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This letter reports that the 1.54 �m electroluminescence efficiency of the organic light emitting
diode �OLED� with a structure of nanometer thick polycrystalline silicon �NTPS�/NPB/ErQ/AlQ/Al
is two orders of magnitude higher than that of the OLED with a structure of thick crystalline
silicon/NPB/ErQ/Al, which is similar to the OLED reported in literature �Curry et al., Appl. Phys.
Lett. 77, 2271 �2000��. Such an improvement is mainly attributed to the fact that hole injection is
controlled by NTPS anode and holes are blocked by AlQ to match electron injection, and a higher
light out coupling as well. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2220483�

In recent years, a monolithic integration of optics and
electronics in a single Si chip has been pursued. However, Si
is a poor light emitter due to its indirect band structure.
Many approaches have been suggested to gain light from
Si.1–3 1.54 �m Si-based light emission is of particular
interest and realized by cooperation of organic electrolumi-
nescence �EL� technology with Si technology recently, where
the emitters are erbium complexes.4–6 Curry et al. have
demonstrated an effective 1.54 �m organic light emitting
diode �OLED� with a structure of crystalline Si
�c-Si� /N ,N�-diphenyl-N ,N�-bis�3-methyl�-1 ,1�-biphenyl-
4 ,4�-diamine �TPD�/tis�8-hydroxyquinoline� erbium
�ErQ�/Al.6 However, both the device current and voltage are
high, resulting in a poor EL efficiency.

In this letter, we investigated how the following three
factors impact the I-V characteristic and EL efficiencies
of the 1.54 �m Si-based OLED: �1� electrical resistivity
of the p-type c-Si anode, �2� replacing the c-Si anode
with a nanometer thick polycrystalline Si �NTPS� anode,
and �3� replacing organic double layers of
N ,N�-bis-�1-naphthl�-diphenyl-1 ,1�-biphenyl-4 ,4�-diamine
�NPB�/ErQ with triple layers of NPB/ErQ/tris�8-
hydroxyquinoline� aluminum �AlQ�.

The NTPS film was fabricated with the magnetron
sputtering technology followed by the nickel-induced-
crystallization process as follow. In a chamber with a base
pressure of 1�10−8 Torr, 20 nm SiO2, 75 nm Si, and 2 nm
nickel layers were successively sputter deposited on the K9
glass substrates. The SiO2 is to block the diffusion of impu-
rities of glass into the Si layer. The sputtered Si layer has the
same boron concentration as the 0.001 � cm boron doped Si
target.7 Then the samples were annealed at 500 °C in nitro-
gen atmosphere to form NTPS. We had no attempt to remove
the native oxide on the NTPS surface, just as reported in

Refs. 8 and 9. The sheet resistance of NTPS was measured to
be �250 � /� and the hole mobility was �3 cm2/V s. The
c-Si anodes were prepared as reported previously,10,11 and Al
contacts were formed on their backsides each with a window
for light collection. The organic materials and the metals
were thermal evaporated in a chamber with a base pressure
of 5�10−6 Torr, and the typical deposition rate was
1–2 Å/s, monitored by a quartz crystal oscillator.

ErQ was synthesized by mixing erbium �III� chloride in
80% ethanol and 20% water solution with
8-hydroxyquinoline in ethanol. The infrared luminescence
was measured by a liquid-nitrogen cooled Ge detector at
room temperature.

In the following, three types of devices will be studied.
Type A: 500 �m c-Si/60 nm NPB/60 nm ErQ/50 nm Al, in
which the c-Si anode has an electrical resistivity of 0.01, 1,
or 40 � cm, and so the resulting devices are, respectively,
referred to as 0.01, 1, and 40 �cm device. Type A devices
are similar in structure to the OLED ��0.01 � cm c
-Si/40 nm TPD/50 nm ErQ/Al� reported in Ref. 6. Type B:
75 nm NTPS/60 nm NPB/60 nm ErQ/50 nm Al, i.e., the
OLED having a NTPS anode and two organic layers. It is
referred to as the NTPS-2 device. Type C: 75 nm
NTPS/60 nm NPB/10 nm ErQ/50 nm AlQ/50 nm Al, i.e.,
the OLED having a NTPS anode and three organic layers. It
is referred to as the NTPS-3 device. The c-Si anode or the
NTPS anode is transparent for 1.54 �m light. The NPB layer
is the hole-transport layer and the Al layer is the cathode in
all the three types of devices. The 60 nm ErQ layer is used as
the emissive and electron-transport layer in types A and B
devices. A 10 nm ErQ layer served as the emissive layer and
a 50 nm AlQ layer as the electron-transport layer in type C
device.

