This article was downloaded by: [Case Western Reserve University] On: 02 December 2014, At: 16:51 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry

Publication details, including instructions for authors and subscription information:

http://www.tandfonline.com/loi/lsyc20

Facile Allylation of N-Boc and N-Cbz Imines with Allyltrichlorosilane promoted by DMF

Pengcheng Wu^{abc} & Jian Sun^a

^a Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China

 $^{\rm b}$ Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences , Chengdu, China

^c Graduate School of Chinese Academy of Sciences , Beijing, China Published online: 12 Mar 2008.

To cite this article: Pengcheng Wu & Jian Sun (2008) Facile Allylation of N-Boc and N-Cbz Imines with Allyltrichlorosilane promoted by DMF, Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry, 38:7, 1003-1010, DOI: <u>10.1080/00397910701860422</u>

To link to this article: http://dx.doi.org/10.1080/00397910701860422

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

Synthetic Communications[®], 38: 1003–1010, 2008 Copyright © Taylor & Francis Group, LLC ISSN 0039-7911 print/1532-2432 online DOI: 10.1080/00397910701860422

Facile Allylation of *N*-Boc and *N*-Cbz Imines with Allyltrichlorosilane promoted by DMF

Pengcheng Wu^{1,2,3} and Jian Sun¹

¹Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
²Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
³Graduate School of Chinese Academy of Sciences, Beijing, China

Abstract: Facile allylation of various *N*-Boc and *N*-Cbz imines with allyltrichlorosilane has been effected using *N*,*N*-dimethylformamide (DMF) as the activator. The *N*-Boc and *N*-Cbz homoallylic amines were obtained in good to high yields under mild conditions.

Keywords: Allylation, allyltrichlorosilane, N-Boc imines, N-Cbz imines, DMF

INTRODUCTION

Homoallylic amines are important precursors to versatile nitrogen-containing compounds of biological importance, and hence continuous efforts have been devoted to the development of methods for the preparation of these compounds.^[1-4] The allylation of imines has been widely recognized as a direct and efficient method for the synthesis of homoallylic amines.^[2] Among various allylic reagents used for the allylation of imines, allyltrichlorosilane is a preferable choice because of its easy availability and low toxicity, and it has been extensively used in the allylation of aldehydes.^[3] Kobayashi first reported that when *N*,*N*-dimethylformamide (DMF) or hexamethylphosphoramide (HMPA) was used as activator, imine equivalents *N*-acylhydrazones were

Address correspondence to Jian Sun, Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China. E-mail: sunjian@cib.ac.cn

smoothly allylated with allyltrichlorosilane to afford homoallylic amines in high yield under mild reaction conditions.^[4] However, simple imines failed to undergo the same reaction, on the basis of which imines were once believed to be resistant to allyltrichorosilane.^[4] Later, the same research group found that smooth allylation could occur with N-(o-hydroxylphenyl)imines using DMF, HMPA, or pyridine N-oxide as activator.^[5] The adjacent hydroxy group of these imines proved to be indispensable for the high reactivity. Thus, the apparent limitation of the current imine allylation method using allyltrichlorosilane was the special requirements of the N-substituent of imines, which undoubtedly thwart the usefulness of this because removal of these substituents is not trivial. Herein, we report the first facile allylation of N-Boc and N-Cbz imines^[6] with allyltrichorosilane as the allylating agent and DMF as the activator.

RESULTS AND DISCUSSION

The tert-butoxycarbonyl group (Boc) is a favorite protection group for amines. It is easy to install and remove and is quite stable under nonacidic conditions. Aldimines derived from *N*-Boc amines and aldehydes (*N*-Boc aldimines) are preferable substrates for nucleophilic additions from the viewpoint of practical application. Thus, in this study, *N*-Boc imines were first examined as substrates for the allylation with allyltrichlorosilane. Initially, **1a** was subjected to the allylation with DMF as solvent at 0 °C using 1.5 equiv. of allyltrichlorosilane. To our delight, the reaction proceeded to give the desired product *N*-Boc allylamine **2a** in 53% yield in 8 h (entry 1, Table 1). Interestingly, a mixed solvent system of DMF–CH₂Cl₂ was found to be favorable to the reaction (entries 2–4), and the yield varied with different ratios of DMF–CH₂Cl₂. The highest yield of 80% was obtained at a DMF–CH₂Cl₂ ratio of 1:4 (entry 3). In the absence of DMF, the reaction failed to proceed (entries 5 and 6).

