Lewis acid mediated P-P bond hydrogenation and hydrosilylation[†]

Stephen J. Geier and Douglas W. Stephan*

Received (in Cambridge, UK) 1st December 2009, Accepted 22nd December 2009 First published as an Advance Article on the web 13th January 2010 DOI: 10.1039/b925126j

The reaction of H₂, R₃SiH or R₂SiH₂ with P₅Ph₅ in the presence of stoichiometric $B(C_6F_5)_3$ results in excellent yields of the phosphine–borane adducts (PhPH₂) $B(C_6F_5)_3$, ((R₃Si)PhPH) $B(C_6F_5)_3$ and ((R₂SiH)PhPH) $B(C_6F_5)_3$, respectively.

The recent renaissance in the chemistry of the main group elements has nowhere been shown more clearly than in the chemistry of phosphorus.¹ For example, the interception of unprecedented new P-based chains² and clusters³ stabilized by carbene ligands has been described by the groups of Robinson⁴ and Bertrand.⁵ Shaffer et al.⁶ have reported the characterization of nanostructures derived from elemental P. In addition, Cummins *et al.*⁷⁻⁹ have developed a highly innovative and elegant, metal-mediated synthesis of P3As. Collectively, these findings illustrate remarkable and artful methods to assemble new elemental allotropes and binary materials. In a related vein, the functionalization of polyalkylor polyaryl-phosphines has been extensively explored by Burford and co-workers.^{10–23} Very recently Weigand et al.²⁴ have integrated elemental P with phosphenium cations affording the discovery of unprecedented cationic P-clusters $[Ph_2P_5]^+$, $[Ph_4P_6]^{2+}$, and $[Ph_6P_7]^{3+}$.

Targeting applications of the reactivity of P-P bonds, we have reported a Rh-catalyst for the hydrogenation and silvlation of P-P bonds providing secondary phosphines and silylphosphines.²⁵ Concurrent with these studies, we have also demonstrated that bulky polyphosphines do not form classical Lewis acid-base adducts with $B(C_6F_5)_3$ and thus these combinations of reagents behave as "frustrated Lewis pairs" (FLPs).^{26,27} Exploiting the reactivity of such systems, we have recently shown that such FLPs react with alkynes to effect the addition of P and B to the alkyne affording zwitterionic polyphosphino-phosphonium-alkenyl-borates.²⁸ This finding of FLP reactivity prompted us to probe the possibility of reduction of P-P bonds via FLP-hydrogenation.²⁹⁻³¹ Thus, in this communication, we report the high yielding, stoichiometric hydrogenation and hydrosilylation of the P-P bonds of P_5Ph_5 mediated by the Lewis acid $B(C_6F_5)_3$.

A 1 : 1 mixture of P₅Ph₅–B(C₆F₅)₃ was exposed to 4 atm of H₂. This resulted in the formation of a new species (1) which was shown spectroscopically to be the phenylphosphine–borane adduct, (PhPH₂)B(C₆F₅)₃.^{32,33} In addition, the corresponding reaction with D₂ gave rise to a ³¹P NMR signal at -43.6 ppm and a ²D signal at 5.09 ppm with J_{P-D} of 64 Hz. The mother

E-mail: dstephan@chem.utoronto.ca

liquors of these reactions were observed to contain residual P_5Ph_5 . Altering the stoichiometry to employ 5 equivalents of $B(C_6F_5)_3$ per equivalent of P_5Ph_5 resulted in the quantitative conversion to (1) which was subsequently isolated in 91% yield as a crystalline solid [eqn (1)].

$$\begin{array}{c} \begin{array}{c} \mathsf{PhP} & \mathsf{Ph} \\ \mathsf{PhP} & \mathsf{PPh} \\ \mathsf{PhP} & \mathsf{PPh} \\ \mathsf{PhP} & \mathsf{A atm H}_2 \\ \mathsf{Ph} \end{array} (\mathsf{PhPH}_2) \mathsf{B}(\mathsf{C}_6\mathsf{F}_5)_3 \\ \mathsf{H} \end{array} (1)$$

