Consecutive Insertion of a Silylene into the P₄ Tetrahedron: Facile Access to Strained SiP₄ and Si₂P₄ Cage Compounds**

Yun Xiong, Shenglai Yao, Markus Brym, and Matthias Driess*

Dedicated to Professor Michael F. Lappert

Organosilicon–phosphorus compounds are versatile building blocks in contemporary organophosphorus chemistry^[1] and for the synthesis of metal phosphide semiconducting materials or respective molecular clusters.^[2]

Likewise, cyclic silicon-phosphorus compounds can serve as chelating electron-rich ligands in transitionmetal complexes, modeling unusual coordination modes of metal centers in catalysts.^[3] The formation of siliconphosphorus compounds is commonly achieved by salt metathesis reactions using silicon halides and main-groupmetal phosphides (for example, lithium phosphides).^[1,4] However, the latter method is hardly suitable for the synthesis of strained silicon-phosphorus cycles and cages because of facile skeletal rearrangement reactions (for example, intermolecular ring enlargement) under the reaction conditions.^[5] Hence, other synthetic methods are desirable to gain access to welldefined, strained silicon-phosphorus cycles and cages. A promising alternative strategy represents the utilization

the first SiP₄ and Si₂P₄ cage compounds which result from

consecutive P_4 activation with the stable silylene 1

Although several stable silvlenes have been described

thus far, to our knowledge, both the highly electrophilic silylene $(CH_2)_2[C(SiMe_3)_2]_2Si^{[8]}$ and the silicon analogues of

nucleophilic Arduengo-type carbenes^[9] seemed to be unsuit-

able for P₄ activation. In contrast, the zwitterionic silvlene

 $\mathbf{1}^{[10a]}$ reacts gently with \mathbf{P}_4 in the molar ratio of 1:1 at ambient

temperature to give solely the compound **2**. Remarkably, the germylene analogue of $\mathbf{1}$,^[10b] in turn, is resistant towards P_4

even in boiling toluene owing to the lower reduction potential

of Ge^{II} versus Si^{II} (inert-pair effect). Compound **2** can be isolated in the form of colorless crystals in 60% yield.^[11] According to EI-MS spectra and combustion analysis, **2** is

a 1:1 adduct of 1 and P₄. Its ¹H NMR spectrum proves the

integrity of the C₃N₂ chelate ligand at the silicon atom. As

shown by ³¹P NMR spectroscopy, 2 bears three chemically

different sorts of ³¹P nuclei (A, B, and X), giving rise to

temperature-invariant resonance signals at $\delta_{\rm X} = 131.9$, $\delta_{\rm A} =$

-342.4, and $\delta_{\rm B} = -348.0$ ppm. The low-field resonance signal

at δ_x splits into a doublet of doublets $({}^1J(\mathbf{P}_x,\mathbf{P}_A) = 146.8,$

 ${}^{1}J(P_{x},P_{B}) = 144.7 \text{ Hz})$ while each of the two high-field signals

exhibits a doublet of triplets $({}^{1}J(\mathbf{P}_{x},\mathbf{P}_{A}) = 144.7, {}^{1}J(\mathbf{P}_{A},\mathbf{P}_{B}) =$

188.0 Hz), indicating an ABX₂ splitting pattern.^[11] The

Scheme 1. Synthesis of 2 and 3 from 1 and P_4 . $R = 2,6-iPr_2C_6H_3$.

(Scheme 1).

of unsaturated silicon compounds and white phosphorus (P_4) as shown by the gentle reaction of disilenes ($R_2Si=SiR_2$) and phosphasilenes ($R_2Si=PR'$) with P_4 at 40 °C, leading to the unusual butterfly-shaped Si_2P_2 and SiP_3 heterobicyclo-[1.1.0]butanes,^[6a,7] respectively. The mechanism of this remarkably mild P_4 activation and degradation process, initiated by low-valent silicon, is not clearly understood as yet.^[6b] The latter results prompted us to investigate whether stable silylenes (R_2Si) are also capable of P_4 activation to give novel strained silicon–phosphorus cycles. Herein we report

