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Abstract—Functionalized benzopyrans were regioselectively prepared by [3+3]-cyclization of 1,3-bis(trimethylsilyloxy)-7-chloro-
hepta-1,3-dienes with 3-silyloxy-2-eno-1-ones and subsequent intramolecular Williamson reactions of the salicylates thus formed.
� 2004 Elsevier Ltd. All rights reserved.
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1,3-Bis-silyl enol ethers—electroneutral equivalents of
1,3-dicarbonyl dianions—represent versatile synthetic
building blocks in [3+2]-, [3+3]-, [4+2]- and [4+3]-cycli-
zations which provide a convenient access to a variety of
pharmacologically relevant ring systems.1–3 For exam-
ple, Chan and co-workers reported an efficient one-pot
synthesis of salicylates based on [3+3] cyclizations of
1,3-bis-silyl enol ethers with 3-silyloxyalk-2-en-1-ones
or 1,1,3,3-tetramethoxypropane.3,4 In all reactions re-
ported to date, mainly nonfunctionalized 1,3-bis-silyl
enol ethers have been employed. 5 Herein, we wish to
report the synthesis and synthetic application of what
are, to the best of our knowledge, the first halide-substi-
tuted 1,3-bis-silyl enol ethers.6,7 The strategic placement
of the latent chloride functionality allowed a convenient
synthesis of functionalized benzopyrans by sequential
[3+3]-cyclization—Williamson reactions.

The reaction of the dianion of ethyl acetoacetate (1) with
1-iodo-3-chloropropane (2) afforded, following a known
procedure,8 ethyl 7-chloro-3-oxoheptanoate (3). Treat-
ment of the latter with Me3SiCl/NEt3 gave the silyl enol
ether 4 (Scheme 1). Deprotonation of 4 with LDA and
subsequent addition of Me3SiCl afforded the novel 1,3-
bis-silyl enol ether 5 in good yield. An intramolecular
0040-4039/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.
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Scheme 1. Synthesis of 8. Reagents and conditions: i. (1) 2.3 LDA,

THF, 0 �C, 1 h; (2) 2, �78! 20 �C; ii. Me3SiCl, NEt3, toluene, 20 �C,
24 h; iii. (1) LDA, THF, �78 �C, 1 h, (2) Me3SiCl, 20 �C,
�78! 20 �C; iv. TiCl4, CH2Cl2, �78! 20 �C; v. NaH, TBAI, THF,
20 �C.
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Scheme 3. Synthesis of benzopyran 11e Reagents and conditions:

i. TiCl4, CH2Cl2, �78! 20 �C; ii. NaH, TBAI, THF, 20 �C.
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nucleophilic substitution of the chloride group or elimi-
nation of hydrogen chloride was not observed. The
[3+3] cyclization of 5 with 1,1,3,3-tetramethoxypropane
(6), following the conditions reported by Chan,4 affor-
ded the salicylate 7 with very good chemoselectivity.
Treatment of a THF solution of 7 with sodium hydride
(NaH) in the presence of tetrabutylammonium iodide
(TBAI) afforded the benzopyran 8 in good yield.

The [3+3] cyclization of 1,3-bis-silyl enol ether 5 with 3-
silyloxyalk-2-en-1-ones 9 was next studied. The reaction
of 5 with 9a–d, following the conditions reported by
Chan,4 afforded the salicylates 10a–d (Scheme 2). Salicyl-
ates 10a–d were transformed into the benzopyrans 11a–d
in good yields (Table 1).9,10

The cyclization of 1,3-bis-silyl enol ether 5 with silyl enol
ether 9e, prepared from 2-(hydroxymethylidene)cyclo-
hexan-1-one, gave the salicylate 10e with very good
regioselectivity (Scheme 3). Treatment of 10e with
NaH/TBAI afforded the tricyclic benzopyran 11e.

The cyclization of 5 with 9f, available by silylation of 2-
acetylcyclohexanone, regioselectively afforded 10f
(Scheme 4). The latter was transformed into the tricyclic
benzopyran 11f.

The cyclization of 5 with 9g, prepared from 2-acetyltetra-
lone, regioselectively afforded 10g which was trans-
formed into the tetracyclic benzopyran 11g (Scheme 5).

The TiCl4-mediated cyclization of 5 with 1,1-diacetyl-
cyclopropane (12), following our recently reported
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Scheme 2. Synthesis of benzopyrans 11a–d Reagents and conditions:

i. TiCl4, CH2Cl2, �78! 20 �C; ii NaH, TBAI, THF, 20 �C.

Table 1. Products and yields

10,11 R1 R2 R3 % (10)a % (11)a

a Me H Me 46 70

b Me Me Me 52 90

c Me Et Me 43 82

d Et H Et 42 65

a Yields of isolated products.
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Scheme 4. Synthesis of benzopyran 11f Reagents and conditions:

i. TiCl4, CH2Cl2, �78! 20 �C; ii. NaH, TBAI, THF, 20 �C.
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Scheme 5. Synthesis of benzopyran 11g Reagents and conditions:

i. TiCl4, CH2Cl2, �78! 20 �C; ii. NaH, TBAI, THF, 20 �C.
methodology,11 regioselectively afforded the highly
functionalized salicylate 13 by a domino 0[3+3]-cycliza-
tion-homo-Michael� reaction (Scheme 6). Salicylate 13
was transformed into the chlorinated benzopyran 14.
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Scheme 6. Synthesis of benzopyran 14 Reagents and conditions:

i. TiCl4 (2 equiv), CH2Cl2, �78! 20 �C; ii. NaH, TBAI, THF, 20 �C.
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