In a similar procedure, a mixture of P₅Ph₅ and five equivalents of $B(C_6F_5)_3$ was treated with excess Et_3SiH . Over the course of 12 hours, this resulted in the quantitative conversion to the silylphosphine–borane adduct ((Et₃Si)PhPH)B(C_6F_5)₃ (2)³³ as evidenced by the observation of the single ³¹P NMR signal at -46.6 ppm. Quaternization of B is consistent with the ¹⁹F NMR signals at -129.8, -156.5 and -163.7 ppm and the ¹¹B NMR resonance at -12.3 ppm. Formation of the secondary phosphine is confirmed by the ¹H NMR resonance attributable to the P–H proton at 4.72 ppm, with ${}^{1}J_{P-H} = 345$ Hz. This product (2) was easily isolated in nearly quantitative yield and subsequently characterized by X-ray crystallography (Fig. 1).‡ The structural data confirm the formation of the secondary silylphenylphosphine adduct of $B(C_6F_5)_3$ with P-B and P-Si bond distances of 2.093(6) Å and 2.333(2) Å, respectively. The former is similar to the B-P bond lengths in the adducts $(R_2PH)B(C_6F_5)_3$ (R = Ph 2.098(3) Å, tBu 2.094(7) Å)^{34,35} while the P–Si distance is typical.^{36–40}

Fig. 1 POV-ray drawing of (2).

Department of Chemistry, University of Toronto, 80 St George St, Toronto, Ontario, Canada M5S3H6.

[†] *Crystal data*: CCDC 756444. For crystallographic data in CIF or other electronic format see DOI: 10.1039/b925126j

Scheme 1 Synthesis of (2)–(7).

In a similar fashion a series of silanes was employed to reduce P_5Ph_5 to the analogous adducts, $((RR'R''Si)Ph PH)B(C_6F_5)_3$ (3)–(7)³³ (Scheme 1). Isolated yields ranged between 82–96%. The ³¹P{¹H} NMR signals for these products were broad presumably due to P coupling to B, however P–H coupling was evident in ¹H NMR spectrum of each product. Of particular interest is the diastereomeric product derived from the P_5Ph_5 reduction with Ph(Me)SiH₂, *i.e.* ((PhMeSiH)-PhPH)B(C_6F_5)₃ (6). The ³¹P{¹H} NMR spectrum of this product shows two resonances at -40.9 and -41.6 ppm in a 4 : 5 ratio indicating a slight preference for the formation of one of the diastereomers under these conditions. In addition, use of 2.5 equivalents of the disilane C₆H₄(SiHMe₂)₂ affords the bis-phosphine–borane adduct (7) in high yield.

Mechanistically, the hydrogenation reaction is thought to proceed via initial heterolytic cleavage of H₂ by $P_5Ph_5-B(C_6F_5)_3$ to give $[P_5Ph_5H][HB(C_6F_5)_3]$. The proposition of such an intermediate is supported by our recent report of the formation of $[tBu_2P(PHtBu_2)][HB(C_6F_5)_3]$ via treatment of tBu_4P_2 and $B(C_6F_5)_3$ with H₂. Moreover, Burford and co-workers have isolated a series of alkylated cationic species of the general formula $[P_5Ph_5R]^+$, the alkylated analogs to the proposed intermediate. Subsequent attack on the transient phosphino-phosphonium salt by the borohydride counterion prompts extrusion of (1) with formal liberation of " P_4Ph_4 ". This proposition is consistent with the previously observed reaction of Me₃P with [P₄Cy₄Me]⁺, which results in nucleophilic attack on the cationic P. forming the new cation [Me₃PPCvMe]⁺ and P₃Cy₃.¹² As P₄Ph₄ is not observed spectroscopically, the nature of the P-containing intermediates remains unclear; nonetheless, the complete conversion of P₅Ph₅ to primary or secondary phosphine-borane adducts, in this case (1), results from subsequent reaction.

