

Available online at www.sciencedirect.com

Tetrahedron Letters 46 (2005) 333-337

Tetrahedron Letters

The first total synthesis of trichostatin D

Seijiro Hosokawa,* Takashi Ogura, Hidetaka Togashi and Kuniaki Tatsuta*

Department of Applied Chemistry, School of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan

> Received 29 September 2004; revised 25 October 2004; accepted 2 November 2004 Available online 25 November 2004

Abstract—Trichostatin D and 6-*epi*-trichostatin D have been stereoselectively synthesized through a remote stereoinduction with a chiral vinylketene silyl N, O-acetal and glycosylation of hydroxyimide under Mitsunobu conditions. © 2004 Elsevier Ltd. All rights reserved.

Trichostatin D^1 (1) was isolated as an inducer of phenotypic reversion in oncogene-transformed cells from the broth of an actinomycete *Streptomyces violaceusniger*. Because various oncogenes correlate with tumor phenotypes, the inducers of phenotypic reversion in oncogenetransformed cells are expected to be selective antitumor agents. On the other hand, trichostatin A^2 (3) has been used widely as a histone deacetylase inhibitor to a variety of biological researches.³ Therefore, trichostatin families are interested in biological activities.

Trichostatic acid⁴ (2), the common ketodiene unit of trichostatin families, and trichostatin A were synthesized to determine their absolute structures.⁵

Recently, we have established a novel stereoselective synthesis of the ketodiene skeleton by remote stereoinduction with vinylketene silyl N,O-acetals.⁶ Such transformation is ideally suited for the syntheses of trichostatin families. Herein, we report a novel stereoselective synthesis of trichostatic acid (2) as well as the first synthesis of trichostatin D (1) and 6-*epi*-trichostatin D (21) (Fig. 1).

Our synthetic plan is shown in Scheme 1. Trichostatin D (1) would be synthesized by coupling of trichostatic acid (2) and *O*-glucosylhydroxyamine 4. *O*-Glucosylhydroxyamine 4 might be derived directly from the protected glucose 5 by our methodology.⁷ Trichostatic acid (2) should be synthesized from the C-7 hydroxy precursor

Figure 1. Structure of trichostatin D and its congeners.

6 without epimerization at C-6 position. Stereoselective construction of **6** would be achieved by our remote stereo-control methodology with the chiral vinylketene silyl N,O-acetal **8**.

At first, we examined stereoselective vinylogous Mukaiyama aldol reaction with the chiral vinylketene silyl N,O-acetal 8 and p-dimethylaminobenzaldehyde 7a (Table 1). Only the conditions described as entry 1 gave the coupling products in high yield with fairly good selectivity. The major product was determined to be the (6R,7R)-isomer by \hat{X} -ray crystallographic analysis.⁸ Although the major product possessed the desired stereochemistry at C-6 position, the reaction took a long time with difficult separation from other isomers bearing unknown stereochemistries. Therefore, we further examined such remote stereoinduction with pbromobenzaldehyde, which could be transformed to the N,N-dimethylaniline derivative (entries 2–4). With *p*-bromobenzaldehyde **7b**, the reaction proceeded smoothly and the coupling products were obtained in excellent yield with high stereoselectivity. The detectable isomers were only two in which the one isomer was produced predominantly.

Keywords: Total synthesis; Trichostatin D; Vinylketene silyl *N*,*O*-acetal; Glycosylation.

^{*} Corresponding author. Tel./fax: +81 33 2003 203; e-mail: tatsuta@ waseda.jp

^{0040-4039/\$ -} see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2004.11.004

Scheme 1. Synthetic planning of trichostatic acid and trichostatin D.

Table 1. Asymmetric remote stereoinduction with 4-substituted benzaldehyde

			+ $(HO) \xrightarrow{Lewis acid} (HO) \xrightarrow{CH_2Cl_2} (HO) \xrightarrow{CH_2Cl_2} (HO) \xrightarrow{K} (HO) \xrightarrow{K}$				
		8	7a: X = Me ₂ N 7b: X = Br	9a: X = Me ₂ N 9b: X = Br			
Entry	Aldehyde	Lewis acid	Temperature (°C)	Time	Product	Yield (%)	Diastereo ratio ^{a,b}
1	7a	BF ₃ ·OEt ₂	-30	5 days	9a	88	89:8:1.5:1.5
2	7b	BF ₃ ·OEt ₂	-50	2.5 days	9b	85	94:6:<1:<1
3	7b	SnCl ₄	-50	1.5 days	9b	98	96:4:<1:<1
4	7b	TiCl ₄	-50	4h	9b	97	96:4:<1:<1

^a The diastereo ratio was determined by ¹H NMR spectroscopy.

