

Available online at www.sciencedirect.com

Tetrahedron Letters 46 (2005) 815-817

Tetrahedron Letters

Synthesis of functionalized benzopyrans by sequential [3+3]-cyclization—Williamson reactions of 1,3-bis(trimethylsilyloxy)-7-chlorohepta-1,3-dienes

Van Thi Hong Nguyen and Peter Langer*

Institut für Chemie und Biochemie der Ernst-Moritz-Arndt, Universität Greifswald, Soldmannstr. 16, 17487 Greifswald, Germany

Received 20 November 2004; accepted 1 December 2004 Available online 18 December 2004

Abstract—Functionalized benzopyrans were regioselectively prepared by [3+3]-cyclization of 1,3-bis(trimethylsilyloxy)-7-chlorohepta-1,3-dienes with 3-silyloxy-2-eno-1-ones and subsequent intramolecular Williamson reactions of the salicylates thus formed. © 2004 Elsevier Ltd. All rights reserved.

1,3-Bis-silyl enol ethers-electroneutral equivalents of 1,3-dicarbonyl dianions-represent versatile synthetic building blocks in [3+2]-, [3+3]-, [4+2]- and [4+3]-cyclizations which provide a convenient access to a variety of pharmacologically relevant ring systems.¹⁻³ For example, Chan and co-workers reported an efficient one-pot synthesis of salicylates based on [3+3] cyclizations of 1,3-bis-silvl enol ethers with 3-silvloxyalk-2-en-1-ones or 1,1,3,3-tetramethoxypropane.^{3,4} In all reactions reported to date, mainly nonfunctionalized 1,3-bis-silyl enol ethers have been employed. ⁵ Herein, we wish to report the synthesis and synthetic application of what are, to the best of our knowledge, the first halide-substituted 1,3-bis-silyl enol ethers.^{6,7} The strategic placement of the latent chloride functionality allowed a convenient synthesis of functionalized benzopyrans by sequential [3+3]-cyclization—Williamson reactions.

The reaction of the dianion of ethyl acetoacetate (1) with 1-iodo-3-chloropropane (2) afforded, following a known procedure,⁸ ethyl 7-chloro-3-oxoheptanoate (3). Treatment of the latter with Me₃SiCl/NEt₃ gave the silyl enol ether 4 (Scheme 1). Deprotonation of 4 with LDA and subsequent addition of Me₃SiCl afforded the novel 1,3-bis-silyl enol ether 5 in good yield. An intramolecular

0040-4039/\$ - see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2004.12.009

Scheme 1. Synthesis of 8. Reagents and conditions: i. (1) 2.3 LDA, THF, 0 °C, 1 h; (2) 2, $-78 \rightarrow 20$ °C; ii. Me₃SiCl, NEt₃, toluene, 20 °C, 24 h; iii. (1) LDA, THF, -78 °C, 1 h, (2) Me₃SiCl, 20 °C, $-78 \rightarrow 20$ °C; iv. TiCl₄, CH₂Cl₂, $-78 \rightarrow 20$ °C; v. NaH, TBAI, THF, 20 °C.

Keywords: Benzopyrans; Cyclizations; Ethers; Lewis acids; Silyl enol ethers.

^{*} Corresponding author. At present address: Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3A, D-18051 Rostock, Germany. Tel.: +49 3834 864461; fax: +49 3834 864373; e-mail: peter.langer@uni-greifswald.de

nucleophilic substitution of the chloride group or elimination of hydrogen chloride was not observed. The [3+3] cyclization of **5** with 1,1,3,3-tetramethoxypropane (**6**), following the conditions reported by Chan,⁴ afforded the salicylate **7** with very good chemoselectivity. Treatment of a THF solution of **7** with sodium hydride (NaH) in the presence of tetrabutylammonium iodide (TBAI) afforded the benzopyran **8** in good yield.