The hydrosilylations of P_5Ph_5 to give 2–7 are thought to proceed *via* a mechanism similar to $B(C_6F_5)_3$ catalyzed hydrosilations of imines and carbonyl-compounds studied by Piers and co-workers.^{41–43} In those cases, interaction of borane with the Si–H bond is followed by attack of the Lewis base at silicon. In the present case, attack of the polyphosphine at silicon would generate transient intermediate salts of the form $[P_5Ph_5SiR_3][HB(C_6F_5)_3]$, which are subsequently attacked by the borohydride anion $[HB(C_6F_5)_3]$, at the phosphonium center to yield the secondary silylphosphine adduct of $B(C_6F_5)_3$.

In conclusion, combination of P_5Ph_5 and $B(C_6F_5)_3$ produces a frustrated Lewis pair, that can activate H_2 or secondary or tertiary silanes to yield the phosphine adducts $(PhPH_2)B(C_6F_5)_3$, $((R_3Si)PhPH)B(C_6F_5)_3$ and $((R_2SiH)PhPH)B(C_6F_5)_3$, respectively. While the present reductions proceed stoichiometrically, these observations represent rare examples of metal-free reductions of P–P bonds. Moreover, these findings point to the possibility of metal-free catalysts for the synthesis of primary and secondary phosphines from P–P bonded species. Such developments could also provide avenues to asymmetric catalysis offering unique routes to phosphines that are chiral at P. Efforts to develop such metal-free catalysts are on-going.

DWS gratefully acknowledges the financial support of NSERC of Canada and the award of a Canada Research Chair and a Killam Research Fellowship. SJG is grateful for the support of a NSERC postgraduate fellowship from NSERC of Canada and the assistance of Dr Alan J. Lough.

Notes and references

‡ X-Ray data: **2**: $C_{30}H_{21}BF_{15}PSi$, a = 9.5286(7) Å, b = 9.8618(7) Å, c = 17.2444(13) Å, $\alpha = 95.866(3)^{\circ}$, $\beta = 99.447(3)^{\circ}$, $\gamma = 105.895(2)^{\circ}$, V = 1518.74(19) Å³, space group: $P\overline{1}$, total data: 7604, data (>2 σ): 5223, R_{int} : 0.0541, variables: 438, R (>2 σ) = 0.0675, R_w (>2 σ) = 0.1697, GOF = 1.077.

- 1 C. A. Russell, Angew. Chem., Int. Ed., 2009, 48, 4895-4897.
- 2 J. D. Masuda, W. W. Schoeller, B. Donnadieu and G. Bertrand, Angew. Chem., Int. Ed., 2007, 46, 7052–7055.
- 3 J. D. Masuda, W. W. Schoeller, B. Donnadieu and G. Bertrand, J. Am. Chem. Soc., 2007, **129**, 14180–14181.
- 4 Y. Wang, Y. Xie, P. Wei, R. B. King, H. F. Schaefer-III, P. v. R. Schleyer and G. H. Robinson, J. Am. Chem. Soc., 2008, 130, 14970–14971.
- 5 O. Back, G. Kuchenbeiser, B. Donnadieu and G. Bertrand, Angew. Chem., Int. Ed., 2009, **48**, 5530–5533.
- 6 R. A. L. Winchester, M. Whitby and M. S. P. Shaffer, Angew. Chem., Int. Ed., 2009, 48, 3616–3621.
- 7 C. C. Cummins, Angew. Chem., Int. Ed., 2006, 45, 862-870.
- 8 J. S. Figueroa and C. C. Cummins, J. Am. Chem. Soc., 2004, 126, 13916–13917.
- 9 N. A. Piro, J. S. Figueroa, J. T. McKellar and C. C. Cummins, *Science*, 2006, **313**, 1276–1279.
- 10 N. Burford, T. S. Cameron, P. J. Ragogna, E. Ocando-Mavarez, M. Gee, R. McDonald and R. E. Wasylishen, J. Am. Chem. Soc., 2001, **123**, 7947–7948.
- 11 N. Burford, C. A. Dyker and A. Decken, Angew. Chem., Int. Ed., 2005, 44, 2364–2367.
- 12 N. Burford, C. A. Dyker, M. Lumsden and A. Decken, Angew. Chem., Int. Ed., 2005, 44, 6196–6199.
- 13 N. Burford, A. D. Phillips, H. A. Spinney, M. Lumsden, U. Werner-Zwanziger, M. J. Ferguson and R. McDonald, J. Am. Chem. Soc., 2005, 127, 3921–3927.
- 14 N. Burford, A. D. Phillips, H. A. Spinney, K. N. Robertson, T. S. Cameron and R. McDonald, *Inorg. Chem.*, 2003, 42, 4949–4954.
- 15 N. Burford, P. J. Ragogna, R. McDonald and M. J. Ferguson, J. Am. Chem. Soc., 2003, 125, 14404–14410.
- 16 N. Burford, P. J. Ragogna, R. McDonald and M. J. Ferguson, *Chem. Commun.*, 2003, 2066–2067.
- 17 N. Burford, P. J. Ragogna, K. Sharp, R. McDonald and M. J. Ferguson, *Inorg. Chem.*, 2005, 44, 9453–9460.
- 18 C. A. Dyker and N. Burford, Chem. Asian J., 2008, 3, 28-36.
- 19 C. A. Dyker, N. Burford, G. Menard, M. D. Lumsden and A. Decken, *Inorg. Chem.*, 2007, 46, 4277–4285.
- 20 C. A. Dyker, N. Burford, M. D. Lumsden and A. Decken, J. Am. Chem. Soc., 2006, 128, 9632–9633.

