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In the presence of gold(I)–phosphine catalysts, alkenyl- and

arylsilanes undergo intramolecular cyclisation reactions onto

appendant alkyne moieties to afford 1-silaindene derivatives. The

reaction pathways vary depending on the substituent on silicon.

Allylsilanes, alkenylsilanes and arylsilanes undergo carbo-

silylation across a carbon–carbon triple bond in the presence

of various promoters such as Lewis acids and transition metal

complexes.1 We recently reported the gold(I)-catalysed intra-

molecular trans-allylsilylation reaction forming 3-allyl-1-

silaindenes.2 Our continuing interest in the synthesis of silole

derivatives3,4 led us to extend the gold catalysis5 to alkenyl-

silylation and arylsilylation reactions. Herein, we report the

synthesis of 1-silaindene derivatives6 by the gold(I)-catalysed

intramolecular alkenyl- and arylsilylation reactions.

First, substrates having an ethynyl group were examined.

When (2-ethynylphenyl)isobutenyldimethylsilane (2a) was treated

with a catalytic amount of gold(I) complex 1 bearing a bulky

biaryl phosphine ligand (t-BuXPhos) at room temperature in

dichloromethane for 2 h, intramolecular trans-alkenylsilyla-

tion occurred across the ethynyl group to afford 3-isobutenyl-

1-silaindene 3a in 73% yield,y as shown in Scheme 1.7 We

propose a possible mechanistic pathway as depicted therein for

the formation of 3a from 2a; (i) the cationic gold(I) species

of p-acidic character activates the ethynyl group to induce

intramolecular nucleophilic attack of the alkene moiety in a

6-endo fashion, resulting in the formation of the six-membered

ring intermediate A having a carbocationic centre b to silicon, (ii)

the carbocationic intermediate A undergoes skeletal rearrange-

ment to five-membered gold-stabilised carbocation B,8 (iii) the

cationic centre in B electrophilically attacks the regenerated

isobutenyl group to generate tertiary cyclopropylmethyl

cation C and (iv) the cyclopropyl ring opens with release of

the cationic gold(I) species to form 1-silaindene 3a. Thus,

intramolecular trans-alkenylsilylation is completed.

A deuterium-labelling experiment was carried out using 2a-d

which incorporated a deuterium atom at the terminal position

of the ethynyl group (eqn (1)). With the resulting 1-silaindene

3a-d, the deuterium atom was found at the 2-position, staying

on the carbon on which it originally resided. This labelling

experiment supported that the reaction of 2a proceeded via the

trans-alkenylsilylation mechanism rather than via an enyne

metathesis-type mechanism (vide infra).

ð1Þ

Cyclopentenylsilane 2b underwent the trans-alkenylsilyla-

tion reaction to afford the corresponding silaindene 3b in 50%

yield (eqn (2)).

ð2Þ

The reaction of a substrate having a substituted alkynyl

group was also examined (eqn (3)). In the case of alkenylsilane

Scheme 1 Gold(I)-catalysed trans-alkenylsilylation of 2a.
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2c possessing a hex-1-ynyl moiety, an analogous alkenylsilyla-

tion reaction occurred to produce 1-silaindene 3c in 44% yield.

ð3Þ

Ethynyl(2-isobutenylphenyl)silane 4 is a constitutional isomer

of 2a in which the ethynyl group and the isobutenyl group

were swapped, and its reactivity was examined in comparison

with 2a (Scheme 2). When 4 was subjected to the reaction

using (Ph3P)AuNTf2 as the catalyst, different types of cyclisation

reactions took place to give two enyne metathesis-type

products 5 and 6 in 76% combined yield. The formation of

the two products is attributed to different modes of initial

cyclisation. The major product 5 having a 1-silanaphthalene

skeleton was formed via a skeletal rearrangement initiated

with 6-endo cyclisation. Alkenylgold intermediate D thus

formed rearranges to gold-stabilised cyclopropylmethyl cation

E, which undergoes a further skeletal rearrangement to give

cyclopropylgold F. Final demetallation furnishes six-membered

silacycle 5 having an isopropylidene moiety. On the other

hand, the initial cyclisation in a 5-exo fashion led to the

formation of the minor 1-silaindene product 6 via a pathway

similar to that mentioned above from D to 5.

