

Tetrahedron Letters 41 (2000) 4177-4180

TETRAHEDRON LETTERS

Novel silicon-bridged macrocycles: efficient synthesis by quadruple cycloadditive macrocyclization and intramolecular nitrile oxide dimerization

Chan Woo Lee, Gil Tae Hwang and Byeang Hyean Kim *

Department of Chemistry, Center for Biofunctional Molecules, Pohang University of Science and Technology, Pohang 790-784, South Korea

Received 22 February 2000; revised 3 April 2000; accepted 7 April 2000

Abstract

Novel silacyclophanes have been synthesized by using quadruple cycloadditive macrocyclization and intramolecular nitrile oxide dimerization. The macrocyclic cycloadducts were characterized by spectroscopic methods and X-ray crystallography. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: macrocycles; silicon heterocycles; cycloadditions; nitrile oxides.

Silicon-bridged macrocycles are of interest due to their additional coordination sites compared to carbomacrocycles and good chemophysical properties including solubility. So far synthetic efforts toward silacalixarenes,¹ silacyclophanes,² and a silacrown³ have been reported. We report here the facile synthesis of novel silacyclophanes by using the quadruple cycloadditive macrocyclization (QCM) methodology⁴ and intramolecular nitrile oxide dimerization,⁵ and their X-ray crystal structures. QCM methodology based on 1,3-dipolar cycloaddition reaction provides a very efficient way to the silamacrocycles due to the short reaction sequences.

Silamacrocycle **3** was synthesized in a two-step sequence by using QCM methodology (Scheme 1).⁴ Double cycloadditions between in situ-generated isophthaldinitrile oxide and 1,3-divinyltetramethyldisiloxane provided [1+2] cycloadduct **2** as the major intermediate and further cycloadditions between **2** and isophthaldinitrile oxide afforded the final [2+2] cycloadduct **3**⁶ as the major product in 25% overall yield. The structure of silacyclophane **3** was identified by elemental analysis, mass spectroscopy, IR, ¹H NMR and ¹³C NMR, and confirmed by X-ray crystallography (Fig. 1).⁷ The relative stereochemistry of the intermediate **2** was tentatively assigned by the X-ray crystal structure of the final product **3**. In a similar fashion, silacyclophanes **6**⁶ was prepared by QCM methodology between terephthaldinitrile oxide and 1,3-divinyltetramethyldisiloxane (Scheme 1). Thus,

^{*} Corresponding author. Tel: 82-562-279-2115; fax: 82-562-279-3399; e-mail: bhkim@postech.ac.kr (B. H. Kim)

^{0040-4039/00/}\$ - see front matter © 2000 Elsevier Science Ltd. All rights reserved. *PII:* S0040-4039(00)00599-2

1,3-divinyltetramethyldisiloxane was served well as a bifunctional siladipolarophile with benzene-based bifunctional dipoles.

In the case of QCM with 2,6-pyridinedintrile oxide, two macrocyclic cycloadducts were isolated. The first was the regular [2+2] cycloadduct $\mathbf{8}^6$ (8%) and the second was a [2+1] triple cycloadduct $\mathbf{9}^6$ (25%) (Scheme 2). Silamacrocycle 8 is the pyridine version of compound 3 and was formed through QCM in one pot. However, formation of compound 9 is rather unique and deserves attention. Very recently, Mioskowski and co-workers⁵ reported the synthesis of medium- and large-size rings by intramolecular

nitrile oxide dimerization, which results in the formation of furoxan moiety. During the dimerization process, one of the nitrile oxides acts as a dipole whereas the other acts as a dipolarophile. Formation of compound **9** proceeds via [2+1] double cycloadditions followed by intramolecular nitrile oxide dimerization. Generation of the rather unusual product **9** may be attributable to the stability of 2,6-pyridinedinitrile oxide and the proximity between two nitrile oxide moieties. The chemical structure of **9** was confirmed by X-ray crystallography (Fig. 2).⁷

Scheme 2.

Fig. 2. X-Ray crystal structure of 9

In summary, we have synthesized novel silacyclophanes by using quadruple cycloadditive macrocyclization and intramolecular nitrile oxide dimerization. With suitable siladipolarophiles these methodologies will provide an efficient route to various silamacrocycles.

Acknowledgements

We are grateful to KOSEF (1999-2-123-001-3) for financial support and thank Professor Kimoon Kim for X-ray crystallography.

