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Abstract: The title reaction was found to proceed in the presence of
a rhodium/1,2-bis(diphenylphosphino)benzene catalyst. Variously
substituted arylethenes and 1,3-dienes were obtained in good yields.
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Construction of multisubstituted ethenes with a defined
stereochemistry is of significant importance in organic
synthesis. Of many protocols, rhodium-catalyzed addition
of organometallic reagents across alkynes provides a
chemo- and stereoselective access to trisubstituted
ethenes.1,2 Arylboronic acids have been extensively em-
ployed in this transformation in view of ready availability,
stability, and chemoselectivity, little attention being paid
to other organometallic reagents.3 Despite an increasing
importance of the silicon-based protocol with respect to
inherent stability, availability, and nontoxicity associated
with organosilicon compounds, the use of labile organosi-
lanediols by Mori and co-workers has been a single exam-
ple ever reported on the rhodium-catalyzed reaction of
alkynes.4 We report herein organo[2-(hydroxymeth-
yl)phenyl]dimethylsilanes (1) as highly stable and reus-
able alternative organometallic reagents for the rhodium-
catalyzed addition reaction across alkynes (Equation 1).5

Equation 1

We first examined the reaction of [2-(hydroxymeth-
yl)phenyl]phenyldimethylsilane (1a: 1.5 mmol) with 4-
octyne (2a: 1.0 mmol) in the presence of [Rh(OH)(cod)]2

(3.0 mol% Rh) in toluene at 100 °C using various bisphos-
phine ligands1a and found that 1,2-bis(diphenylphosphi-
no)benzene (DPPBz) was effective to afford (E)-4-
phenyl-4-octene (3aa) in 59% yield (Table 1, entry 1).6

Other rhodium complexes such as [RhCl(cod)]2 and
[RhCl(ethylene)2]2 were completely ineffective. Absence
of a phosphine ligand resulted in a slightly decreased
yield, and the effect of a small amount of water was neg-
ligible,4 because the hydroxy group of 1 acts as an effi-
cient proton donor in our system. Whereas arylsilanes
having an electron-donating 4-methoxy (1b) and 2-meth-
yl (1d) groups, though the latter being sterically demand-
ing, enhanced the reaction rates and yields of the reaction
with 2a (entries 2 and 4), the addition of less nucleophilic
(4-fluorophenyl)silane 1c was sluggish (entry 3). We then
turned our attention to the reaction of alkenylsilanes. (E)-
Octenylsilane (1e) added across 2a smoothly in an exclu-
sive cis fashion to give highly substituted 1,3-diene 3ea in
an excellent yield (entry 5). Silyl-protected hydroxy, cy-
ano, and ester functionalities with an acidic hydrogen
were tolerated (entries 7–9), whereas the yield of chloro-
substituted 1,3-diene 3fa was modest due to low conver-
sions of substrates (entry 6). (Z)-Propenylsilane 1j and
isomeric styrylsilanes, 1k and 1l, underwent the addition
reaction in stereo- and regiospecific manners (entries 10–
12). Since a wide variety of alkenylsilanes with various
substitution patterns are readily available in a predictable
manner by rich hydrosilylation chemistry,7 the present
protocol is apparently a promising alternative to that using
alkenylboronic acids, some of which are known to be ther-
mally unstable.8 The scope of alkynes was also briefly in-
vestigated using 1e as a coupling partner. The addition
across diphenylacetylene (2b) was sluggish to give the
corresponding adduct in a modest yield due to incomplete
conversion of the alkyne (entry 13). Unsymmetrical
alkynes 2c and 2d underwent the reaction in good yields
but to give a mixture of regioisomers (entries 14 and 15).
Formation of recoverable and reusable silicon residue 45

in good yields was confirmed by 1H NMR and/or GC
analyses of crude products of the respective reaction run.

The catalytic cycle should involve organorhodium species
A, which then carbometalate alkynes to give alkenylrhod-
ium intermediate B (Scheme 1). Protonolysis of the C–Rh
bond of B and/or C, which is derived from 1,4-shift of
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rhodium,1a by the hydroxy group of 1 gives adduct 3 and
rhodium alkoxide D. Intramolecular transmetalation in D
would be responsible for regeneration of A, giving reus-
able silicon residue 4.5a A similar sequence involving the
reaction of 1 with Rh–OH to form D followed by the in-
tramolecular transmetalation to generate A would be re-
sponsible for the initiation of the catalytic cycle.

The C–Rh bond in alkenylrhodium intermediate B partic-
ipates in another C–C bond-forming event, as is the case
with the reactions of arylboronic acids.2 Thus, the reaction
of diyne 5 with 1a gave substituted 1,3-diene 6
(Equation 2).2t In this particular transformation, the use of
a phosphine-free rhodium catalyst showed higher reactiv-
ity due presumably to the ability of diynes to chelate to a
rhodium catalyst as a bidentate ligand and, thus, show a
greater reactivity than simple alkynes.

In summary, we have demonstrated that organo[2-(hy-
droxymethyl)phenyl]dimethylsilanes undergo 1,2-addi-
tion reaction across alkynes to give a wide range of
substituted ethenes in highly chemo- and stereoselective
manners. This protocol provides us with an attractive al-
ternative to the boron-based one in view of the diversity
of available alkenylsilanes and the reusability of a silicon
residue.
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Table 1 Addition of Organo[2-(hydroxymethyl)phenyl]dimethyl-
silanes 1 across Alkynes 2

Entry 1 2 Time 
(h)

Product Yield 
(%)a

1 1a 2a 3 R = H: 3aa 59

2 1b 2a 1 4-MeO: 3ba 85

3 1c 2a 6 4-F: 3ca 26

4 1d 2a 0.5 2-Me: 3da 78

5 1e 2a 0.5

3ea

97

6 1f 2a 20 FG = Cl: 3fa 58b

7 1g 2a 1 OTBS: 3ga 74

8 1h 2a 1 CN: 3ha 89

9 1i 2a 0.5

3ia

91

10 1jc 2a 2

3ja

79d

11 1k 2a 3

3ka

63

12 1l 2a 0.5

3la

69

13 1e 2b 102

3eb

54e

14 1e 2c 2

3ec

84f

15 1e 2d 17

3ed

64g

a Isolated yields based on 2.
b Conversions of 1f and 2a were about 60% based on GC and 1H NMR 
analyses of a crude mixture.
c E/Z = 12:88.
d 2E/2Z = 9:91.
e Conversion of 2b was 89% based on recovered 2b.
f Regioselectivity was 69:31.
g Regioselectivity was 76:24.
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Scheme 1 Plausible mechanism
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