- 21 C. A. Dyker, S. D. Riegel, N. Burford, M. D. Lumsden and A. Decken, J. Am. Chem. Soc., 2007, 129, 7464–7474.
- 22 J. J. Weigand, N. Burford, A. Decken and A. Schulz, *Eur. J. Inorg. Chem.*, 2007, 4868–4872.
- 23 J. J. Weigand, S. D. Riegel, N. Burford and A. Decken, J. Am. Chem. Soc., 2007, 129, 7969–7976.
- 24 J. J. Weigand, M. Holthausen and R. Fröhlich, *Angew. Chem., Int. Ed.*, 2009, **48**, 295–298.
- 25 S. J. Geier and D. W. Stephan, Chem. Commun., 2008, 99-101.
- 26 D. W. Stephan, Org. Biomol. Chem., 2008, 6, 1535–1539.
- 27 D. W. Stephan, Dalton Trans., 2009, 3129-3136.
- 28 S. J. Geier, M. A. Dureen, E. Y. Ouyang and D. Stephan, *Chem.-Eur. J.*, 2009, DOI: 10.1002/chem.200902369.
- 29 P. A. Chase, T. Jurca and D. W. Stephan, *Chem. Commun.*, 2008, 1701–1703.
- 30 P. A. Chase, G. C. Welch, T. Jurca and D. W. Stephan, Angew. Chem., Int. Ed., 2007, 46, 8050–8053.
- 31 V. Sumerin, F. Schulz, M. Nieger, M. Leskela, T. Repo and B. Rieger, *Angew. Chem.*, *Int. Ed.*, 2008, **47**, 6001–6003.
- 32 J.-M. Denis, H. Forintos, H. Szelke, L. Toupet, T.-N. Pham, P.-J. Madec and A.-C. Gaumont, *Chem. Commun.*, 2003, 54–55.
- 33 (1): yield: 110 mg (91%). Spectral data were identical to published data.^{32 31}P{¹H} NMR -43.6 (br); ²D 5.09 (d, $J_{P-D} = 64$ Hz). All silylphosphine adducts were prepared in a similar fashion, thus only one preparation is described: to a solution of P5Ph5 (22 mg, 0.041 mmol) in 4 mL of dichloromethane was added B(C₆F₅)₃ (100 mg, 0.20 mmol). To this solution was added Et₃SiH (50 mg, 0.43 mmol). The mixture was allowed to stir overnight whereupon the solvent was removed. X-Ray quality crystals of (2) were grown from hexanes at -35 °C. (2): yield: 142 mg (99%). Anal. calcd for $C_{30}H_{21}BF_{15}PSi:$ C, 48.93; H, 2.87%; found: C, 49.07; H, 3.02%. C₃₀H₂₁Br₁₅Fs1. C, 48.95, H, 2.87%, 10Hd. C, 49.07, H, 5.02%. ¹H NMR (C₆D₆): 0.54 (m, 15 H, CH₂CH₃), 4.72 (d, ¹J_{P-H} = 345 Hz, 