We also examined the effects of several other potential organic activators on the allylation of *N*-Boc aldimines (entries 7–10). Surprisingly, although DMSO, HMPA, and triphenylphosphine were all shown to be effective activators for the allylation of *N*-acylhydrazones,^[4] none of them exhibited detectable activity in the allylation of **1a** (entries 7–9); neither did triethylamine (entry 10). DMF thus seems to be unique as an effective organic activator for the allylations of *N*-Boc aldimines. Some other solvents were also surveyed for the allylation of **1a** in the presence of DMF (entries 11–14, Table 1). Although dichloroethane, toluene, and THF all afforded much lower yields than CH₂Cl₂, acetonitrile (CH₃CN) gave a slightly better yield than CH₂Cl₂ (entry 11 vs. 3) and is hence a suitable solvent.

We next carried out the allylation of various *N*-Boc aldimines with allytrichlorosilane at 0 °C using a mixed solvent of DMF–CH₃CN (1:4). As shown in Table 2, the selected electron-rich and electron-deficient aromatic imines 1a-1 all reacted well to give the desired products 2a-1 in good to excellent yields (entries 1–12).

Allylation of N-Boc and N-Cbz Imines

N ^{-Boc}	SiCl ₂	HN ^{´Boc}
П	activator	
" 1a	0°C	2a

Table 1. Allylation of N-Boc aldimine with allyltrichlorosilane^a

Entry	Activator/solvent	Yield $(\%)^b$
1	DMF/DMF	53
2	$DMF/CH_2Cl_2 (v/v = 1/1)$	62
3	$DMF/CH_2Cl_2 (v/v = 1/4)$	80
4	$DMF/CH_2Cl_2 (v/v = 1/9)$	31
5	-/CH ₂ Cl ₂	0
6	-/CH ₃ CN	0
7	$DMSO/CH_2Cl_2$ (v/v = 1/4)	<5
8	$HMPA/CH_2Cl_2$ (v/v = 1/4)	0
9	$Ph_3P = O/CH_2Cl_2 (2.6 M)$	0
10	TEA/CH_2Cl_2 (v/v = 1/4)	0
11	$DMF/CH_3CN (v/v = 1/4)$	84
12	DMF/Toluene (v/v = $1/4$)	30
13	$DMF/ClCH_2CH_2Cl (v/v = 1/4)$	47
14	DMF/THF (v/v = 1/4)	<5

^{*a*}Reaction condition: C = 0.2 M: reaction time: 8 h.

^bIsolated yield based on imine.

Becasue the *N*-Cbz group, another well-known useful protection group, is structurally and electronically similar to the *N*-Boc group, we also examined the allylation of *N*-Cbz aldimines under optimal conditions. As expected, imines 3a-d also underwent smooth allylation to afford products 4a-d in good yields (Table 2, entries 13–16).

Notably, when either the aliphatic *N*-Boc or *N*-Cbz imine **5** was subjected to the same reaction conditions, the major product obtained was not the desired allylation product **6** but a self-condensation product **7** (Scheme 1).^[7]

The crotylation of **1a** with (*E*)-crotyltrichlorosilanes was also tested under similar conditions. As illustrated in Scheme 2, the desired product **8** was obtained as a *syn/anti* mixture in good yield at -20 °C. The *syn/anti* ratio was determined by ¹H NMR analysis. Becasue of severe side reactions, a much lower yield was achieved at 0°C. The poor diastereoselectivity, in contrast to the high diastereoselectivities observed in the crotylation of *N*-acylhydrazones and *N*-(*o*-hydroxylphenyl)imines,^[3,4] seems to imply that this reaction proceeds through an open acyclic transition state.

We propose that *N*-Boc and *N*-Cbz imines be allylated with allyltrichlorosilane through a similar pathway as *N*-acylhydrazones (Scheme 3).^[3] DMF behaves as a Lewis basic activator. As for the transition state, while the one

