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Efficient synthesis of B-C-glucosides via radical cyclization with
a silicon tether based on the conformational restriction strategy
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Abstract—An efficient method for preparing -C-glucosides using radical cyclization W1th a temporary connecting silicon tether was
developed. In this reaction, conformational restriction of the substrates to the unusual ' C4-form is essential for the cyclization to

occur.
© 2005 Published by Elsevier Ltd.

C-Glycosides are stable mimics for natural O-glycosides
possessing biological activity.! During our studies on C-
glycosidic ligands of myo-inositol 1,4,5-trisphosphate
(IP3) receptors,”> we newly designed the B-C-glucoside
trisphosphates 1 and 2 (Fig. 1) as stable IP; mimics.
Owing to the six-membered chair-conformation of these
compounds, the 3,4-trans-bisphosphate on D-glucose
backbone of 1 and 2 can be superimposed with the
4,5-trans-bisphosphate of 1P;.

Although numerous methods exist for the preparation of
C-glycosides, the synthesis of B-C-glycosides has proved
to be considerably more difficult than the synthesis of
their a-counterparts.'-3d The use of radical reactions is
an efficient process for constructing C-glycosidic bonds,
and stereoselective intramolecular and intermolecular
radical C-glycosidation reactions have been devel-
oped.!:2b-e:3b.¢4 Qtork et al. reported a facile synthesis
of a B-C-glucoside via the stereoselective radical cycliza-
tion using a phenyl I-seleno-B-p-glucose derivative
having a phenylethynylsilyl group as a radical acceptor

OH

OH
2-04p0 19 .. 20p0 Q_{Ctn
2-04P0 OPO3 2= o PO 2—
OH fo  bPOj
IP3 20

Figure 1. IP; and newly designed B-C-glucosidic IP; mimics.
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tether at the 6-hydroxyl.* As shown in Scheme 1, heating
the substrate with BusSnH and AIBN in benzene, fol-
lowed by treatment with TBAF, gave the 2-phenylvinyl
B-C-glucoside in 54% yield They described the radical
cyclization as proceeding via a conformatlonally ﬂlpped
intermediate that assumes the ' C,-form (Scheme 1).% In
this conformation, the tethered hydroxymethyl moiety
adopts an axial orientation, placing the radical-accepting
sp carbon of the ethynyl moiety close to the anomeric
radical, thereby allowing the cyclization to occur.

Based on these results, we speculated that effective intro-
duction of a carbon-unit at the anomeric B-position
could be realized via radical cyclizations with substrates
I conformationally restricted to the unusual !C,-form.
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As shown in Scheme 2, the radical reaction using the
! Cy-restricted substrate I was expected to form stereo-
selectively the desired B-cyclization product III, via the
!¢ ~chair-like anomeric radical intermediate II, in which
the cis-cyclization would effectively occur without con-
formational change because of the axial orientation of
the 6’-hydroxylmethyl moiety with the tether. Oxidative
cleavage of the C-Si bond would produce the desired -
C-glucoside IV. Thus, we designed the radical reaction
substrates 3 and 4 with a 6-O-vinylsilyl® or a 6-O-ally-
silyl® group as the radical-accepting tether (Fig. 2), the
conformation of which can be restricted by significantly
bulky silyl-protecting groups at the secondary hydroxyl
groups.>’

The synthesis of the substrates 3 and 4 is shown in
Scheme 3. The 2-hydroxyl of the phenyl 3,4-bis-TBS-6-
O-trityl-l-seleno-B-p-glucose (7)>¢ was acetylated, and
the 6-O-trityl group of the product 8 was selectively re-
moved with aqueous TFA to give 9. Treatment of 9 with
vinyldiphenylchlorosilane/DMAP/Et;N in toluene at
room temperature gave the 6-O-vinylsilyl ether 3. Simi-

TrO SePh HO SePh
TBSO 1890
-0 aq. TFA 0
CHsCI
TBSO OR TBSO OAc
AcO  ~7:R=H 9 (96%)
DMAP  8: R =Ac (86%)
MeCN
Red
/SI )n
BusSnH o AcOOH
AIBN HBr, KBr
TBYO
benzene, reflux 0 DMF
TBSO Ac

10: n=0, R= Ph (40%)
11: n=1, R= Me (72%)

Scheme 3.

¢ 4-restricted unrestricted

"= "l
S si
/ n y;
T(;S o, SePn Oo M
Q Bg(r?o/é@mwseph
OBn
TBSO OAc
3:R=Ph,n=0 5:R=Ph,n=0
4:R=Me,n=1 6: R=Me,n=1

Figure 2. Conformationally restricted and unrestricted substrates for
the radical cyclization.

larly an allyldimethylsilyl group was introduced at the 6-
hydroxyl with allyldimethylchlorosilane to give the
other substrate 4.

