C1-C9	$\begin{array}{c} 1.403(2) \\ 1.372(3) \\ 1.544(3) \\ 1.871(2) \\ 119.29(18) \\ 117.55(16) \\ 142.33(16) \\ 123.13(17) \end{array}$	N2-C19 C19-C20 C19-C27 C20-Si4 N2-C19-C20 N2-C19-C27 C19-C20-Si4 C20-C19-C27	1.396(2) 1.360(3) 1.560(3) 1.855(2) 122.42(18) 116.97(16) 133.34(17) 120.47(17)

 $\begin{array}{l} \textbf{Table 4} \quad \text{Selected bond lengths (Å) and angles (°) of (a) the Li[N{Si(NN)SiMe_3}] fragment of 8 and of [Li(N(SiMe_3){Si(NN)SiMe_3})(tmeda)]^{19} and (b) the [N-C(Ad)=C(H)SiMe_3] fragment of 8 and of 1 [Si(NN) = Si{(NCH_2Bu^{1})_2C_6H_4-1,2}] \end{array}$

DPX 300 (300.1 MHz for ¹H, 75.5 MHz for ¹³C and 116.6 MHz for ⁷Li) or AMX 500 (131.3 MHz for ²⁷Al, 99.4 MHz for ²⁹Si and 186.5 MHz for ¹¹⁹Sn) instruments and referenced externally (⁷Li using LiCl, ²⁷Al using AlCl₃ with a D₂O lock, ²⁹Si using SiMe₄, ¹¹⁹Sn using SnMe₄) or internally to the residual solvent resonances (¹H, ¹³C). Electron impact mass spectra were taken from solid samples using a Kratos MS 80 RF instrument. Melting points were measured in sealed capillaries. Elemental analyses were determined by Medac Ltd, Brunel University, UK.

Preparations

 $[Li{\mu,\eta^3-N(SiMe_3)C(Ad)C(H)SiMe_3}]_2$ (1). A solution of 1cyanoadamantane (0.78 g, 4.8 mmol) in diethyl ether (ca. 8 cm³) was added to a cooled (-20 °C) solution of bis(trimethylsilyl)methyllithium (0.80 g, 4.8 mmol) in Et₂O (15 cm³). The mixture was stirred at -20 °C for 20 min, then set aside for ca. 16 h at 20 °C. Volatiles were removed in vacuo. The colourless residue was dissolved in hot hexane (ca. 20 cm³). Cooling at 20 °C afforded colourless crystals of 1 (1.13 g, 73%) (found: C, 65.0; H, 10.69; N, 4.41. C₃₆H₆₈Li₂N₂Si₄ requires C, 66.0; H, 10.46; N, 4.27%), mp 155–160 °C. ¹H-NMR (C₇D₈): δ0.26 [s, 9 H, CSi(CH₃)₃], 0.33 [s, 9 H, NSi(CH₃)₃], 1.63–2.02 (m, 15 H, Ad), 4.5 $(s, 1 H, CH); {}^{13}C-NMR (C_7D_8): \delta 1.0 [CSi(CH_3)_3], 5.3 [NSi(CH_3)_3];$ 29.6, 37.1, 42.4, 43.3 (Ad), 94.8 (CHSiMe₃), 185.7 [C(Ad)NSiMe₃]; ⁷Li-NMR (C₇D₈): δ –1.20 and –1.39; ²⁹Si NMR (C₇D₈): δ –14.8 and -14.4 (CSiMe₃), -0.7 (NSiMe₃). MS (M denotes the parent) m/z (assignments, %): 321 ([M/2 - (Li + H)]⁺, 20%).

[Li{ μ , κ^2 -N(SiMe₃)C(Ad)C(H)C(Ph)NSiMe₃]]₂ (2). Benzonitrile (0.40 cm³, 3.92 mmol) was added dropwise to a solution of 1 (1.30 g, 1.98 mmol) in diethyl ether (25 cm³) at 0 °C. The yellow mixture was stirred at 20 °C for *ca*. 16 h. Volatiles were removed *in vacuo* leaving a residual yellow powder. Yellow crystals of **2** (1.50, 89%) (found: C, 69.1; H, 9.21; N, 6.56. C₅₀H₇₈Li₂N₄Si₄ requires C, 69.7; H, 9.13; N, 6.50%), mp 155–160 °C were obtained from a hot hexane solution by cooling to -18 °C. ¹H-NMR: δ 0.12 [s, 9 H, (CH₃)₃SiNC(Ph)], 0.48 [s, 9 H, (CH₃)₃SiNC(Ad)]; 1.68, 2.01 (2 broad s, 15 H, Ad), 5.90 (s, 1 H, CH), 7.13–7.45 (m, 5 H, C₆H₅); ¹³C-NMR: δ 2.9 [(CH₃)₃SiNC(Ph)], 4.9 [(CH₃)₃SiNC(Ad)];