$R = Boc, Cbz \qquad 0^{\circ C - Bh}$ $Entry \qquad Imine \qquad Product \qquad Yield (%)$ $I \qquad \qquad$			$\xrightarrow{\text{SiCl}_3} \overset{\text{R}_{NH}}{}_{\text{H}_2\text{CN}} (1:4) \qquad \text{Ar}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		R = Boc, Cbz	0°C 8h	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Entry	Imine	Product	Yield $(\%)^b$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	N ^{-Boc}	Boc	84
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Н		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(1a)	(2a)	
$H_{3}CO + H + H_{3}CO + H + $	2	N ^{Boc}	Boc	93
(1b) (2b) (2b) (2b) (2b) (2b) (2b) (2b) (2		H ₃ CO	H ₃ CO	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(1b)	(2b)	
(1c) (2c) (2c) (4) (1c) (2c) (6) (1d) (2d) (2d) (1d) (2d) (2d) (1d) (2d) (1d) (2d) (1d) (2d) (1d) (2d) (1e) (2e) (1e) (2e) (1e) (2e) (1e) (2e) (1f) (2f) (1f) (2f) (1f) (2f) (1g) (2g) (2g) (1g) (2g) (2g) (1g) (2g) (2g) (1h) (2h) (2h)	3			86
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		H300 H		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(1c)	(2c)	
$ \begin{array}{cccccc} & & & & & & & & & & & \\ & & & & & & & $	4	N BOC H	BOC_NH	96
$(1d) (2d)$ $5 \qquad \qquad$		OCH3	OCH3	
5 N^{H} Q (1e) $(2e)6 (1f) (2f)7 (1f) (2f)7 (1f) (2f)8 (1g) (2g)8 N^{Boc} Boc_{NH} 66(1g)$ $(2g)8 (1g) (2g)8 (1g) (2g)8 (1g) (2g)8 (1g) (2g)9 (1g) (2g) (2g) (2g) (2g) (2g) (2g) (1g) (2h) (2h$	_	(1d)	(2d)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	N ^{BOC}	BOC_NH	87
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		H		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(1e)	(2e)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	N ^{BOC}		74
$(1f) (2f)$ $7 \qquad \qquad$		Ц н		
7 $(1g)$ $(2g)$ 8 $(1g)$ $(2g)$ 8 $(1g)$ $(2g)$ 10 $(1g)$ $(2g)$ 10 $(1g)$ $(2g)$ 10 $(1g)$ $(2g)$ 10 $(1g)$ $(2g)$ 10 $(1g)$ $(2g)$ $(1g)$ $(1g)$ $(2h)$		(1f)	(2f)	
$8 \qquad \underbrace{\begin{array}{c} (\mathbf{1g}) \\ \mathbf{N}^{Boc} \\ (\mathbf{1g}) \\ \mathbf{1g} \\ \mathbf{1g}$	7	N ^{Boc}	Boc NH	66
$8 \qquad (1g) \qquad (2g) \\ 8 \qquad N^{Boc} \qquad Boc_{NH} \qquad 75 \\ \downarrow \downarrow_{Cl} \qquad \downarrow \downarrow_{Cl} \qquad (1h) \qquad (2h)$		CI	CI	
8 N^{Boc} N^{Boc} N^{Boc} N^{H} 75 (1h) $(2h)$		(1g)	(2g)	
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	8	N_ROC	≫ ↑ ≫ _{Roc} ∕NH	75
(1h) (2h)		Г СI		
		(1h)	(2h)	

Table 2. Allylation of various N-Boc and N-Cbz aldimines with allyltrichlorsilane^a

1006

(continued)

Entry	Imine	Product	Yield $(\%)^b$
9	N ^{´Boc}	Boc	78
	Н		
	(1i)	F [*] ~ (2i)	
10	N ^{_Boc}	Boc、 _{NH}	62
	Br	Br	
	(1j)	(2j)	
11	N ^{_Boc}	Boc、 _{NH}	64
	Н		
	(1 k)	(2 k)	
12	N, Boc		68
	O ₂ N H	0 ₂ N	
	(11)	(2I)	
13	N_Cbz	Cbz NH	80
	Н		
	(3a)	(4a)	
14	N ^{Cbz}		65
	НЗООССИН		
	(3b)	(4b)	
15	N_Cbz	Cbz、NH	56
	H		
	(3c)	(4c)	
16	N ^{_Cbz}	Cbz	78
	F H	F	
	(3d)	(4d)	

Table 2. Continued

^{*a*}Reaction condition: C = 0.2 M.

^bIsolated yield based on imine.

Downloaded by [Case Western Reserve University] at 16:51 02 December 2014

Scheme 1.

Scheme 2. 0 °C: yield 37%, syn:anti (5:6); -20 °C: yield 78%, syn:anti (4:6).

proposed for the allylation of *N*-acylhydrazones is a closed six-membered cycle,^[1c,3] the allylation of *N*-Boc and *N*-Cbz imines most likely adopts an open acyclic transition state given the observed poor stereoselectivity and the slim possibility of coordination of the nitrogen atom of such imine with the silicon atom becasue of the strong electron-withdrawing effects of the Boc and Cbz groups.

In summary, facile allylation of various *N*-Boc and *N*-Cbz imines with allyltrichlorosilane has been effected using DMF as the activator. The *N*-Boc and *N*-Cbz homoallylic amines were obtained in good to high yields under mild conditions. The asymmetric version of this reaction using chiral DMF analogs as catalyst^[8] is currently under investigation in this laboratory.

Scheme 3.

1008

EXPERIMENTAL

Typical Experimental Procedure for the Allylation of *N*-Boc and *N*-Cbz Aldimines

Aldimine (0.2 mmol) was dissolved in 0.2 mL of DMF and 0.8 mL of CH_3CN . Allyltrichlorosilane (0.3 mmol) was added dropwise at 0 °C. The reaction was stirred at 0°C overnight and was then quenched with a saturated aqueous NaHCO₃ solution (2 mL) and extracted with ether. The oganic phase was combined, washed with water and brine, dried over MgSO₄, and concentrated under reduced pressure. The residue was purified by flash-column chromatography on silica to give the pure product.