© 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

 ^[*] Dr. Y. Xiong, Dr. S. Yao, Dr. M. Brym, Prof. Dr. M. Driess Institute of Chemistry: Metalorganics and Inorganic Materials Technische Universität Berlin Strasse des 17. Juni 135, Sekr. C2, 10623 Berlin (Germany) Fax: (+49) 30-314-22168 E-mail: matthias.driess@tu-berlin.de

^[**] We thank the Deutsche Forschungsgemeinschaft for financial support and Prof. Dr. Konstantin Karaghiosoff (University of Munich) for his help on spectra simulations.

Supporting information for this article is available on the WWW under http://www.angewandte.org or from the author.

Communications

unusual low-field shift of Px is similar to values observed for M–P-bonded P atoms in isovalent $[L_nMP_4]$ complexes with a tricyclo[3.1.0]pentane-like core ($\{L_nM\}$ = diamagnetic transition-metal complex fragment^[12a-c] and PI₂^{+<math>[12d]}). Likewise, the</sup></sup> high-field shifts of P_A and P_B in 2 signalize similar electronic features as observed for bridgehead P atoms in $[L_nMP_4]$ complexes^[12] and related butterfly-shaped Si,P compounds (Scheme 1).^[6,7] The ²⁹Si NMR spectrum of **2** displays a broadened triplet resonance at $\delta = -40.4$ ppm $({}^{1}J({}^{29}\text{Si},{}^{31}\text{P}) =$ 32.0 Hz), which is in the typical range of related cyclosilaphosphanes with silicon-phosphorus single bonds.^[13] The molecular structure of 2 deduced from ¹H, ³¹P, and ²⁹Si NMR spectroscopy was confirmed by a single-crystal X-ray diffraction analysis.^[11] Compound 2 consists of a tricyclic SiP₄ core with pyramidally coordinated phosphorus atoms and silicon atoms in a tetrahedral environment (Figure 1). The sixmembered C₃N₂Si skeleton is almost planar and possesses endocyclic C–N and C–C bond lengths typical for its π conjugated C₃N₂ backbone.^[10] The exocyclic C1-C2 and C4-C5 bond lengths are identical owing to orientation disorder. As expected, both the Si-P (av. 224.7 pm) and P-P bond

Figure 1. Molecular structure of **2**. Thermal ellipsoids (C1 through C5, P atoms, N1, N2, Si1) are drawn at the 50% probability level. Hydrogen atoms (except for those at C1) are omitted for clarity. Selected bond lengths [pm] and angles [°]: Si1-N1 172.8(3), Si1-N2 172.4(3), Si1-P2 225.0(1), Si1-P1 224.6(1), P3-P2 223.2(1), P1-P3 223.5(2), P3-P4 215.9(2), P2-P4 222.7(1), P1-P4 222.1(2), N1-C2 141.2(4), N2-C4 142.2(4), C1-C2 141.8(4), C2-C3 139.7(5), C3-C4 139.2(4), C4-C5 141.6(5); N1-Si1-N2 104.1(1), P1-Si1-P2 87.32(5), P4-P3-P2 60.94(5), P4-P3-P1 60.70(5), P2-P3-P1 88.03(5), P4-P2-P3 57.91(5), P4-P2-Si1 84.82(5), P3-P2-Si1 83.85(5).

lengths (av. 222.9 pm) are similar to those observed in related strained silaphosphanes^[13] and isostructural η^2 -P₄ transitionmetal complexes,^[12a-c] respectively, except for the P3–P4 bridgehead bond length of 215.9(2) pm, which is even shorter than that in P₄ (220 pm). This result is reminiscent of the situation in related bicyclo[1.1.0]tetraphosphanes, R₂P₄ (R = organyl), which have relatively short P–P bridgehead bonds (212 pm) owing to partial P–P π -bond character.^[14] Apparently, this bonding situation favors the insertion of a Si^{II} atom into the P3–P4 bond in **2**. Thus, **1** reacts slowly with **2** in toluene at 25 °C to give the insertion product **3** (Scheme 1), which was isolated in 27 % yield in the form of colorless crystals.^[11] The reaction progress for the second insertion step of **1** into a P–P bond of the P_4 core is kinetically hampered because of steric congestion.