The [3+3] cyclization of 1,3-bis-silyl enol ether 5 with 3silyloxyalk-2-en-1-ones 9 was next studied. The reaction of 5 with 9a–d, following the conditions reported by Chan,⁴ afforded the salicylates 10a–d (Scheme 2). Salicylates 10a–d were transformed into the benzopyrans 11a–d in good yields (Table 1).^{9,10}

The cyclization of 1,3-bis-silyl enol ether **5** with silyl enol ether **9e**, prepared from 2-(hydroxymethylidene)cyclohexan-1-one, gave the salicylate **10e** with very good regioselectivity (Scheme 3). Treatment of **10e** with NaH/TBAI afforded the tricyclic benzopyran **11e**.

The cyclization of **5** with **9f**, available by silylation of 2acetylcyclohexanone, regioselectively afforded **10f** (Scheme 4). The latter was transformed into the tricyclic benzopyran **11f**.

The cyclization of **5** with **9g**, prepared from 2-acetyltetralone, regioselectively afforded **10g** which was transformed into the tetracyclic benzopyran **11g** (Scheme 5).

The TiCl₄-mediated cyclization of 5 with 1,1-diacetylcyclopropane (12), following our recently reported

Scheme 2. Synthesis of benzopyrans 11a–d Reagents and conditions: i. TiCl₄, CH₂Cl₂, $-78 \rightarrow 20$ °C; ii NaH, TBAI, THF, 20 °C.

Table 1. Products and yields

10,11	\mathbf{R}^1	\mathbf{R}^2	R ³	% (10) ^a	% (11) ^a
a	Me	Н	Me	46	70
b	Me	Me	Me	52	90
c	Me	Et	Me	43	82
d	Et	Н	Et	42	65

^a Yields of isolated products.

Scheme 3. Synthesis of benzopyran 11e Reagents and conditions: i. TiCl₄, CH₂Cl₂, $-78 \rightarrow 20$ °C; ii. NaH, TBAI, THF, 20 °C.

Scheme 4. Synthesis of benzopyran 11f Reagents and conditions: i. TiCl₄, CH₂Cl₂, $-78 \rightarrow 20$ °C; ii. NaH, TBAI, THF, 20 °C.

Scheme 5. Synthesis of benzopyran 11g Reagents and conditions: i. TiCl₄, CH₂Cl₂, $-78 \rightarrow 20$ °C; ii. NaH, TBAI, THF, 20 °C.

methodology,¹¹ regioselectively afforded the highly functionalized salicylate **13** by a domino '[3+3]-cyclization-homo-Michael' reaction (Scheme 6). Salicylate **13** was transformed into the chlorinated benzopyran **14**.

Scheme 6. Synthesis of benzopyran 14 Reagents and conditions: i. TiCl₄ (2 equiv), CH₂Cl₂, $-78 \rightarrow 20$ °C; ii. NaH, TBAI, THF, 20 °C.

Acknowledgments

Financial support from the Ministry of Education of Vietnam (scholarship for V.T.H.N.) and from the Deutsche Forschungsgemeinschaft is gratefully acknowledged. We thank Ms. Esen Bellur for an experimental contribution.

