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The nitrile oxide functional group is a well-known 1,3-
dipole and highly useful owing to its high reactivity toward
unsaturated C�C bonds to furnish [3�2] cycloadducts.[1] In
addition to such a traditional role, we have found that it also
functions as an enophile[2] in an intramolecular reaction with
an allyltrimethylsilyl group.[3] 5-Methylene-6-(trimethylsilyl)-
hexanal oxime (1a) was treated with sodium hypochlorite[4] in
dichloromethane at 0 �C for 2 h to give the product of an ene-
like reaction (2a) in 82% yield as a single diastereomer; no

fused �-methylene-�-butyrolactam, we explored the cyclo-
carbonylation of �-allenyl imine 3 and examined the stereo-
chemistry of the resulting products (Scheme 4). We observed
only the cis-fused �-methylene-�-butyrolactam 4 as the sole
product, which supports a [2� 2� 1] cycloaddition. The cis
stereochemistry of 4 was clearly determined by NOE
interactions in NOESY experiments (see Supporting Infor-
mation).

Scheme 4. The cyclocarbonylation of �-allenyl imine 3 gave cis-fused �-
methylene-�-butyrolactam 4 as the sole product.

In summary, the results presented above show that ruthe-
nium-catalyzed cycloaddition reactions of allenyl aldehydes
and ketones with carbon monoxide efficiently afford �-
methylene-�-butyrolactone products. This methodology
should find wide applications in the synthesis of natural
products that contain the exo-methylene-�-butyrolactone
functionality, and further investigations are underway in our
laboratory.

Experimental Section

Typical procedure: A stainless-steel autoclave was charged with the allenyl
aldehyde 1a (80 mg, 0.30 mmol), 1,4-dioxane (4 mL), and [Ru3(CO)12]
(2 mg, 1 mol%). The system was flushed three times with CO (20 atm). The
autoclave was then pressurized to 20 atm, and the mixture was stirred at
120�C for 12 h. The solution was then cooled and concentrated in vacuo to
give a residue, which was subjected to silica-gel column chromatography
(EtOAc/hexane 1:2) to yield the cyclized product 2a (66 mg, 75%) as a
white solid. M.p. 115�C; Rf� 0.48 (EtOAc/hexanes 1:1); 1H NMR
(500 MHz, CDCl3): �� 2.45 (s, 3H), 3.07 (dd, 1H, J� 5.3, 11.7 Hz), 3.22
(dd, 1H, J� 10.0, 7.6 Hz), 3.37 (dd, 1H, J� 10.0, 2.9 Hz), 3.55 (m, 1H), 3.63
(dd, 1H, J� 0.6, 11.7 Hz), 4.97 (m, 1H), 5.77 (d, 1H, J� 2.4 Hz), 6.35 (d,
1H, J� 2.4 Hz), 7.36 (d, 2H, J� 8.2 Hz), 7.68 (d, 2H, J� 8.2 Hz); 13C NMR
(125 MHz, CDCl3): �� 169.6, 145.2, 137.4, 132.1, 130.6, 128.7, 125.8, 79.7,
55.2, 54.7, 42.6, 22.3; HR-MS: calcd for C14H15NO4S: 293.0776, found:
293.0705.

Typical experimental procedures for the preparation of 1a, 1c ± j, 2a, and 3,
as well as spectroscopic and analytical data for 1a ± j, 2a, 2c ± f, 2 i ± j, and 4
can be found in the Supporting Information.
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[3�2] cycloadducts, fused or bridged, were detected
(Scheme 1). In NMR experiments a distinct nuclear Over-
hauser enhancement (NOE) observed between the exocyclic
olefinic proton and C(4) protons indicates their close prox-
imity.
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Scheme 1. Cycloisomerization reactions of 1 and [3�2] cycloaddition
reactions of 3 and 5. Conditions: a) NaOCl, CH2Cl2, 0 �C, 2 h. TMS� tri-
methylsilyl.

To our surprise, this novel reaction did not occur with
substrates of similar structure such as 1a�, 3a, and 3b, which
instead underwent dimerization of nitrile oxide and expected
[3�2] cycloaddition to give furoxane and isoxazolines (4a and
4b), respectively (Scheme 1). Furthermore, no ene-like proc-
ess was effected at all for the intermolecular version: the
reaction of nonanal oxime 5 and allyltrimethylsilane afforded
cycloadduct 6 almost quantitatively (Scheme 1).[5]

This ene-like reaction is unprecedented[6, 7] and highly
profitable because it features very mild reaction conditions
(0 �C, 2 h), the formation of C�C bonds through a cyclo-
isomerization process, and the retention of oxime and vinyl-
trimethylsilyl functions in the products, which would be
suitable for further manipulations.