This reaction sequence is in contrast to the spontaneous multiple insertions of subvalent main-group-metal centers into the P₄ cage. For example, a related β -diketiminato Al^I complex reacts with P₄ to give a double-insertion product with a Al₂P₄ core.^[15a] Likewise, the tetrameric Al^I compound [(Cp*Al)₄] reacts with P₄ in a 1.5:1 ratio to give [(Cp*Al)₆P₄],^[15b] whereas the isovalent Ga^I atom in [(Me₃Si)₃CGa·] affords an insertion product with a Ga₃P₄ core.^[15c]

The composition of 3 is proven by EI-MS (molecular ion m/z 1013) and a correct combustion analysis while its constitution is evident by NMR spectroscopy. As expected, the ³¹P{¹H} NMR spectrum displays two multiplets at $\delta_A = 153$ and $\delta_{\rm B} = 158$ ppm, representing a AA'BB' splitting pattern of higher order with unusually small magnitudes of the respective ¹*J*(³¹P, ³¹P) coupling constants.^[11] The ²⁹Si NMR spectrum displays a multiplet at $\delta = -15.9$ ppm, about 24 ppm to lower field in comparison with 2. The molecular structure of 3 was confirmed by an X-ray diffraction analysis (Figure 2).^[11] The P-P bond lengths in the asterane-shaped P_4 core in 3 are similar (av. 228.5(1) pm) but somewhat longer than those in 2, presumably because of the steric congestion from the substituents at the silane moieties. The same is true for the Si-P bond lengths (av. 228.5(1) pm), which are slightly longer than those in 2. Both C₃N₂Si moieties are practically planar

Figure 2. Molecular structure of **3**. Thermal ellipsoids (C1 through C5, C30 through C34, P atoms, N1 through N4, Si1, Si2) are drawn at the 50% probability level. Hydrogen atoms (except for those at C1 and C30) are omitted for clarity. Selected bond lengths [pm] and angles [°]: Si1-N1 172.6(3), Si1-N2 172.9(3), Si2-N3 172.5(3), Si2-N4 173.4(3), Si1-P1 229.1(1), Si1-P2 227.5(1), Si2-P3 229.5(1), Si2-P4 227.5(1), P1-P3 228.0(1), P1-P4 229.7(1), P2-P3 229.6(1), P2-P4 228.0(1), C1-C2 138.9(5), C2-C3 142.0(5), C3-C4 136.6(5), C4-C5 145.5(5); N1-Si1-N2 102.9(1), N3-Si2-N4 102.8(1), P2-Si1-P1 82.1°(4), P4-Si2-P3 82.30(5), P3-P1-Si1 82.42(5), P3-P1-P4 82.16(5), Si1-P1-P4 80.00(5), P1-P3-Si2 82.31(5), P1-P3-P2 81.90(5), Si2-P3-P2 79.75(5).

and the endo- and exocyclic C–C bond lengths of the ligand backbone indicate alternating C–C single and double bonds. This situation suggests only little perturbation of the buta-1,3-diene π system by the nitrogen atoms, similar to the situation in other compounds with tetravalent silicon.^[10a]

In summary, the novel strained tricyclic silaphosphans **2** and **3** are readily accessible by the first insertion reaction of a stable silylene into the P–P bonds of P₄. Owing to the intrinsic $\text{Si}^{\delta+}-\text{P}^{\delta-}\sigma$ -bond polarity, the compounds **2** and **3** could serve as nucleophilic reagents for a mild transfer of formally P₄²⁻ (in **2**) and P₄⁴⁻ moieties (in **3**) to transition metals, leading to phosphorus-rich metal clusters or complexes with "naked" polyphosphorus ligands.^[16] Respective investigations are currently underway.