^b The stereochemistries of the minor isomers derived from 7a were not determined and the minor product derived from 7b was determined to be the (6R,7S)-isomer.

The stereochemistry of the major product was determined to be the (6R,7R)-isomer and the minor product to be the (6R,7S)-isomer by X-ray analysis. Both isomers were found to have the desired 6R stereochemistry. In the studies of the vinylogous Mukaiyama aldol reaction with the vinylketene silyl *N*,*O*-acetals, we proposed the transition state with the conformation of **8** shown in Figure 2.⁶ Here we have disclosed the X-ray crystallographic studies of the starting vinylketene silyl *N*,*O*-acetal **8** (Fig. 2). Obviously, the isopropyl group covers the β face of the dienolate and the rotation of oxazolidone is restricted by the TBS group and the dienolate chain. As expected with this figure, we obtained only (6R)-isomers by coupling of **8** and **7b**. This finding suggested that the dienolate **8** would take a similar conformation in the solution at low temperature and be submitted to attack of an electrophile from the α face to afford the 6R configuration.

The major product of the remote stereoinduction with *p*-bromobenzaldehyde was isolated, after *O*-TBS protecting, by silica gel column chromatography (Scheme 2).

Figure 2. ORTEP drawing of the vinylketene silyl N,O-acetal 8.

Scheme 2. Reagents and conditions: (a) TBSCl, imidazole, DMF, 50 °C, 36h, quant; (b) DIBAL, CH_2Cl_2 , -78 °C, $20 \min$, 91%; (c) $Ph_3P=CHCO_2Et$, PhMe, 70 °C, 13 h, 97%; (d) 0.5 M LiOH aq, MeOH, 50 °C, 2d, quant; (e) $Pd_2(dba)_3$ ·CHCl₃, *t*-Bu₂P(*o*-biphenyl), Me₂NH, PhMe, 70 °C, 15 h, 71%; (f) DDQ, $CH_2Cl_2-H_2O$ (20:1), 0 °C, 5 min, 72%.

Thus, we chose the product **9b** as an intermediate for the enantioselective synthesis of trichostatins.

Synthesis of (+)-trichostatic acid (2) is shown in Scheme 2. The imide 10 was directly converted to the α , β -unsaturated aldehyde 11 in high yield by treatment with DIBAL at -78 °C. Wittig reaction followed by hydrolysis gave the carboxylic acid 12, which was submitted to the next palladium catalyzed amination.⁹ Oxidation at the benzyl position of 13 gave (+)-trichostatic acid (2),

which was identical with the natural product in NMR, IR, mass spectral analysis, and optical rotation.^{2,5b}

Synthesis of *O*-glucosylhydroxyamine and achievement of total synthesis of trichostatin D (1) are described in Scheme 3.

Hydroxyimide 15^{10} was introduced at the anomeric position of the suitably protected D-glucose 14 with diisopropylazodicarbonate and triphenylphosphine at

Scheme 3. Reagents and conditions: (a) DIAD, PPh₃, PhMe, 100 °C, 20 min, 83% ($\alpha:\beta = 5:1$); (b) H₂, Pd(OH)₂–C, EtOH, rt, 2h, quant; (c) TBSOTf, 2,6-lutidine, DMF, rt, 2h, 60%; (d) MeNH–NH₂, MeOH, rt, 10h, quant; (e) 19, WSCI·HCl, THF, 50 °C, 5.5h, 48% for 1; 14.5h, 52% for 21; (f) 70% aq TFA, rt, 1h, quant. for 1; 10 min, 91% for 21. WSCI = 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide.