29.6, 37.1, 41.9, 44.1 (Ad), 108.0 (CH), 127.2–149.3 (C₆H₅), 178.0 (N*C*Ph), 184.0 (N*C*Ad); ⁷Li-NMR: δ 0.18; ²⁹Si-NMR: δ –17.7 (Me₃SiNCPh), –4.4 (Me₃SiNCAd). MS (*M* denotes the parent) *m*/*z* (assignments, %): 289 ([*M*/2 - (Ad + H)]⁺, 100%).

[Li{μ,κ²-N(SiMe₃)C(Ad)C(H)C(C₆H₄Me-4)NSiMe₃]₂ (3). As for **2**, from 4-MeC₆H₄CN (0.70 cm³, 5.86 mmol) and **1** (1.90 cm³, 2.90 mmol) in diethyl ether (35 cm³) there were obtained X-ray quality yellow crystals of **3** (1.46, 57%) (found: C, 69.7; H, 9.41; N, 6.53. C₅₂H₈₂Li₂N₄Si₄ requires C, 70.2; H, 9.30; N, 6.30%), mp 135–140 °C. ¹H-NMR: δ 0.15 [s, 9 H, (CH₃)₃SiNC(Ph)], 0.49 [s, 9 H, (CH₃)₃SiNC(Ad)]; 1.67, 1.99 (2 broad s, 15 H, Ad), 2.06 (s, 3 H, CH₃-C₆H₄), 5.98 (s, 1 H, CH), 6.93–7.32 (m, 4 H, C₆H₄); ¹³C-NMR: δ 2.7 [(CH₃)₃SiNC(Ph)], 4.8 [(CH₃)₃SiNC(Ad)], 21.1 (CH₃-C₆H₄); 29.6, 37.1, 41.7, 44.0 (Ad), 109.2 (CH); 126.7, 128.8, 137.7, 145.5 (C₆H₄), 181.3 (NCPh), 186.7 (NCAd); ⁷Li-NMR: δ 0.16; ²⁹Si-NMR: δ –15.7 (Me₃SiNCPh), -1.9 (Me₃SiNCAd). MS (*M* denotes the parent) *m*/*z* (assignments, %): 303 ([*M*/2 - (Ad + H)]⁺, 100%).

 $[Al{\kappa^2-N(SiMe_3)C(Ad)C(H)C(Ph)NSiMe_3}Me_2]$ (4). A one molar solution of chloro(dimethyl)alane in hexanes (0.72 cm³, 0.72 mmol) was added dropwise to a suspension of 2 (0.31 g, 0.36 mmol) in hexane (20 cm³) at 0 °C, then stirred at 0 °C for 30 min and set aside at 20 °C for ca. 16 h. The mixture was filtered. Evaporation of volatiles in vacuo from the filtrate furnished a yellow solid, which was freed from volatiles in vacuo yielding the yellow powder 4 (0.32, 92%). Yellow, X-ray quality crystals were isolated by cooling a concentrated pentane solution of 4 at -18 °C. ¹H-NMR: $\delta - 0.13$ [s, 6 H, (CH₃)₂Al], 0.04 [s, 9 H, (CH₃)₃SiNC(Ph)], 0.47 [s, 9 H, (CH₃)₃SiNC(Ad)], 1.50–1.92 (m, 15 H, Ad), 6.03 (s, 1 H, CH), 6.94–7.15 (m, 5 H, C₆H₅); ¹³C-NMR: δ -5.8 [(CH₃)₂Al], 2.7 [(CH₃)₃SiNC(Ph)], 6.0 [(CH₃)₃SiNC(Ad)], 29.1, 36.6, 41.5, 44.7 (Ad), 112.8 (CH), 127.0-144.7 (C₆H₅), 180.6 (NCPh), 192.5 (NCAd); ²⁷Al-NMR: δ 154.5 ($\Delta v_{1/2} \sim 5$ KHz); ²⁹Si-NMR: δ –0.62 (Me₃SiNCPh), 8.43 (Me₃SiNCAd).