1H, PH), 6.66 (td, ³J_{H-H} = 7 Hz, ⁴J_{H-P} = 2 Hz, 2H, o-CH), 6.77 (td, ³J_{H-H} = 7 Hz, J = 2 Hz, 1H, p-CH), 6.85 (ddd, ³J_{H-H} = 10 Hz, ³J_{H-H} = 7 Hz, ⁴J_{P-H} = 2 Hz, 2H, m-CH). ¹⁹F NMR (C₆D₆): -129.8 (br s, o-C₆F₅), -156.5 (br s, p-C₆F₅), -163.7 (br s, *m*-C₆*F*₅). ³¹P{¹H} NMR (C₆D₆): -46.6 (br s, $\nu_{1/2} \sim 400$ Hz); ¹¹B NMR (C₆D₆): -12.3 (br s); ¹³C{¹H} NMR (C₆D₆) partial: 4.4 (d, J = 8 Hz), 6.8 (d, J = 3 Hz), 128.9 (d, J = 9 Hz), 130.7 (d, J = 9 Hz)3 Hz), 133.6 (d, J = 7 Hz). (3): yield: 164 mg (95%). Anal. calcd for $C_{42}H_{21}BF_{15}PSi:$ C, 57.29; H, 2.40%; found: C, 57.34; H, 2.57%. $^{1}\rm{H}$ NMR (C₆D₆): 5.59 (d, $^{1}J_{\rm{P-H}}$ = 347 Hz, P–H), 6.49 (td, J = 8 Hz, J = 2 Hz, 2H, o-CH), 6.66 (td, J = 7 Hz, J = 2 Hz, 1H, p-CH), 6.78 (ddd, ${}^{3}J_{H-H} = 10$ Hz, ${}^{3}J_{H-H} = 8$ Hz, ${}^{4}J_{P-H} = 2$ Hz, 2H, m-CH), 6.94 (t, J = 7 Hz, 6H), 7.05 (t, J = 7 Hz, 3H, p-CH), 7.40 (dd, J = 8 Hz, J = 1 Hz, 6H); ¹⁹F NMR (C₆D₆): -129.2 (br s, $o-C_6F_5$), -155.1 (br s, $p-C_6F_5$), -163.0 (br s, $m-C_6F_5$). ${}^{31}P{}^{1}H{}$ NMR (C_6D_6): -45.3 (br s); ${}^{11}B$ NMR (C_6D_6): -11.7 (br s); $^{13}C{^{1}H}$ NMR (C₆D₆) partial: 122.2 (d, J = 40 Hz), 128.4, 130.6 (d, J = 3 Hz), 131.3, 134.6 (d, J = 6 Hz), 136.4 (d, J = 1 Hz). (4):yield: 57 mg (82%). Anal. calcd for C₂₈H₁₇BF₁₅PSi: C, 47.48; H, 2.42%; found: C, 47.22; H, 2.90%. ¹H NMR (C₆D₆): 0.30 (m, 4H, CH_2CH_3 , 0.51 (t, ${}^{3}J_{H-H} = 8$ Hz, 6H, CH_2CH_3), 3.83 (d, ${}^{2}J_{P-H}$ CH₂CH₃), 0.51 (t, $J_{\text{H-H}} = 8$ HZ, 0H, CH₂CH₃), 5.85 (d, $J_{\text{P-H}} = 29$ HZ, 1H, Si–H), 4.73 (d, ${}^{1}J_{\text{P-H}} = 357$ HZ, 1H, P–H), 6.55 (td, ${}^{3}J_{\text{H-H}} = 8$ HZ, ${}^{4}J_{\text{P-H}} = 2$ HZ, 2H, m-C₆H₅), 6.69 (m, 3H, o-C₆H₅, p-C₆H₅). ¹⁹F NMR (C₆D₆) δ : –129.8 (br s, o-C₆F₅), –156.2 (t, ${}^{3}J_{\text{F-F}} = 21$ HZ, p-C₆F₅), –163.5 (td, ${}^{3}J_{\text{F-F}} = 21$ HZ, ${}^{4}J_{\text{F-F}} = 5$ HZ, m-C₆F₅). ³¹P{¹H</sup> NMR (C₆D₆): –53.7 (br s); ¹¹B NMR (C₆D₆): -12.8 (br s); ¹³C{¹H} NMR (C₆D₆) partial: 2.5