100 °C in toluene in 83% yield with $\alpha:\beta = 5:1$ selectivity. After separation of anomers by silica gel column chromatography, de-*O*-benzylation followed by silylation gave the glucoside **18** ($J_{1',2'} = 4$ Hz, $J_{2',3'} = 4$ Hz, $J_{2',4'} = 1$ Hz, $J_{3',4'} = 0$ Hz, $J_{4',5'} = 9$ Hz). De-*N*-protection of **18** with methylhydrazine gave the *O*-glucosylhydroxyamine **19**. Finally, condensation of **2** with **19** followed by de-*O*-protection afforded trichostatin D (1), which was identical in all respects with the natural product.^{11–13} Additionally, we synthesized 6-*epi*-trichostatin D **21** by coupling of (–)-trichostatic acid **20**¹⁴ with the *O*-glucosylhydroxyamine **19**. It was found that the optical rotations of these isomers (**1** and **21**) were much different (trichostatin D (**1**): $[\alpha]_D^{25} + 225$ (*c* 0.53, MeOH), 6*epi*-trichostatin D (**21**): $[\alpha]_D^{26} + 46$ (*c* 0.43, MeOH), although NMR spectra of these isomers were superimposed.¹³

In conclusion, we have achieved the stereoselective synthesis of (+)-trichostatic acid, trichostatin D and 6epi-trichostatin D by our original methodologies including remote stereoinduction with vinylketene silyl N,Oacetal, direct reduction of α,β -unsaturated imide to α,β -unsaturated aldehyde, and direct glycosylation of D-glucose with N-hydroxyimide using Mitsunobu conditions.

Acknowledgements

We thank Professor Yoichi Hayakawa for the supply of spectrum of trichostatin D. We are grateful to Takeda Science Foundation and Sankyo Co. Ltd for generous support of our program. The present work was also supported by 21 COE 'Center for Practical Nano-Chemistry', Consolidated Research Institute for Advanced Science and Medical Care, and Grant-in-Aid from the Ministry of Education, Science, Sports and Culture.

References and notes

- Hayakawa, Y.; Nakai, M.; Furihata, K.; Shin-ya, K.; Seto, H. J. Antibiot. 2000, 53, 179–183.
- (a) Tsuji, N.; Kobayashi, M.; Nagashima, K.; Wakisaka, Y.; Koizumi, K. J. Antibiot. 1976, 29, 1–6; (b) Yoshida, H.; Iwamoto, Y.; Uozumi, T.; Beppu, T. Agric. Biol. Chem. 1985, 49, 563–565.
- (a) Wang, D.-F.; Wiest, O.; Helquist, P.; Lan-Hargest, H.-Y.; Weich, N. L. *Bioorg. Med. Chem. Lett.* 2004, 14, 707– 711; (b) Nie, L.; Ueki, M.; Kakeya, H.; Osada, H. J. *Antibiot.* 2001, 54, 783–788; (c) Kim, Y. B.; Ki, S. W.; Yoshida, M.; Horinouchi, S. J. Antibiot. 2000, 53, 1191– 1200; (d) Koguchi, Y.; Nishio, M.; Kotera, J.; Omori, K.; Ohnuki, T.; Komatsubara, S. J. Antibiot. 1997, 50, 970– 971; (e) Takahashi, I.; Miyaji, H.; Yoshida, T.; Sato, S.; Mizukami, T. J. Antibiot. 1996, 49, 453–457; (f) Yoshida, M.; Kojima, M.; Akita, M.; Beppu, T. J. Biol. Chem. 1990, 265, 17174–17179.
- Morioka, H.; Ishihara, M.; Takezawa, M.; Hirayama, K.; Suzuki, E.; Komoda, Y.; Shibai, H. Agric. Biol. Chem. 1985, 49, 1365–1370.
- (a) Fleming, I.; Iqbal, J.; Krebs, E.-P. *Tetrahedron* 1983, 39, 841–845; (b) Mori, K.; Koseki, K. *Tetrahedron* 1988, 44, 6013–6020.

