
Tetrahedron Letters 46 (2005) 3771–3774

Tetrahedron
Letters
Regioselective synthesis of 1-arylindazoles via N-arylation of
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Abstract—The copper(II)-catalyzed cross-coupling reaction of 3-trimethylsilylindazoles bearing substituents on the benzene ring
with arylboronic acids regioselectively gave the corresponding 1-aryl-3-trimethylsilylindazoles and no 2-aryl isomers were formed
at all. Moreover, the trimethylsilyl group of the resulting indazoles was easily removed by treatment with ethanolic KOH to give
1-arylindazoles.
� 2005 Elsevier Ltd. All rights reserved.
Indazole derivatives have attracted much attention for
their pharmaceutical activities, for example, anti-inflam-
matory, anti-tumor, anti-HIV, anti-depressant, contra-
ceptive activities, etc.1 Many methods for the synthesis
of substituted indazoles have been developed to date.2

However, it would be difficult to regioselectively intro-
duce a substituent to an indazole nucleus, and for
instance, N-arylation of indazoles generally gives a
mixture of 1-arylindazoles and its 2-aryl isomers.3–5 To
overcome the problem, recently, Pd-catalyzed cycliza-
tion reactions of N-aryl-N 0-(o-bromobenzyl)hydrazines6

and N-aryl-N 0-(o-bromophenyl)hydrazones7 in situ pre-
pared from o-bromobenzaldehyde and arylhydrazines
giving 1-arylindazoles have been reported. To the best
of our knowledge, there is no report concerning regio-
selective N-arylation of indazoles bearing substituents
on the benzene ring.8,9

We have already developed various new reactions using
trimethylsilyldiazomethane (Me3SiCHN2) and its lith-
ium salt (Me3SiC(Li)N2).

10 For example, recently, we
have found a facile, one-pot synthesis of 3-trimethylsilyl-
indazoles by [3+2]cycloaddition reaction of Me3Si-
C(Li)N2 with benzynes prepared in situ from
halobenzenes.11 In addition, the resulting 3-trimethyl-
silylindazole 1 was found to be easily converted to ind-
azoles bearing a hydroxymethyl unit at the 3-position
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by reaction with aldehydes in the presence of cesium
fluoride.12 We considered that 3-trimethylsilylindazoles
would also be useful as substrates for the regioselective
N-arylation at the 1-position of an indazole nucleus
owing to steric hindrance of the bulky trimethylsilyl
group. In this letter, the synthesis of 1-arylindazoles
from 3-trimethylsilylindazoles through regioselective
N-arylation is described.

As reaction conditions of the N-arylation of trimethylsi-
lylindazoles, we chose a copper(II)-catalyzed cross-cou-
pling reaction with arylboronic acids in consideration of
its easy operation and the mild reaction conditions.3 The
results of the reaction are summarized in Table 1.13,14 As
expected, reaction of 3-trimethylsilylindazole 1 with
phenylboronic acid at room temperature smoothly pro-
ceeded and the desired 1-phenyl-3-trimethylsilylindazole
6a was obtained in 94% yield (entry 1). In this reaction,
no 2-phenyl isomer could be detected. Similarly, the
reaction of 1 with various arylboronic acids such as
4-methyl-, 4-methoxy-, 4-bromo-, and 2-methyl-phenyl
ones successfully afforded the corresponding
1-arylindazoles 6b–e in high yields as the sole product,
respectively (entries 2–5).15 5,6-Dimethyl-3-trimethyl-
silylindazole 2 also gave the corresponding 1-phenyl
derivative 6f (entry 6). It is presumed that introduction
of a substituent to the 7-position of indazole would lead
to poor regioselectivity for N-arylation because of the
steric hindrance of the substituent. In fact, when
7-methylindazole 7g was reacted with phenylboronic
acid under the same conditions as shown in Table 1, a
mixture of 1- and 2-phenylindazoles (8g and 9g) was
obtained in 92% yield, in which the 2-phenyl isomer 9g
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Table 1. Copper(II)-catalyzed N-arylation of 3-trimethylsilylindazolesa