- (d, J = 4 Hz), 3.3 (d, J = 6 Hz), 7.3 (d, J = 3 Hz), 7.7 (d, J = 3 Hz),129.7 (d, J = 10 Hz), 131.1 (d, J = 3 Hz), 133.4 (d, J = 7 Hz). (5): yield: 147 mg (94%). Anal. calcd for C₃₆H₁₇BF₁₅PSi: C, 53.75; H, 2.31%; found: C, 54.20; H, 2.81%. ¹H NMR (C₆D₆): 5.46 $(dd, {}^{2}J_{P-H} = 27 Hz, {}^{3}J_{H-H} = 5 Hz, 1H, SiH), 5.63 (1H, dd,$ ${}^{1}J_{P-H} = 363 \text{ Hz}, {}^{3}J_{H-H} = 5 \text{ Hz}, 1\text{H}, PH$, 6.81 (td, J = 8 Hz, J = 2Hz, 2H), 6.95 (m, 2H), 7.09 (t, J = 7 Hz, 2H), 7.29 (m, 8H), 7.70 (dd, J = 8 Hz, J = 2 Hz, 2H), 7.75 (1H, dd, J = 8 Hz, J = 2 Hz,1H), 7.82 (dd, J = 8 Hz, J = 2 Hz, 1H). ¹⁹F NMR (C₆D₆): -129.4 (d, ${}^{3}J_{F-F} = 21$ Hz, o-C₆ F_5), -156.4 (br s, p-C₆ F_5), -163.3 (br s, m-C₆ F_5), ${}^{31}P_{\{}^{1}H\}$ NMR (C₆D₆): -47.1 (br s); ${}^{11}B$ NMR (C₆D₆): $^{11}C_{6}^{-2}(5)$, $^{13}C_{1}^{+1}$ NMR ($^{12}C_{2}C_{12}$) partial: 128.9 (d, J = 10 Hz), 131.1 (d, J = 3 Hz), 133.8 (d, J = 7 Hz), 135.5 (d, J = 17 Hz), 135.5 (d, J = 17 Hz). (6): yield: 64 mg (96%). Anal. calcd for C₃₁H₁₅BF₁₅PSi: C, 50.16; H, 2.04%; found: C, 50.18; H, 2.26%. ¹H NMR (CDCl₃): 0.50 (dd, ${}^{3}J_{P-H} = 7$ Hz, ${}^{2}J_{H-H} = 4$ Hz, 3H, $CH_{3 \text{ major}}$), 0.67 (dd, ${}^{3}J_{P-H} = 6$ Hz, ${}^{2}J_{H-H} = 4$ Hz, 3H, $CH_{3 \text{ minor}}$), 4.86 (d, ${}^{2}J_{P-H} = 29$ Hz, 1H, Si-*H*), 5.03 (d, ${}^{1}J_{P-H} = 357$ Hz, 1H, P- H_{minor}), 5.13 (d, ${}^{1}J_{P-H} = 363$ Hz, P- H_{major}), 6.92 (dd, ${}^{3}J_{P-H} = 11$ Hz, J = 8 Hz, 1H, o-PC₆ H_5), 7.07 (dd, ${}^{3}J_{P-H} = 11$ Hz, J = 8 Hz, 1H), 7.12–7.48 (m, 8 H). ¹⁹F NMR (CDCl₃): –130.0 (br s), –156.6 (t, J = 27 Hz, p-C₆ $F_{5 \text{ minor}}$), -156.7 (t, J = 27 Hz, p-C₆ $F_{5 \text{ minor}}$), -163.5 (m, m-C₆ F_{5}). $^{31}P\{^{1}H\}$ NMR (C₆D₆): -40.9_{minor} , -41.6_{major} ; ^{11}B NMR (CDCl₃): -13.1 (br s); $^{13}C\{^{1}H\}$ NMR (CDCl₃) partial: 