The conformationally unrestricted substrates, that is, 6-
O-vinyldiphenylsilyl and 6-0O-allyldimethylsilyl ethers 5
and 6 of tri-O-benzyl-protected l-phenylseleno-B-p-glu-
cose, were also prepared from phenyl 2,3,4-tri-O-benz-
yl-l-seleno-PB-p-glucose (15),* as shown in Scheme 4, in
order to clarify whether the conformational restriction
of the substrates to the 'Cy-form actually facilitated
the B-selective radical cyclization.

The unrestricted substrates 5 and 6 had large coupling
constants (ca. 9 Hz) between the ring protons in
'"H NMR,® showing their preference for the usual
4C,-chair-like conformation. On the other hand, the
considerably smaller coupling constants between the
ring protons in the 3,4-O-silyl-protected substrates 3
and 4% suggested that these preferred the flipped ' C4-like
conformation.

These radical reactions of the ' Cy-restricted substrates 3
and 4 as well as the unrestricted substrates 5 and 6 were
performed by slow addition of a mixture of Bu3SnH
(1.2 equiv) and AIBN (0.6 equiv) to a heated solution
of the substrate (5 mM) in benzene (80 °C) (Schemes 3
and 4). The reaction was carried out first with the
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!'Cy-restricted vinylsilyl ether 3, and afforded the desired
-endo-cyclization product 10 in 40% yield. When the
Cy-restricted allylsilyl ether 4 was subjected to the reac-

tion under the same conditions, the endo-cyclization

effectively occurred to give the desired p-product 11 in

72% yield along with the anomeric reduction product

12 in 20% yield.” On the other hand, in the treatment

of either of the conformationally unrestricted substrates

5 or 6 under similar Bu;SnH/AIBN conditions, many

spots were observed on TLC, and none of the cycliza-

tion products were obtained (Scheme 4).

These results show that the conformational restriction
strategy works effectively in radical cyclization. It is
worth noting that the reaction of the allylsilyl ether 4
produced the unusual 9-endo-cyclization product 11 in
good yield. In the case of the vinylsilyl ether 3, although
the yield was not high, the 'Cy-conformational restric-
tion of the substrate allowed the formation of the un-
usual 8-endo-cyclization product 10.

We previously developed a regio- and stereoselective
method for introducing a C2-substituent at the B-posi-
tion of a hydroxyl in halohydrins or a-phenylselenoalk-
anol substrate A using an intramolecular radical
cyclization with a vinylsilyl group as a temporary con-
necting radical acceptor tether (Scheme 5).° The selec-
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tive introduction of a 2-hydroxyethyl group can be
achieved via the 6-endo-type cyclization product E, after
oxidative ring-cleavage by treating the cyclization
product under Tamao oxidation conditions.” During
these studies, we showed that the kinetically favored
5-exo-cyclized radical C, initially formed from radical
B, rearranged to the more stable ring-enlarged 4-oxa-
3-silacyclohexyl radical D via a pentavalent-like silicon
radical transition state X, which was then trapped with
Bu;3SnH to give E.>°

We were interested in the reaction pathway forming the
8-endo-cyclization product 10, which can be formed, as
shown in Scheme 6, either via the ring-enlarged rear-
rangement (path a), analogous to the previous case
(Scheme 5), or via the direct 8-endo-cyclization (path
b).” Thus, a deuterium-labeling experiment of the sub-
strate 3 with Bu3SnD instead of BusSnH was carried
out. The radical cyclization product was identified by
'H and ?H NMR analyses not as 10Da but as 10Db,
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in which only the protons of the methylene adjacent to
the silicon were replaced exclusively by deuterium, dem-
onstrating that the direct 8-endo-cyclization (path b) had
occurred in this case.!’

The eight- or nine-membered ring-opening via the oxi-
dative Si—C bond fission was next examined. The desired
Si—C bond fission was achieved without removing the
silyl-protecting groups by treatment of 10 or 11 with
AcOOH/HBr/KBr in DMF,!! where the p-C-glucosides
13 and 14 were obtained quantitatively and in 61% yield,
respectively.

As described above, we have developed an efficient
method for preparing B-C-glucosides via a radical cycli-
zation based on the ! C;-conformational restriction strat-
egy.!? The reaction can be effectively employed as the
key step in the synthesis of the C-glucoside trisphos-
phates 1 and 2, designed as potential IP; receptor
ligands, which is now under investigation.
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