References and notes

- For a review of domino reactions, see: (a) Tietze, L. F.; Beifuss, U. Angew. Chem. 1993, 105, 137; Angew. Chem., Int. Ed. Engl. 1993, 32, 131; (b) Tietze, L. F. Chem. Rev. 1996, 96, 115.
- (a) Chan, T.-H.; Brownbridge, P. J. Chem. Soc., Chem. Commun. 1979, 578; (b) Molander, G. A.; Cameron, K. O. J. Am. Chem. Soc. 1993, 115, 830.
- 3. For a review of 1,3-bis-silyl enol ethers, see: Langer, P. *Synthesis* **2002**, 441.
- (a) Chan, T.-H.; Brownbridge, P. J. Am. Chem. Soc. 1980, 102, 3534; (b) Brownbridge, P.; Chan, T.-H.; Brook, M. A.; Kang, G. J. Can. J. Chem. 1983, 61, 688; for [3+3] cyclizations of 1,3-bis-silyl enol ethers with 2-acetyl-1silyloxybut-1-en-3-one, see: (c) Dede, R.; Langer, P. Tetrahedron Lett. 2004, 45, 9177 for sequential '[3+3]-Cyclization—Suzuki-Cross-Coupling' reactions of 1,3-bissilyl enol ethers, see: (d) Nguyen, V. T. H.; Langer, P. Tetrahedron Lett. 2004, in press.
- For sequential reactions of alkenyl-substituted 1,3-bis-silyl enol ethers, see: (a) Langer, P.; Eckardt, T.; Stoll, M. Org. Lett. 2000, 2991; (b) Langer, P.; Eckardt, T.; Nehad, N. R.; Saleh, X.; Karimé, I.; Müller, P. Eur. J. Org. Chem. 2001, 3657.
- For chloro-substituted mono-silyl enol ethers, see: (a) Fleming, F. F.; Shook, B. C.; Jiang, T.; Steward, O. W. *Tetrahedron* 2003, 59, 737; (b) Hydrio, J.; van de Weghe, P.; Collin, J. Synthesis 1997, 68; (c) Limat, D.; Schlosser, M. *Tetrahedron* 1995, 51, 5799; (d) Masters, A. P.; Parvez, M.; Sorensen, T. S.; Sun, F. J. Am. Chem. Soc. 1994, 116, 2804; (e) Stack, D. E.; Dawson, B. T.; Rieke, R. D. J. Am. Chem. Soc. 1991, 113, 4672; (f) Hambly, G. F.; Chan, T. H. *Tetrahedron Lett.* 1986, 27, 2563; (g) Chatani, N.; Fujii, S.; Yamasaki, Y.; Murai, S.; Sonoda, N. J. Am. Chem. Soc. 1986, 108, 7361; (h) Poirier, J.-M.; Hennequin, L.

Synth. Commun. **1985**, *15*, 217; (i) Schultz, A. G.; Dittami, J. P. J. Org. Chem. **1983**, *48*, 2318; (j) Chatani, N.; Murai, S.; Sonoda, N. J. Am. Chem. Soc. **1983**, *105*, 1370.