 added dropwise to a solution of 1 (1.44 g, 2.2 mmol) in hexane (50 cm³) at 0 °C, then stirred at 20 °C for ca. 16 h. The mixture was filtered. Evaporation of volatiles in vacuo from the filtrate afforded an off-white solid, which upon crystallisation from pentane at -18 °C produced colourless crystals of 5 (1.00, 66%) (found: C, 63.7 (duplicate analysis); H, 10.60; N, 4.15. C₃₇H₇₁AlN₂Si₄ requires C, 65.0; H, 10.47; N, 4.10%), mp 120-125 °C. ¹H-NMR: $\delta - 0.13$ [s, 2.6 H, (CH₃)Al]; 0.19, 0.26, 0.32 and 0.38 [bs, 36 H, (CH₃)₃SiNC(Ad)], 1.69 (bs, 15 H, Ad), 1.96 (bs, 15 H, Ad), 4.83 (bs, 1 H, CH); ¹³C-NMR: δ 2.1 [(CH₃)₂Al], 3.5, 4.0, 4.2 and 4.5 [(CH₃)₃SiNC(Ad)], 28.3, 29.2, 36.0, 36.9, 38.5, 40.9, 41.8, 43.9 and 44.7 (Ad), 115.3 (CH), 137.2 (N(R)C(Ad)=C(H)R), 174.9 (NCPh), 192.5 (N(R)C(Ad)C(H)R); ²⁷Al-NMR: δ 127.3 ($\Delta v_{1/2} \sim$ 4.2 KHz); ²⁹Si-NMR: δ -10.27 (Me₃SiC(H)), 5.19 and 6.05 (Me₃SiNCAd). MS (*M* denotes the parent) m/z (assignments, %): 651 ([*M* - 2 Me]⁺, 40%), 531 ([*M* - Me - Ad]⁺, 60%), 186 (100%).

 $[Al{\kappa^2-N(SiMe_3)C(Ph)C(H)C(Ad)NSiMe_3}{\kappa^1-N(SiMe_3)C (Ad)=C(H)SiMe_3-E$ }Me] (6). Benzonitrile (1.00)cm³. 0.98 mmol) was added dropwise to a solution of 5 (0.65 g, 0.95 mmol) in hexane (12 cm³) at 0 °C. The mixture was set aside at 20 °C for ca. 16 h. Removal of volatiles in vacuo yielded the yellow powder 6 (0.62 g, 80%) (found: C, 65.7; H, 9.50; N, 5.57. C₄₄H₇₆AlN₃Si₄ requires C, 67.2; H, 9.68; N, 5.35%), mp 170-172 °C. Yellow X-ray quality crystals were obtained by crystallisation from Et₂O at 20 °C. ¹H-NMR: δ 0.09 (s, 3 H, CH₃Al), 0.14 [s, 9 H, (CH₃)₃SiNC(Ph)], 0.37 [s, 9 H, (CH₃)₃SiC(H)], 0.45 [s, 9 H, (CH₃)₃SiNC(Ad)], 0.46 [s, 9 H, (CH₃)₃SiNC(Ad)], 1.56–2.19 (m, 30 H, Ad), 5.31 (s, 1 H, CH_{enamide}), 6.10 (s, 1 H, CH_{diket}), 6.95-7.12 (m, 5 H, C_6H_5); ¹³C-NMR: $\delta -0.7$ (CH₃Al), 3.2 [(CH₃)₃SiNC(Ph)], 4.3 [(CH₃)₃SiCH], 5.7 [(CH₃)₃SiNC(Ad)], 6.5 [(CH₃)₃SiNC(Ad)]; 29.1, 29.7, 36.7, 37.1, 41.4, 42.7, 44.8 (Ad), 116.6 (CH), 119.3 (CH), 127.5–143.3 (C₆H₅), 174.5 (NCPh), 183.0 (NCAd_{enamine}), 189.5 (NCAd_{diket}); ²⁷Al-NMR: δ 124 ($\Delta v_{1/2} \sim$ 5.4 KHz); ²⁹Si-NMR: $\delta - 14.72$ [Me₃SiC(H)], -5.17 (Me₃SiNCAd_{enamide}), -0.84 (Me₃SiNCPh), 8.52 (Me₃SiNCAd_{diket}). MS (M denotes the parent) m/z (assignments, %): 770 ([M - (Me + H)]+, 3%), 465 $([M - {RNC(Ad)C(H)R} - H]^+, 100\%).$