Received: March 19, 2007 Published online: May 4, 2007

Keywords: N ligands \cdot phosphorus \cdot silicon \cdot silylenes \cdot strained molecules

- Reviews: a) G. Fritz, P. Scheer, Chem. Rev. 2000, 100, 3341– 3402; b) D. A. Armitage, Organosilicon derivatives of phosphorus, arsenic, antimony and bismuth in The Silicon-Heteroatom Bond (Eds.: S. Patai, Z. Rappoport), Wiley, New York, 1991, chap. 5, pp. 152–182, and references therein; c) Appendix to "Organosilicon derivatives of phosphorus, arsenic, antimony and bismuth": D. A. Armitage, in The Silicon-Heteroatom Bond (Eds.: S. Patai, Z. Rappoport), Wiley, New York, 1991, chap. 6, pp. 183–231, and references therein.
- [2] III/V materials: a) R. L. Wells, C. G. Pitt, A. T. McPhail, A. P. Pardy, S. Safieezad, R. B. Hallock, *Chem. Mater.* 1989, *1*, 4–6; b) T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, W. E. Buhro, *Science* 1995, *270*, 1791–1794; metal-phosphorus clusters: c) D. Fenske, J. Ohmer, J. Hachgenie, K. Merzweiler, *Angew. Chem.* 1988, *100*, 1300–1320; *Angew. Chem. Int. Ed. Engl.* 1988, *27*, 1277; d) D. Fenske, W. Holstein, *Angew. Chem.* 1994, *106*, 1311–1312; *Angew. Chem. Int. Ed. Engl.* 1994, *33*, 1290–1292.
- [3] a) G. Fritz, R. Biastoch, Z. Anorg. Allg. Chem. 1986, 535, 63 and G. Fritz, R. Biastoch, Z. Anorg. Allg. Chem. 1986, 535, 95; b) G. Fritz, R. Biastoch, W. Hönle, H. G. von Schnering, Z. Anorg. Allg. Chem. 1986, 535, 86; c) M. Driess, M. Faulhaber, H. Pritzkow, Angew. Chem. 1997, 109, 1980–1982; Angew. Chem. Int. Ed. Engl. 1997, 36, 1892–1894; d) M. Driess, M. Reisgys, H. Pritzkow, Angew. Chem. 1992, 104, 1514–1516; Angew. Chem. Int. Ed. Engl. 1992, 31, 1510–1513; M. Driess, H. Pritzkow, M. Reisgys, Chem. Ber. 1996, 129, 247–252; e) R. H. Crabtree, Angew. Chem. 1993, 105, 828–845; Angew. Chem. Int. Ed. Engl. 1993, 32, 789–805.
- [4] a) R. T. Oakley, D. A. Stanislawski, R. West, J. Organomet. Chem. 1978, 157, 389; b) G. Fritz, R. Uhlmann, Z. Anorg. Allg. Chem. 1978, 442, 95; c) U. Winkler, M. Schieck, H. Pritzkow, M. Driess, I. Hyla-Kryspin, H. Lange, R. Gleiter, Chem. Eur. J. 1997, 3, 874–880.