Figure 1�a� depicts the EL spectra for the 0.01, 1, and
40 � cm c-Si devices, and Fig. 1�b� for the 40 � cm c-Si,
NTPS-2, and NTPS-3 devices at the same current density of
2 mA/mm2. In all the EL spectra, the peaks center at
1.54 �m, which is the characteristic emission of Er ions. It is
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generally accepted that this luminescence originates from a
mechanism called the antenna effect.12 Intersystem crossing
occurs from the excited singlet formed by recombination of
holes and electrons to a triplet state on the ligands, and then
the energy of the triple state is transferred efficiently to the
excited 4f states of the Er ions via a Dexter transfer. Finally,
the intratransitions 4I13/2-4I15/2 within Er ions produce the
1.54 �m luminescence.12–14

The current density, the infrared EL intensity, the current
efficiency, and the power efficiency versus applied voltage
are shown in Figs. 2�a�–2�d�, respectively, for all the devices.
It can be found that for the c-Si devices, the current density
decreases with the increase of the electrical resistivity of
c-Si anode, because the hole injection from the c-Si anode is
reduced with increasing resistivity.10 Moreover, the EL effi-
ciency increases with increasing electrical resistivity of the
c-Si anode, because the balance between electron and hole
injections is improved by reducing hole injection. As a result,
the 40 � cm device gives the best EL current and power
efficiencies compared to the 0.01 and 1 � cm devices.

The infrared EL performance can be improved by using
the 75 nm NTPS anode �NTPS-2 device� to replace the
c-Si anode �40 � cm c-Si device� as shown in Figs.
2�a�–2�d�. When the applied voltage is below 8 V, the cur-
rent density of the NTPS-2 device is close to that of the
40 � cm device. When the applied voltage is between 8 and
15 V, a negative resistance occurs, the reason of which is not
clear now and will be discussed elsewhere. When the applied
voltage is above 15 V, the current density of the NTPS-2
device is markedly lower than that of the 40 � cm device.
The maximum current and power efficiencies of the NTPS-2
device are 22 and 18 times, respectively, higher than that of
the 40 � cm device with a c-Si anode.

One reason for the significant EL enhancement is that
the balance between electron and hole currents in the OLED
is improved. It is due to a low hole injection ability of NTPS,
caused by the small carriers mobility. To show the hole in-
jection ability of NTPS, we fabricated “hole-only” devices

with the NTPS or the c-Si anodes by replacing the Al cath-
ode with a much higher work function metal Au.15 As shown
in Fig. 3, the hole current of device with NTPS anode is
much smaller than those of any devices with c-Si anodes,
that is, the hole injection ability of NTPS is much smaller
than that of c-Si.

FIG. 1. �a� The EL spectra for the 0.01, 1, and 40 � cm devices at the same
current density of 2 mA/mm2. �b� The EL spectra for the 40 � cm, NTPS-2,
and NTPS-3 devices at the same current density of 2 mA/mm2.

FIG. 2. �a� The current density, �b� the infrared EL intensity, �c� the current
efficiency, and �d� the power efficiency vs applied voltage for 0.01 � cm,
1 � cm, 40 � cm, NTPS-2, and NTPS-3 devices.
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Another reason for the significant EL enhancement is
that the infrared light outcoupling efficiency has been im-
proved markedly. We have calculated their light out coupling
efficiencies at 1.54 �m using a classical technique.16 The out
coupling of the NTPS-2 device is larger than that of the
40 � cm device by 2.2 times.

The infrared EL efficiency of device can be improved
further by improving the structure of organic layers. Figures
2�a�–2�d� demonstrate that, compared to NTPS-2 device, the
current density of NTPS-3 device slightly decrease, but the
EL intensity increases markedly at an applied voltage above
15 V, and the maximum current efficiency and power effi-
ciency increase by six and five folds, respectively. It is be-
cause the AlQ layer is a better hole blocking layer than the
ErQ layer,5 which causes hole accumulation at the interface
of ErQ/AlQ and enhances electron injection and EL intensity.
Besides, the leakage hole current is reduced in NTPS-3 de-
vice, resulting in higher current and power efficiencies. Sub-
stituting an AlQ layer for an ErQ layer as the electron-
transport layer affects hardly the electron injection into the
emissive layer, because lowest unoccupied molecular orbital

�LUMO� and electronic structure of ErQ are similar to those
of AlQ.17 As a result, the emissive layer ErQ can efficiently
accepts holes from NPB and electrons from AlQ, just like the
AlQ layer in a conventional NPB/AlQ �emissive layer�/AlQ
�electron-transport layer� structure.

In summary, an efficient 1.54 �m Si-based OLED with a
structure of NTPS/NPB/ErQ/AlQ/Al is demonstrated. Its
current and power efficiencies have been improved by two
orders of magnitude, compared to the structure of
c-Si/NPB/ErQ/Al, which is similar to that in a pioneering
work.6 The large improvement is attributed to �1� the NTPS
anode controlling the hole injection, �2� the AlQ layer block-
ing the holes, and �3� the enhanced infrared light
out coupling.

This work was supported by the National Natural
Science Foundation of China.
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