 $[Sn{\eta^3-N(SiMe_3)C(Ad)C(H)SiMe_3}_2]$ (7). The homoleptic bis(trimethylsilyl)amidotin(II) compound (0.53 g, 1.20 mmol) in hexane (20 cm³) was added to a suspension of 1 (0.79 g, 1.20 mmol) in hexane (40 cm³) at 20 °C. The resultant yellow solution was set aside for ca. 16 h at 20 °C. Partial removal of volatiles in vacuo yielded yellow crystals of 7 (0.83 g, 90%) (found: C, 56.3; H, 9.08; N, 3.86. C₃₆H₆₈N₂Si₄Sn requires C, 56.9; H, 9.02; N, 3.68%), mp 154–156 °C. ¹H-NMR (C₇D₈): δ0.23, 0.28, 0.30 [s, 18 H, Si(CH₃)₃], 0.46 [s, 10 H, Si(CH₃)₃], 1.62 and 1.74 (bs, 13 H, Ad), 1.88–1.95 (m, 12 H, Ad), 2.73 [s, 1.4 H, C(H)R], 4.65 [s, 0.4 H, C(H)R]; ¹³C-NMR (C₇D₈): δ0.6, 1.6, 2.1, 2.6 and 4.7 [(CH₃)₃Si], 29.1, 36.9, 40.6, 41.5, 45.4, 46.6 (Ad); ²⁹Si NMR (C₇D₈): δ -11.8, -11.5, 1.05 and 2.3; ¹¹⁹Sn-NMR (C_7D_8): δ –377.3. MS (*M* denotes the parent, L denotes the ligand) m/z (assignments, %): 760 ([M]⁺, 75%), 692 (15%), 572 (40%), 440 ($[M-L]^+$, 75%), 321 ($[L+H]^+$, 55%), 306 ([L + H - Me]⁺, 50%), 217 ([L + H-2Me]⁺, 50%), 186 ([L + 2 H-Ad]+, 50%).

Crystal data and refinement for the compounds **1** and **3–8**

Table 5

[Li(N{C(Ad)=C(H)SiMe₃}{Si((NCH₂Bu^t)₂C₆H₄-1,2)SiMe₃})-(thf)₂] (8). The azaallyllithium compound 1 (0.48 g, 0.73 mmol)

	1	3	4	5	9	7	8 <i>a</i>
Formula	C ₃₆ H ₆₈ Li ₂ N ₂ Si ₄	C ₅₂ H ₈₂ Li ₂ N ₄ Si ₄ ·(C ₆ H ₁₄)	C ₂₇ H ₄₅ AlN ₂ Si ₂	$\mathrm{C}_{36.9}\mathrm{H}_{70.7}\mathrm{AlCl}_{0.1}\mathrm{N}_{2}\mathrm{Si}_{4}$	$ m C_{44}H_{76}AlN_{3}Si_{4}$	$C_{36}H_{68}N_2Si_4Sn$	$\mathrm{C}_{42}\mathrm{H}_{76}\mathrm{LiN}_{3}\mathrm{O}_{2}\mathrm{Si}_{3}$
<i>M</i>	655.16	975.63	480.81	685.6	786.42	759.97	746.27
Crvstal svstem	Monoclinic	Triclinic	Triclinic	Triclinic	Orthorhombic	Orthorhombic	Orthorhombic
Space group	P2 ₁ /c (No.14)	PĪ (No.2)	PĪ (No.2)	<i>P</i> Ī (No.2)	<i>Pbca</i> (No. 61)	<i>Pbca</i> (No. 61)	<i>Pna</i> 2 ₁ (No. 33)
a/Å	17.9148(5)	10.5486(5)	6.5294(2)	11.3363(4)	11.9220(2)	16.1969(3)	19.3106(7)
b/Å	12.7201(3)	11.7160(5)	12.4764(4)	12.5576(4)	19.0977(3)	23.3707(5)	18.0975(4)
c/Å	19.5483(5)	13.3180(7)	17.8535(4)	17.0946(6)	41.4159(7)	22.0743(3)	13.1943(5)
α/° β/° ~/^	90 115.991(1) 90	70.084(3) 87.413(4) 74.873(4)	97.866(2) 93.585(2) 98.304(2)	70.347(2) 89.000(2) 65.500(2)	06 06	06 06	06 06
Ŭ/ų Z	4003.8(2) 4	1492.14(12) 1	1420.58(8) 2	2064.2(1) 2	9429.7(3) 8	8355.8(3) 8 6	4611.1(3) 4
Abs. coeff./mm ⁻¹	0.17	0.14	1.12 $8060, 0.037$ 6885	0.20	0.18	0.75	0.14
Unique reflections, R_{int}	9493, 0.049	4109, 0.047		9759, 0.039	8303, 0.088	9857, 0.046	7935, 0.040
Reflections with $I > 2\sigma(I)$	7317	3348		7956	5601	7747	7322
Final R indices for $[I > 2\sigma(I)] R_1$, wR_2	0.050, 0.126	0.057, 0.169	0.044, 0.111	0.048, 0.116	0.055, 0.126	0.033, 0.073	0.038, 0.092
R indices (all data) R_1 , wR_2	0.071, 0.135	0.071, 0.184	0.054, 0.118	0.063, 0.126	0.093, 0.141	0.049, 0.080	0.043, 0.096
^{<i>a</i>} The Flack parameter for 8 is	-0.07(8).						