- Shirokawa, S.; Kamiyama, M.; Nakamura, T.; Okada, M.; Nakazaki, A.; Hosokawa, S.; Kobayashi, S. J. Am. Chem. Soc. 2004, 126, 13604–13605.
- (a) Tatsuta, K.; Takahashi, M.; Tanaka, N. *Tetrahedron Lett.* **1999**, *40*, 1929–1932; (b) Asami, Y.; Ogura, T.; Otake, N.; Nishimura, T.; Xinsheng, Y.; Sakurai, T.; Nagasawa, H.; Sakuda, S.; Tatsuta, K. *J. Nat. Prod.* **2003**, *66*, 729–731.
- 8. Crystallographic data (excluding structure factors) for the structures in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication numbers CCDC 249741 for 8, CCDC 249740 for 9a, CCDC 249742 for 9b, and CCDC 249438 for (6*R*,6*S*)-isomer of 9b. Copies of the data can be obtained, free charge, on application to CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK [fax: +44(0)-1223-336033 or e-mail: http://deposit@ccdc.cam.ac.uk].
- Wolfe, J. P.; Tomori, H.; Sadighi, J. P. Z.; Yin, J.; Buchwald, S. L. J. Org. Chem. 2000, 65, 1158–1174.
- Stolberg, M. A.; Mosher, Wm. A.; Wagner-Jauregg, T. S. J. Am. Chem. Soc. 1957, 79, 2615–2617.
 The spectra including ¹H NMR, ¹³C NMR, IR of
- 11. The spectra including ¹H NMR, ¹³C NMR, IR of synthetic trichostatin D were identical with those of the natural product kindly supplied by Prof. Yoichi Haya-kawa (Tokyo University of Science).
- 12. We also examined this transformation with the 2',3',4'tris(trimethylsiloxy) analogue of **19** to avoid epimerization at C-6 position during de-protection. Removal of silyl groups proceeded under milder conditions (HF–pyridine: pyridine = 1:6 in CH₂Cl₂, rt, 30 min), but the product was isolated in lower yield (21% in 2 steps) with lower $[\alpha]_D$ value ($[\alpha]_D^{25} = +210, c_0.19$, MeOH).
- value ($[\alpha]_D^{25} = +210, c \ 0.19, MeOH$). 13. Selected data; **9b**: $[\alpha]_D^{27} + 100 \ (c \ 1.02, CHCl_3)$. ¹H NMR $(600 \text{ MHz}, \text{CDCl}_3)$: $\delta 0.79 (3H, d, J = 7.0 \text{ Hz}), 0.94 (3H, d, d)$ J = 7.0 Hz, 0.95 (3H, d, J = 7.0 Hz), 2.00 (3H, d, J = 1.5 Hz), 2.35 (1H, qqd, J = 7.0, 7.0, and 4.5 Hz), 2.77 (1H, ddq, J = 10.0, 9.0, and 7.0 Hz), 3.81 (1H, d, J = 2.0 Hz), 4.21 (1H, dd, J = 9.0 and 6.0 Hz), 4.28 (1H, dd, J = 9.0 and 2.0 Hz), 4.36 (1H, dd, J = 9.0 and 9.0 Hz), 4.60 (1H, ddd, 9.0, 6.0, and 4.5Hz), 5.84 (1H, dq, J = 10.0 and 1.5 Hz), 7.26 (2H, d, J = 8.5 Hz), 7.47 (2H, d, J = 8.5 Hz). 19: $[\alpha]_D^{2/} + 56$ (c 0.49, CHCl₃). ¹H NMR $(600 \text{ MHz}, \text{CDCl}_3)$: $\delta 0.06 (6\text{H}, \text{s}, -\text{SiMe} \times 2), 0.07 (6\text{H}, \text{s}, -\text{SiMe} \times 2)$ -SiMe × 2), 0.08 (3H, s, -SiMe), 0.09 (3H, s, -SiMe), 0.10 (3H, s, -SiMe), 0.88 (18H, s, t-Bu × 2), 0.90 (18H, s, t- $Bu \times 2$), 3.65 (1H, ddd, J = 8.5, 2.0, and 1.0 Hz, H-4), 3.68 (1H, dd, J = 11.0 and 6.0 Hz, H-6), 3.77 (1H, dd, J = 4.5 and 2.0 Hz, H-3), 3.84 (1H, dd, J = 11.0 and 2.5 Hz, H-6), 3.89 (1H, ddd, J = 4.5, 3.5, and 1.0 Hz, H-2), 3.95 (1H, ddd, J = 8.5, 6.0, and 2.5 Hz, H-5), 4.87 (1H, d, J = 3.5 Hz, H-1), 5.39–5.51 (2H, br s, -NH₂). (+)-Trichostatic acid (2): $[\alpha]_{D}^{26}$ + 154 (c 0.32, MeOH). ¹H NMR (600 MHz, CDCl₃): δ 1.32 (3H, d, J = 7.0 Hz), 1.93 (3H, d, J = 1.0 Hz), 3.06 (6H, s), 4.40 (1H, dq, J = 9.5 and 7.0 Hz), 5.83 (1H, d, J = 16.0 Hz), 6.09 (1H, br d, J = 9.5 Hz), 6.65 (2H, d, J = 9.0 Hz), 7.38 (1H, d, J = 16.0 Hz), 7.85 (2H, d, J = 9.0 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 12.5, 17.7, 30.9, 40.0, 40.8, 110.7, 115.8, 123.8, 130.6, 132.6, 142.9, 151.3, 153.5, 171.8, 198.3, 207.0. Trichostatin D (1): $[\alpha]_{D}^{25} + 225$ (*c* 0.53, MeOH). ¹H NMR (600 MHz, DMSO d_{6} , 75 °C): δ 1.20 (3H, d, J = 6.0 Hz, 6-Me), 1.86 (3H, s, 4-Me), $3.00 (6H, s, -NMe_2)$, 3.20 (1H, ddd, J = 9.0, 9.0, and4.0 Hz, H-4'), 3.31 (1H, dd, J = 9.0 and 3.0 Hz, H-2'), 3.46 (1H, br dd, J = 9.0 and 9.0 Hz, H-3'), 3.54 (1H, ddd, J = 12.0, 5.0, and 5.0 Hz, H-6'), 3.61 (1H, br d, J = 12.0 Hz, H-6', 3.71 (1H, m, H-5'), 4.04 (1H, br,-OH), 4.44 (1H, dq, J = 9.0 and 6.0 Hz, H-6), 4.58 (1H, br, -OH), 4.65 (1H, d, J = 4.0 Hz, -OH), 4.80 (1H, br, -OH), 4.91 (1H, d, J = 3.0 Hz, H-1'), 5.84 (1H, d, J = 16.0 Hz,