We then examined the gold(I)-catalysed reaction of aryl-

(2-ethynylphenyl)silanes. In marked contrast to the case of alkenyl-

silanes, phenylsilane 2d underwent exclusive 1,1-arylsilylation

Scheme 2 Gold(I)-catalysed skeletal rearrangement of 4.

Scheme 3 Gold(I)-catalysed 1,1-arylsilylation of 2d.

Table 1 Gold(I)-catalysed 1,1-arylsilylationa

Entry 2 7 Yieldb (%)

1 Ar = 2-MeC6H4 (2e) 7e 52
2 Ar = 3,5-Me2C6H3 (2f) 7f 64
3 Ar = 4-PhC6H4 (2g) 7g 42
4c Ar = 4-MeOC6H4 (2h) 7h 24
5 Ar = 4-CF3C6H4 (2i) 7i Trace

6 60

7d 22e

a Unless otherwise noted, all reactions were carried out in the presence of 5 mol% of 1 in CH2Cl2 at 40 1C for 9–18 h. b Isolated yield by

preparative TLC. c Reaction was carried out at rt. d 10 mol% of 1 was used. e Purified by preparative GPC.

Pu
bl

is
he

d 
on

 0
2 

Ju
ly

 2
01

1.
 D

ow
nl

oa
de

d 
by

 T
em

pl
e 

U
ni

ve
rs

ity
 o

n 
27

/1
0/

20
14

 0
3:

25
:2

8.
 

View Article Online

http://dx.doi.org/10.1039/c1cc12457a


This journal is c The Royal Society of Chemistry 2011 Chem. Commun., 2011, 47, 8697–8699 8699

in refluxing dichloromethane in the presence of 5 mol% of

1 to give 2-phenyl-1-silaindene 7d in 63% yield (Scheme 3).9

We assume that 7d was formed by the reaction initiated with

6-endo cyclisation, as is the case with 2a–c. The resulting

intermediate G undergoes skeletal rearrangement to five-

membered gold-stabilised carbocation H, which corresponds to

B in Scheme 1. Finally, the hydride rather than the phenyl

group of H shifts onto the next carbon10 with release of the

cationic gold(I) species to afford 7d. Labelled substrate 2d-d

having a deuterium atom on the terminal carbon of the

ethynyl group was prepared and the gold(I)-catalysed reaction

was carried out. A deuterium atom was found at the C(3)

position of the product to support the mechanism shown in

Scheme 3.

Other results of the intramolecular 1,1-arylsilylation reaction

are summarised in Table 1. 2-Tolyl, 3,5-xylyl and 4-biphenyl

derivatives (2e–g) gave the corresponding 2-aryl-1-silaindenes

(7e–g) in yields ranging from 42% to 64% (entries 1–3). However,

substitution with a methoxy group at the 4-position of the phenyl

ring decreased the yield of 7h to 24% (entry 4), and only a trace

amount of the product was obtained with (4-trifluoromethyl-

phenyl)silane 2i (entry 5). The reaction of triarylsilane 2j gave

the corresponding silaindene 7j in 60% yield (entry 6). A 2,20-(1,4-

phenylene)bis(1-silaindene) skeleton was constructed by the

gold(I)-catalysed reaction of 1,4-phenylenebis[(ethynylphenyl)-

silane] 2k (entry 7). On the other hand, arylsilanes equipped with

an internal alkyne moiety failed to undergo arylsilylation even at

elevated temperatures.

We carried out the gold(I)-catalysed reaction of 2-thienyl-

silane 2l, which exhibited an intermediary reactivity between

alkenylsilanes and arylsilanes (eqn (4)). The major product

was 3-(2-thienyl)-1-silaindene 3l (50%), which was formed via

the trans-alkenylsilylation mechanism shown in Scheme 1.

2-(2-Thienyl)-1-silaindene 7l was also isolated in 17% yield

as the minor product, which was formed via the 1,1-arylsilylation

mechanism shown in Scheme 3.

ð4Þ

In conclusion, we have developed the gold(I)-catalysed

alkenyl- and arylsilylation reactions to synthesise 1-silaindene

derivatives. The substituent on silicon dictates the partitioning

between trans-1,2-addition and 1,1-addition pathways.

This work was supported by a Grant-in-Aid for Scientific

Research for Young Scientist (B) (No. 19750074) from the

Ministry of Education, Culture, Sports, Science and Technology,

Japan.
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