128.9 (d, J = 21 Hz), 129.1 (d, J = 10 Hz), 129.5 (d, J = 10 Hz), 131.3 (d, J = 3 Hz), 131.6 (d, J = 3 Hz), 131.7 (d, J = 1 Hz), 131.9 (d, J = 1 Hz), 135.0 (d, J = 10 Hz). (7): yield: 134 mg (96%). Anal. calcd for C58H28BF15P2Si2: C, 48.56; H, 1.97%; found: C, 48.46; H, 2.18%. ¹H NMR (CDCl₃): 0.44 (d, J = 6 Hz, 6H), 0.50 (d, J = 6 Hz, 6H), 4.88 (2H, d, ${}^{1}J_{P-H} = 354$ Hz, 2H, P–H), 6.87 (m, 4H), 7.12 (t, J = 7 Hz, 4H), 7.18 (d, J = 2 Hz, 4H), 7.30 (t, J = 7 Hz, 2H). ¹⁹F NMR (CDCl₃): -130.0 (br s, o-C₆F₅), -156.7 (t, ${}^{3}J_{F-F} = 22$ Hz, p-C₆ F_5), -163.5 (t, ${}^{3}J_{F-F} = 21$ Hz, m-C₆ F_5). ${}^{31}P{}^{1}H{}$ NMR (CDCl₃): -37.0 (br s); ${}^{11}B$ NMR (CDCl₃): -15.3(br s); ${}^{13}C{}^{1}H$ NMR (CDCl₃) partial: 0.1 (d, J = 11 Hz), 0.7 (d, J = 10 Hz), 0.8 (d, J = 10 Hz), 125.1 (d, J = 5 Hz), 124.6 (d, J = 55 Hz), 132.4 (d, J = 10 Hz), 134.5 (d, J = 3 Hz), 136.9, 137.1 (d, J = 36 Hz), 140.3 (dm, J = 247 Hz, CF), 151.3 (dm, J = 244 Hz, CF).
- 34 G. C. Welch, L. Cabrera, P. A. Chase, E. Hollink, J. D. Masuda, P. Wei and D. W. Stephan, *Dalton Trans.*, 2007, 3407–3414.
- 35 G. C. Welch, R. Prieto, M. A. Dureen, A. J. Lough, O. A. Labeodan, T. Holtrichter-Rossmann and D. W. Stephan, *Dalton Trans.*, 2009, 1559–1570.
- 36 R. T. Boere and J. D. Masuda, Can. J. Chem., 2002, 80, 1607-1617.
- 37 M. Okazaki, K. A. Jung and H. Tobita, *Organometallics*, 2005, 24, 659–664.
- 38 M. A. Petrie and P. P. Power, J. Chem. Soc., Dalton Trans., 1993, 1737–1745.
- 39 O. Tardif, Z. M. Hou, M. Nishiura, T. Koizumi and Y. Wakatsuki, Organometallics, 2001, 20, 4565–4573.
- 40 O. Tardif, M. Nishiura and Z. M. Hou, *Tetrahedron*, 2003, 59, 10525–10539.
- 41 J. M. Blackwell, D. J. Morrison and W. E. Piers, *Tetrahedron*, 2002, **58**, 8247–8254.
- 42 J. M. Blackwell, E. R. Sonmor, T. Scoccitti and W. E. Piers, Org. Lett., 2000, 2, 3921–3923.
- 43 D. J. Parks and W. E. Piers, J. Am. Chem. Soc., 1996, 118, 9440–9441.