in thf (15 cm³) was added dropwise to the benzo-1,2di(neopentylamino)silylene (IX) (0.40 g, 1.46 mmol) in thf (20 cm³) at -30 °C. Volatiles were removed *in vacuo* yielding a cream solid (1.13 g) which was dissolved in hot hexane (5 cm³) and afforded upon cooling white crystals of 8 (0.99, 90%) (found: C, 66.7; H, 10.11; N, 6.13. C₄₂H₇₆LiN₃O₂Si₃ requires C, 67.6; H, 10.26; N, 5.63%), mp 119–121 °C. ¹H-NMR: δ0.08 and 0.18 (two s, [E-8]H), 0.31 and 0.47 (two s, Z-8), 0.41 and 0.52 (two s, E-8) (together 18 H, SiMe₃); 1.08 (s, H[8]), 1.17 (s, E-8) and 1.32 (s, Z-8) (together 18 H, Bu^t); 1.26 (br s, 8 H, thf); 1.52-2.12 (br multiplets, 15 H, Ad), 3.56 (br s, 8 H, thf), 3.08-3.47 (3 AB systems partly overlapped with thf, 4 H, CH₂Bu^t); 4.02 (br s, NH of H[8]); 4.04, 4.13 and 4.29 [s, 1 H, C=C(H)SiMe₃]; 6.7, 6.8 and 6.9 (multiplets, 4 H, C₆H₄); ¹³C-NMR: δ 0.5, 2.7 and 4.8 (SiMe₃), 25.1 (thf), 29.7, 29.0, 34.4, 36.9, 37.7, 41.8, 42.9, 57.1, 68.3 (thf), 94.9, 108.2, 109.6, 116.7, 117.8 and 143.8 (C₆H₄), 177.9 (C=CHR); ⁷Li-NMR: δ0.76 and 0.18; ²⁹Si-NMR (inverse gated): $\delta - 9.9, -12.6, -14.9, -17.3$, -18.1, -22.0, -24.7, -27.4, -37.4. MS (*M* denotes the parent) m/z (assignments, %): 595 ([M-Li-2 thf]+, 60), 580 ([M-Li - 2 thf - MeH]⁺, 50), 522 ($[M-\text{Li}-2 \text{ thf} - \text{SiMe}_3]^+$, 45), 347 ([M-Li-2thf -{NNp} $_{2}C_{6}H_{4}$ -1,2)]⁺, 20).

Crystal data and refinement details for 1 and 3-8⁺

Diffraction data for each compound were collected on an Enraf-Nonius Kappa-CCD diffractometer, using monochromated Mo K α radiation, λ 0.71073 Å. Crystals were directly mounted on the diffractometer under a stream of cold nitrogen gas. For **3**, the hexane solvate was disordered across an inversion centre; it was included with its C atoms (the terminal C atom was not located) having a common isotropic displacement parameter, the H atoms were omitted: 1,2-C–C distances were restrained to be equal, as were 1,3 C···C distances. For **6**, there was disorder of the substituent at Al: 90% methyl at C37 and 10% with a Cl atom in that position; the disorder was not resolved. Absorption correction was applied for **7** only. The structures were refined on all F^2 using SHELXL-97.²⁰ Further details are given in Table 5. Illustrations of structures are shown using ORTEP-3 for Windows.