- For bromo-substituted mono-silyl enol ethers, see: (a) Marko, I. E.; Dumeunier, R.; Leclercq, C.; Leroy, B.; Plancher, J.-M.; Mekhalfia, A.; Bayston, D. J. Synthesis 2002, 958; (b) Oku, A.; Miki, T.; Abe, M.; Ohira, M.; Kamada, T. Bull. Chem. Soc. Jpn. 1999, 72, 511; (c) Rigby, J. H.; Rege, S. D.; Sandanayaka, V. P.; Kirova, M. J. Org. Chem. 1996, 61, 842.
- Lambert, P. H.; Vaultier, M.; Carrie, R. J. Org. Chem. 1985, 50, 5352.
- 9. General procedure: to a CH₂Cl₂ solution of 5 and 9 was dropwise added TiCl₄ at -78 °C under argon atmosphere. The solution was stirred at -78 °C for 30 min and was subsequently warmed to 20 °C within 18 h. To the solution was added a saturated aqueous solution of NaHCO₃. The organic and the aqueous layer were separated and the latter was extracted with ether. The combined organic layers were dried (Na₂SO₄), filtered and the filtrate was concentrated in vacuo. The residue was purified by chromatography (silica gel, n-hexane-EtOAc 30/1). Synthesis of 10a: starting with 5 (2.90 g, 8.2 mmol), 9a (1.42 g, 8.2 mmol), TiCl₄ (1.55 g, 8.2 mmol) in CH₂Cl₂ (15 ml), 10a was isolated as a colourless oil (1.02 g, 46%). ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3): \delta = 1.42 \text{ (t, 3H, CH}_3\text{CH}_2\text{O}), 2.00 \text{ (m,}$ 2 H, CH₂CH₂CH₂Cl), 2.25 (s, 3 H, CH₃), 2.49 (s, 3 H, CH₃), 2.78 (t, 2 H, CH₂CH₂CH₂Cl), 3.61 (t, 2 H, CH₂CH₂CH₂Cl), 4.42 (q, 2 H, CH₃CH₂O), 6.54 (s, 1 H, CH), 11.76 (s, 1 H, OH). ¹³C NMR (75 MHz, CDCl₃): $\delta = 14.2$ (CH₃), 19.8 (CH₃), 23.6 (CH₂), 23.9 (CH₂), 31.8 (CH₂), 45.3 (CH₂), 61.4 (CH₂), 109.7 (C), 124.8 (CH), 125.2 (C), 138.4 (C), 143.1 (C), 161.1 (C), 172.2 (C). MS (EI, 70 eV): m/z = 272 (M⁺, 6), 271 (M⁺ + 1), 270 (M⁺, 21), 224 (20), 189 (100), 162 (25), 161 (23), 91 (10). IR (KBr, cm⁻¹): $\tilde{v} = 2977$ (s), 2937 (s), 1938 (w), 1653 (s), 1563 (m), 1447 (s), 1396 (s), 1376 (s), 1349 (s), 1311 (s), 1273 (s), 1232 (s), 1175 (s), 1037 (s), 848 (s). UV-vis (nm): λ_{\max} (**1g** ε) = 215.8 (4.45), 253.4 (4.00), 315.7 (3.60). HRMS (FT-ICR): calcd for $C_{14}H_{20}O_3Cl$ ([M+1]⁺): 271.11009; found: 271.10950. All new compounds gave satisfactory spectroscopic data and correct elemental analyses and/or high-resolution mass data.
- 10. General procedure: to a THF solution of 10 and of NaH was added TBAI. The reaction mixture was stirred at 20 °C for 20 h. The mixture was directly purified by column chromatography (silica gel, n-hexane-EtOAc 30/ $1 \rightarrow 20/1$). Synthesis of **11a**: starting with **10a** (59 mg, 0.22 mmol), NaH (8 mg, 0.33 mmol), n-Bu₄NI (144 mg, 0.44 mmol), 11a was isolated as a colourless solid (36 mg, 70%). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.36$ (t, 3 H, CH₃CH₂O), 2.02 (m, 2 H, CH₂), 2.16 (s, 3 H, CH₃), 2.21 (s, 3 H, CH₃), 2.59 (t, 2 H, CH₂), 4.14 (t, 2 H, CH₂), 4.38 (q, 2 H, CH₃CH₂O), 6.75 (s, 1 H, CH). ¹³C NMR (75 MHz, CDCl₃): δ = 14.3 (CH₃), 18.9 (CH₃), 19.0 (CH₃), 22.0 (CH₂), 22.2 (CH₂), 60.9 (CH₂), 66.1 (CH₂), 118.6 (C), 120.9 (C), 123.1 (CH), 133.1 (C), 138.6 (C), 151.9 (C), 168.7 (C). MS (EI, 70 eV): m/z = 235 (M⁺+1, 12), 234 (M⁺, 87), 189 (100), 161 (31), 132 (20), 102.8, 77 (12). IR (KBr, cm⁻¹): $\tilde{v} = 3414$ (m), 2977 (s), 2938 (s), 1716 (s), 1612 (m), 1574 (m), 1457 (s), 1369 (m), 1303 (s), 1273 (s), 1151 (s), 1106 (s), 1056 (s), 959 (m). UV–vis (nm): λ_{max} (1g ε) = 206.7 (4.48), 284.5 (3.34).
- (a) Langer, P.; Bose, G. Angew. Chem. 2003, 115, 4165;
 Angew. Chem. Int. Ed. 2003, 42, 4033; (b) Bose, G.; Nguyen, V. T. H.; Ullah, E.; Lahiri, S.; Görls H.; Langer, P. J. Org. Chem. 2004, in press.