H-2, 25 °C), 5.90 (1H, d, J = 9.0 Hz, H-5), 6.71 (2H, d, J = 9.0 Hz, H-10 and H-12), 7.07 (1H, d, J = 15.0 Hz, H-3), 7.79 (2H, d, J = 9.0 Hz, H-9 and H-13). ¹³C NMR (150 MHz, DMSO- d_6): δ 12.6, 17.8, 60.4, 69.6, 71.7, 73.3, 73.8, 104.2, 111.0, 116.9, 123.3, 130.5, 140.2, 144.2, 153.5, 197.9. 6-*epi*-Trichostatin D (22): $[\alpha]_{D}^{26} + 46$ (*c* 0.43, MeOH). ¹H NMR (600 MHz, DMSO- d_6 , 75 °C): δ 1.20 (3H, d, J = 7.0 Hz, 6-Me), 1.86 (3H, d, J = 1.0 Hz, 4-Me), 3.00 (6H, s, $-NMe_2$), 3.20 (1H, ddd, J = 10.0, 10.0, and 4.0 Hz, H-4'), 3.30 (1H, dd, J = 10.0 and 3.0 Hz, H-2'), 3.45 (1H, ddd, J = 10.0, 10.0, and 4.0 Hz, H-3'), 3.55 (1H, dd, J = 12.0 and 5.0 Hz, H-6'), 3.61 (1H, dd, J = 12.0 and

2.0 Hz, H-6'), 3.72 (1H, ddd, J = 10.0, 5.0, and 2.0 Hz, H-5'), 4.05 (1H, br, -OH), 4.44 (1H, dq, J = 9.0 and 7.0 Hz, H-6), 4.58 (1H, d, J = 5.0 Hz -OH), 4.65 (1H, d, J = 4.0 Hz, -OH), 4.91 (1H, d, J = 3.0 Hz, H-1'), 5.83 (1H, d, J = 16.0 Hz, H-2, 25 °C), 5.90 (1H, d, J = 9.0 Hz, H-5), 6.71 (2H, d, J = 9.0 Hz, H-10 and H-12), 7.07 (1H, d, J = 15.0 Hz, H-3), 7.79 (2H, d, J = 9.0 Hz, H-9 and H-13). ¹³C NMR (150 MHz, DMSO- d_6): δ 12.6, 17.8, 60.4, 69.6, 71.7, 73.3, 73.8, 104.2, 111.0, 117.0, 123.3, 130.5, 140.2, 144.2, 153.5, 197.9.

14. (-)-Trichostatic acid (20) ($[\alpha]_D^{26}$ – 150, *c* 0.32, MeOH) was synthesized from the *ent*-8 in the same manner.