Acknowledgements

We gratefully acknowledge the European Commission for the award of Marie Curie fellowships to both L. B.-M. and P. G. M.,

Dr B. Gehrhus for a gift of the silylene $Si[(NCH_2Bu^t)_2C_6H_4-1,2]$, Dr A. G. Avent for NMR spectral data on **8** and Dr A. V. Protchenko for useful discussion.

Notes and references

- (a) J. K. Whitesell and M. A. Whitesell, *Synthesis*, 1983, 517; (b) A. Job, C. F. Janeck, W. Bettray, R. Peters and D. Enders, *Tetrahedron*, 2002, 58, 2253 and references therein.
- 2 S. Mangelinckx, N. Giubellina and N. De Kimpe, *Chem. Rev.*, 2004, **104**, 2353.
- 3 M. Ahmed, A. M. Seayad, R. Jackstell and M. Beller, *Angew. Chem.*, *Int. Ed.*, 2003, 42, 5615.
- 4 C. F. Caro, M. F. Lappert and P. G. Merle, *Coord. Chem. Rev.*, 2001, **219–221**, 605.
- 5 P. B. Hitchcock, M. F. Lappert and D.-S. Liu, J. Chem. Soc., Chem. Commun., 1994, 2637.
- 6 P. B. Hitchcock, M. F. Lappert, M. Layh, D.-S. Liu, R. Sablong and T. Shun, J. Chem. Soc., Dalton Trans., 2000, 2301.
- 7 P. B. Hitchcock, J. Hu, M. F. Lappert, M. Layh and J. R. Severn, *Chem. Commun.*, 1997, 1189.
- 8 (a) C. Cui, H. W. Roesky, M. Noltemeyer, M. F. Lappert, H.-G. Schmidt and H. Hao, *Organometallics*, 1999, **18**, 2256; (b) L. Bourget, P. B. Hitchcock and M. F. Lappert, *J. Chem. Soc., Dalton Trans.*, 1999, 2645.
- 9 N. Wiberg and G. Wagner, Chem. Ber., 1986, 119, 1455.
- 10 (a) L. Bourget, P. B. Hitchcock, and M. F. Lappert, cited as unpublished work in ref. 4; (b) R. J. Bowen, M. A. Fernandes, P. W. Gitari, M. Layh and R. M. Moutloali, *Eur. J. Inorg. Chem.*, 2005, 1955.
- 11 F. Coslédan, P. B. Hitchcock and M. F. Lappert, Chem. Commun., 1999, 705.
- 12 L. Bourget-Merle, P. B. Hitchcock and M. F. Lappert, J. Organomet. Chem., 2004, 689, 4357.
- 13 P. J. Davidson, D. H. Harris and M. F. Lappert, J. Chem. Soc., Dalton Trans., 1976, 2268.
- 14 N. Nimitsiriwat, V. C. Gibson, E. L. Marshall, A. J. P. White, S. H. Dale and M. R. J. J. Elsegood, *Dalton Trans.*, 2007, 4464.
- 15 B. Gehrhus, P. B. Hitchcock, M. F. Lappert, J. Heinicke, R. Boese and D. Bläser, J. Organomet. Chem., 1996, 521, 211.
- 16 (a) A. G. Avent, B. Gehrhus, P. B. Hitchcock and H. Maciejewski, J. Organomet. Chem., 2003, 686, 321; (b) X. Cai, B. Gherhus, P. B. Hitchcock and M. F. Lappert, Can. J. Chem., 2000, 78, 1484.
- 17 X. Cai, B. Gehrhus, P. B. Hitchcock, M. F. Lappert and J. C. Slootweg, J. Organomet. Chem., 2002, 643–644, 272.
- 18 B. Gehrhus, P. B. Hitchcock and M. Parruci, *Dalton Trans.*, 2005, 2720.
- 19 F. Antolini, B. Gehrhus, P. B. Hitchcock, M. F. Lappert and J. C. Slootweg, *Dalton Trans.*, 2004, 3288.
- 20 G. M. Sheldrick, SHELXL-97, Program for refinement of crystal structures, University of Göttingen, Germany, 1997.