The selection of reaction pathways–the ene-like reaction
or [3�2] cycloaddition–depends on whether the allyltrimeth-
ylsilyl unit is tethered to the oxime at the �-position (1a) or �-
position (3a, 3b). Closely inspecting molecular models led us
to speculate that 1a is much more flexible than 3a (or 3b),
which after deprotonation would lead to effective overlap of
the � orbitals of the allyl sp2 carbon atom and the nitrile oxide
sp carbon atom. If this orbital overlap progresses at the
transition state (Scheme 2, TS1 for 1a), proton delivery from
the allylic position (Ha) to the negatively charged oxygen
atom would be enhanced in a concerted manner and give rise
to the cyclic oxime 2a as a single isomer. The transition state
leading to 2a� (TS2) is unfavorable because of inevitable steric
interactions.

Although positive charge develops on the carbon � to the
TMS group as the orbital overlap progresses at the transition
state, it can be stabilized by the �-effect of the silicon atom.[8]

This is the reason why the allyltrimethylsilyl group is required
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Scheme 2. Possible reaction mechanism of the novel cycloisomerization
reaction.

for the ene-like reaction, and a simple allylic substrate 1a�
lacking the TMS group gave the nitrile oxide dimer (Scheme 1).

For this new C�C bond-forming process to be accepted as a
general protocol in organic synthesis, simple and versatile
methods for preparing 1 must be available. We have
developed methods leading to key intermediate alcohols
7a ± e and esters 7 f ± h,[9] which are direct precursors for
oximes 1a ± h, through oxidation and reduction, respectively,
followed by condensation with hydroxylamine. These oximes
underwent cycloisomerization under standard conditions to
give the expected products 2a ± h (Scheme 3).

In every case a single geometrical isomer was obtained in
moderate to high yields.[10] NOE experiments revealed their
geometries, which were additionally supported by the regio-
specific Beckmann rearrangements of 2a and 2b to 8 and 9,
respectively (Scheme 4).[11] Competitive ene-like reactions
and intramolecular [3�2] cycloaddition reactions were ob-
served for the aza versions 1g and 1h to give a mixture of
cyclic oximes 2g and 2h, respectively, and isoxazolines
(Scheme 3). Heptanal oxime 1 i proved to be amenable to
the ene-like reaction to give cycloheptanone oxime 2 i in 40%
yield as a mixture of exo and endo isomers (bottom in
Scheme 3).[12]

Although further studies are needed to completely under-
stand the mechanism shown in Scheme 2, the potential
intermediates 10 and 11 can be ruled out. Bredt×s rule[13] does
not support the formation of the bridged [3�2] cycloadduct
10. In addition, 10 and the cationic intermediate 11, if
produced, should afford possible geometrical isomer 2a� and
3-(methylene)cyclohexanone oxime (12), which, in fact, were
not detected at all (Scheme 5).

Experimental Section

General procedure for ene-like cyclizations: To a solution of oxime 1a
(70 mg, 0.36 mmol) in CH2Cl2 (7 mL) was slowly added an aqueous
solution of NaOCl (available chlorine 5%, 1.0 mL) at 0 �C over 1 h. The
mixture was stirred vigorously and allowed to warm to room temperature
for 1 h. The reaction mixture was diluted with water and extracted with
several portions of EtOAc. The combined extracts were dried over Na2SO4
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and concentrated to give an oil, which was purified by column chromatog-
raphy on silica gel to afford the cyclic oxime 2a (58 mg, 82%).
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Scheme 3. Cycloisomerization reactions of various allylsilyl oximes. Yields
are for products isolated by SiO2 column chromatography in step c.
Conditions: a) 1. SO3 ¥ pyridine, Et3N/DMSO, 2. NH2OH, Et3N/EtOH; b) 1.
DIBALH, THF, �78 �C, 1 h, 2. NH2OH, Et3N/EtOH; c) NaOCl/CH2Cl2,
0 �C�RT, 2 h. [a] Racemic product was obtained under the given
conditions (see Supporting Information) though optically active amino
acid esters were employed. [b] Optical purity, not determined. [c] Com-
bined yield of exo and endo isomers, which could be separated by SiO2

column chromatography. [d] For structures, see Supporting Information.
DIBALH�diisobutylaluminum hydride, MOM�methoxymethyl.