R1

R2

R3

R4

N
H

N

SiMe3 ArB(OH)2 (2.0 eq.)
Cu(OAc)2 (1.5 eq.)

pyridine (2.0 eq.)
MS 4Å, CH2Cl2
rt, air, 10-37 h

1-5

R1

R2

R3

R4

N
N

SiMe3

6a-k

Ar

Entry R1 R2 R3 R4 Substrate Ar Yield (%)b

1 H H H H 1 Ph 94 (6a)

2 H H H H 1 4-Tolyl 88 (6b)

3 H H H H 1 4-MeO–Ph 86 (6c)

4 H H H H 1 4-Br–Ph 93 (6d)

5 H H H H 1 2-Tolyl 93 (6e)

6 H Me Me H 2 Ph 93 (6f)

7 H H H Me 3 Ph 97 (6g)

8 H H H Me 3 Ph 84 (6g)c

9 H H H Me 3 4-MeO–Ph 99 (6h)

10 H H H Br 4 Ph 82 (6i)

11 MeO H H MeO 5 Ph 98 (6j)

12 MeO H H MeO 5 4-Br–Ph 95 (6k)

a The 2-aryl isomer was not obtained in all cases.
b Isolated yield.
c Cu(OAc)2 (0.1 equiv) was used. The reaction was carried out under O2 atmosphere instead of air and the reaction time was 45 h.
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was predominantly formed (8g:9g = 4:7) as shown in
Scheme 1. Moreover, even N-phenylation of 3-iodo-7-
methylindazole 7l with the bulky substituent at the 3-po-
sition gave a mixture of 1- and 2-phenylindazoles (8l and
9l) in 80% yield though the former 8l was predominant.
Thus, examination using 7-substituted 3-trimethylsilyl-
indazoles was carried out (entries 7–12). Surprisingly,
the N-arylation of 7-methyl-3-trimethylsilylindazole 3
with arylboronic acids smoothly proceeded to afford
only 1-aryl derivatives 6g and 6h in high yield, respec-
tively (entries 7 and 9). Similarly, 7-bromo-3-trimethylsi-
lylindazole 4 and 4,7-dimethoxy-3-trimethylsilylindazole
5 also selectively gave the corresponding 1-aryl deriva-
tives 6i–k (entries 10–12). The use of a catalytic amount
of copper(II) acetate under O2 atmosphere was applic-
able in this reaction, though prolonged reaction time
was required (entry 8).

Next, a competitive experiment was carried out to inves-
tigate the role of the trimethylsilyl group (Scheme 2). A
mixture of 3-trimethylsilylindazole 1 (0.6 mmol) and
indazole 7a (0.6 mmol) was treated with phenylboronic
acid (0.6 mmol) in the presence of copper(II) acetate to
preferentially give 6b (68% yield) with a mixture of 8b
and 9b (32% yield, 8b:9b = 2:1). These results suggest
that the trimethylsilyl group may cause not only sup-
pression of N-arylation at the 2-position by its steric
hindrance but also acceleration of the reaction rate of
N-arylation at the 1-position presumably due to the
electronic effect of the silicon atom.

Finally, the trimethylsilyl group of 6 was easily removed
by treatment with ethanolic KOH to give 1-arylind-
azoles 8 in good to high yields (Scheme 3).16,17
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In conclusion, we have found that N-arylation of 3-trim-
ethylsilylindazoles with arylboronic acid proceeds in a
completely regioselective fashion and the resulting 1-
aryl-3-trimethylsilylindazoles can be easily converted
to 1-arylindazoles. Moreover, we have revealed that
the trimethylsilyl group at the 3-position of indazoles
accelerates the reaction rate of N-arylation at the
1-position.
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