- [5] a) G. Fritz, R. Uhlmann, R. Uhlmann, W. Hölderich, Z. Anorg. Allg. Chem. 1978, 442, 86; b) strained Si/P cycles are accessible by employing bulky substituents at the Si and/or P atoms: see cited works in reference [1b]; c) M. Baudler, G. Scholz, K.-F. Tebbe, M. Feher, Angew. Chem. 1989, 101, 352-354; Angew. Chem. Int. Ed. Engl. 1989, 28, 339-341; d) M. Driess, H. Pritzkow, S. Rell, R. Janoschek, Inorg. Chem. 1997, 36, 5212-5217; e) M. Driess, H. Pritzkow, M. Reisgys, Chem. Ber. 1991, 124, 1923-1929; f) M. Driess, R. Gleiter, R. Janoschek, M. Reisgys, Angew. Chem. 1994, 106, 1548-1551; Angew. Chem. Int. Ed. Engl. 1994, 33, 1484-1487.
- [6] a) M. Driess, A. D. Fanta, D. R. Powell, R. West, Angew. Chem.
 1989, 101, 1087–1088; Angew. Chem. Int. Ed. Engl. 1989, 28, 1038–1040; b) R. Okazaki, R. West, Chemistry of Stable Disilenes in Adv. Organomet. Chem. (Eds.: F. G. A. Stone, R. West), Academic Press, New York, 1996, pp. 267–269.
- [7] M. Driess, Angew. Chem. 1991, 103, 979–981; Angew. Chem. Int. Ed. Engl. 1991, 30, 1022–1024.
- [8] M. Kira, S. Ishida, T. Iwamoto, C. Kabuto, J. Am. Chem. Soc. 1999, 121, 9722–9723.
- [9] a) M. Denk, R. Lennon, R. Hayashi, R. West, A. Haaland, H. Belyakov, P. Verne, M. Wagner, N. Metzler, J. Am. Chem. Soc. 1994, 116, 2691–2692; recent reviews: b) N. J. Hill, R. West, J. Organomet. Chem. 2004, 689, 4165–4183; c) B. Gehrhus, P. B. Hitchcock, R. Pongtavornpinyo, L. Zhang, Dalton Trans. 2006, 1847, and references therein.
- [10] a) M. Driess, S. Yao, M. Brym, C. van Wüllen, D. Lentz, J. Am. Chem. Soc. 2006, 128, 9628; b) M. Driess, S. Yao, M. Brym, C. van Wüllen, Angew. Chem. 2006, 118, 4455-4458; Angew. Chem. Int. Ed. 2006, 45, 4349-4352.
- [11] Experimental details as well as X-ray diffraction data for **2** and **3** are provided as Supporting Information.
- [12] a) O. J. Scherer, M. Swarowsky, G. Wolmershäuser, Angew. Chem. 1988, 100, 738-739; Angew. Chem. Int. Ed. Engl. 1988, 27, 694-695; b) O. J. Scherer, M. Swarowsky, G. Wolmershäuser, Organometallics 1989, 8, 841-842; c) D. Yakhvarov, P. Barbaro, L. Gonsalvi, S. M. Carpio, S. Midollini, A. Orlandini, M. Peruzzini, O. Sinyashin, F. Zanobini, Angew. Chem. 2006, 118, 4288-4291; Angew. Chem. Int. Ed. 2006, 45, 4182-4185; d) I. Krossing, J. Chem. Soc. Dalton Trans. 2002, 500-512.
- [13] M. Driess, H. Pritzkow, M. Reisgys, *Chem. Ber.* 1991, 124, 1931– 1939; see also reference [1a].
- [14] a) E. Niecke, R. Rüger, B. Krebs, Angew. Chem. 1982, 94, 553–554; Angew. Chem. Int. Ed. Engl. 1982, 21, 544–545; b) R. Riedel, H.-D. Hausen, E. Fluck, Angew. Chem. 1985, 97, 1050; Angew. Chem. Int. Ed. Engl. 1985, 24, 1056–1057; c) W. W. Schoeller, V. Staemmler, P. Rademacher, E. Niecke, Inorg. Chem. 1986, 25, 4382.
- [15] a) Y. Peng, H. Fan, H. Zhu, H. W. Roesky, J. Magull, C. E. Hughes, *Angew. Chem.* 2004, *116*, 3525-3527; *Angew. Chem. Int. Ed.* 2004, *43*, 3443-3445; b) C. Dohmeier, H. Schnöckel, C. Robl, U. Schneider, R. Ahlrichs, *Angew. Chem.* 1994, *106*, 225-227; *Angew. Chem. Int. Ed. Engl.* 1994, *33*, 199-200; c) W. Uhl, M. Benter, *Chem. Commun.* 1999, 771-772.
- [16] a) Review: O. J. Scherer, Acc. Chem. Res. 1999, 32, 751–762;
 b) M. Scheer, C. Troitzsch, P. G. Jones, Angew. Chem. 1992, 104, 1395–1397; Angew. Chem. Int. Ed. Engl. 1992, 31, 1377–1379.