References

- 1. König, B.; Rödel, M.; Bubenitschek, P.; Jones, P. G. Angew. Chem., Int. Ed. Engl. 1995, 34, 661–662.
- (a) Kauffmann, T.; Kniese, H.-H. *Tetrahedron Lett.* **1973**, *41*, 4043–4046. (b) Birkofer, L.; Stuhl, O. *J. Organomet. Chem.* **1979**, *177*, C16–C18. (c) Kaes, C.; Hosseini, M. W.; Ruppert, R.; De Cian, A.; Fischer, J. *Tetrahedron Lett.* **1994**, *35*, 7233–7236. (d) Kaes, C.; Hosseini, M. W.; De Cian, A.; Fischer, J. *J. Chem. Soc., Chem. Commun.* **1997**, 2229–2230.
- 3. Jung, M. E.; Xia, H. Tetrahedron Lett. 1988, 29, 297-300.
- 4. Kim, B. H.; Jeong, E. J.; Jung, W. H. J. Am. Chem. Soc. 1995, 117, 6390-6391.
- 5. Maugein, N.; Wagner, A.; Mioskowski, C. J. Org. Chem. 1999, 64, 8428-8431.
- 6. Selected spectroscopic data of 3, 6, 8 and 9. Compound 3: mp 267–270°C; ¹H NMR (300 MHz, CDCl₃) 7.77 (s, 2H, ArH), 7.60 (d, 4H, J=7.8 Hz, ArH), 7.34 (t, 2H, J=7.8 Hz, ArH), 3.98 (dd, 4H, J=15.7, 11.3 Hz, CH), 3.42–3.22 (m, 8H, CH₂), 0.33 and 0.28 (2s, 24H, CH₃); ¹³C NMR (75 MHz, CDCl₃) 155.9, 130.8, 127.2, 127.0, 126.9, 74.3, 37.0, -1.6, -1.6, -1.9, -2.0; FAB-MS (*m*/*z*) 693.3 (M⁺+1); IR (CHCl₃, cm⁻¹) 2957, 1560, 1438, 1339, 1328, 1303, 1252, 1149, 1104, 903, 896, 883, 873, 841, 814, 789; anal. calcd for C₃₂H₄₄N₄O₆Si₄: C, 55.46; H, 6.40; N, 8.08. Found: C, 55.60; H, 6.15; N, 7.60. Compound 6: mp 261-263°C; ¹H NMR (300 MHz, CDCl₃) 7.59-7.32 (m, 8H, ArH), 4.08-3.97 (m, 4H, CH), 3.39-3.04 (m, 8H, CH₂), 0.40-0.29 (m, 24H, CH₃); ¹³C NMR (75 MHz, CDCl₃) 156.6, 130.4, 126.7, 125.9, 74.4, 36.9, -0.7, -1.0; FAB-MS (*m*/*z*) 693.3 (M⁺+1); IR (CHCl₃, cm⁻¹) 2923, 2853, 1597, 1329, 1252, 1104, 874, 842, 789; anal. calcd for C₃₂H₄₄N₄O₆Si₄: C, 55.46; H, 6.40; N, 8.08. Found: C, 55.18; H, 6.22; N, 7.59. Compound 8: ¹H NMR (300 MHz, CDCl₃) 8.00 (d, 2H, J=7.9 Hz, ArH), 7.76–7.67 (m, 4H, ArH), 4.12–3.98 (m, 4H, CH), 3.63–3.20 (m, 8H, CH₂), 0.33–0.26 (m, 24H, CH₃); ¹³C NMR (75 MHz, CDCl₃) 158.0, 149.1, 136.7, 122.1, 74.8, 36.5, -0.8, -1.8, -2.1, -2.5; FAB-MS (m/z) 695.2 (M⁺+1); IR (CHCl₃, cm⁻¹) 2959, 2919, 2850, 1579, 1467, 1382, 1340, 1257, 1061, 924, 797; anal. calcd for C₃₀H₄₂N₆O₆Si₄·C₂H₅OH: C, 51.86; H, 6.53; N, 11.34. Found: C, 52.49; H, 6.29; N, 11.23. Compound **9**: ¹H NMR (300 MHz, CDCl₃) 8.20-8.10 and 7.95-7.89 (2m, 6H, ArH), 4.29-4.15 (m, 2H; CH), 3.29-3.03 and 2.87-2.69 (2m, 4H, CH₂), 0.30, 0.28, 0.10 and 0.07 (4s, 12H, CH₃); ¹³C NMR (75 MHz, CDCl₃) 157.4, 157.3, 150.2, 150.2, 147.2, 143.9, 137.6, 137.5, 123.9, 123.8, 123.0, 122.7, 77.1, 76.9, 35.8, 35.7, -1.4, -1.6; FAB-MS (*m*/*z*) 509.1 (M⁺+1); IR (CHCl₃, cm⁻¹) 2960, 1583, 1483, 1439, 1373, 1258, 1165, 1065, 992, 924; anal. calcd for $C_{22}H_{24}N_6O_5Si_2$: C, 51.95; H, 4.76; N, 16.52. Found: C, 51.60; H, 4.72; N, 16.25.
- 7. Crystal data for 3: C₃₂H₄₄N₄O₆Si₄, M=693.07, crystal system: triclinic, space group: PĪ, a=6.8037(8) Å, α=82.616(2)°, b=9.3283(11) Å, β=77.729(2)°, c=15.4738(18) Å, γ=78.150(2)°, V=953.48(19) Å³, Z=1, d_{calc}=1.230 g cm⁻³, T=298(2) K, Siemens SMART diffractometer with CCD detector, Mo-K_α (λ=0.71073Å), μ=2.04 cm⁻¹, of 3728 measured data, 2750 were independent (R_{int}=0.0196), R1 [I >2σ(I)]=0.0574, wR2 (all data)=0.1297 and GOF=1.161. Crystal data for 9: C₂₂H₂₄N₆O₅Si₂, M=508.65, crystal system: triclinic, space group: PĪ, a=8.6725(2) Å, α=75.9570(10)°, b=8.6733(2) Å, β=86.1690(10)°, c=17.7650(2) Å, γ=71.1580(10)°, V=1226.77(4) Å³, Z=1, d_{calc}=0.689 g cm⁻³, T=193(2) K, Siemens SMART diffractometer with CCD detector, Mo-K_α(λ=0.71073Å), μ=0.95 cm⁻¹, of 5079 measured data, 3725 were independent (R_{int}=0.0130), R1 [I >2σ(I)]=0.0388, wR2 (all data) =0.0997 and GOF=1.104.