ACKNOWLEDGMENT

We are grateful for financial support from the National Natural Science Foundation of China (Projects 20402014 and 20672107).

REFERENCES

- For general reviews, see (a) Enders, R. D.; Reinhold, U. Asymmetric synthesis of amines by nucleophilic 1,2-addition of organometallic reagents to the CN-double bond. *Tetrahedron: Asymmetry* 1997, 8, 1895; (b) Bloch, R. Addition of organometallic reagents to C=N bonds: Reactivity and selectivity. *Chem. Rev.* 1998, 98, 1407; (c) Kobayashi, S.; Sugiura, M.; Ogawa, C. Neutral coordinate-organocatalysts in organic synthesis: Allylation of acylhydrazones with allyltrichlorosilanes. *Adv. Synth. Catal.* 2004, 346, 1023; (d) Ding, H.; Friestad, K. G. Asymmetric addition of allylic nucleophiles to imino compounds. *Synthesis* 2005, 17, 2815.
- 2. For selected recent examples of allylation of imines, see (a) Deng, D.-S.; Liu, P.; Cai, J.-W. Regio- and diastereoselective three-component syntheses of homoallylic amines in aqueous media catalyzed by Brønsted acids. Eur. J. Org. Chem. 2007, 1594; (b) Das, B.; Laxminarayana, K.; Ravikanth, B.; Ramarao, B. Efficient synthesis of homoallylic alcohols and amines using 2,4,6-trichloro-1,3,5-triazine. Tetrahedron Lett. 2006, 51, 9103; (c) Zhao, G.; Li, G.-L. Threecomponent synthesis of homoallylic amines promoted by carboxylic acids. Synthesis 2006, 19, 3189; (d) Smitha, G.; Miriyala, B.; Williamson, J. S. Phosphomolybodic acid-catalyzed efficient three-component reaction: A facile synthesis of protected homoallylic amines. Synlett 2005, 839; (e) Ella-Menye, J.-R.; Dobbs, W.; Billet, M.; Klotz, P.; Mann, A. Unexpected 1,2 syn diastereoselectivity in the three-component "aza Sakurai-Hosomi" reaction. Tetrahderon Lett. 2005, 46, 1897; (f) Phukan, P. Iodine as a very powerful catalyst for three-component synthesis of protected homoallylic amines. J. Org. Chem. 2004, 69, 4005; (g) Yamasaki, S.; Fuji, K.; Wada, R.; Kanai, M.; Shibassaki, M. A general catalytic allylation using allyltrimethoxysilane. J. Am. Chem. Soc. 2002, 124, 6536.

- Demark, S. E.; Fu, J. P. Catalytic enantioselective addition of allylic organometallic reagents to aldehydes and ketones. *Chem. Rev.* 2003, 103, 2763.
- Sugiura, M.; Robvieux, F.; Kobayashi, S. The first allylation of imines with allytrichlorosilanes using neutral coordinate organocatalysts. *Synlett* 2003, 1748.
- (a) Kobayashi, S.; Hirabayashi, R. Highly stereoselective synthesis of homoallylic amines based on addition of allyltrichlorosilanes to benzoyhydrazones under neutral conditions. J. Am. Chem. Soc. 1999, 121, 6942; (b) Hirabayashi, R.; Ogawa, C.; Sugiura, M.; Kobayashi, S. Highly stereoselective synthesis of homoallylic amines based on addition of allyltrichlorosilanes to benzoylhydrazones. J. Am. Chem. Soc. 2001, 123, 9493; (c) Ogawa, C.; Sugiura, M.; Kobayashi, S. Stereoselective synthesis of both syn- and anti-N-tert-alkylamines using highly stereospecific crotylation of ketone-derived acylhydrazones with crotyltrichlorosilanes. J. Org. Chem. 2002, 67, 5359.
- Kanazawa, A. M.; Denis, J.; Greene, A. E. Highly stereocontrolled and efficient preparation of the protected, esterification-ready docetaxel (Taxotere) side chain. *J. Org. Chem.* 1994, *59*, 1238N-Boc and N-Cbz aldimines were prepared acoording to the following reference.
- An analogous self-condensation has been previously observed under Lewis acidic Sc(OTf)₃-catalyzed conditions; see Kobayashi, S.; Gustafsson, T.; Shimizu, Y.; Kiyohara, H.; Matsubara, R. Enecarbamates as imine surrogates: Nucleophilic addition of 1,3-dicarbonyl compounds to enecarbamates. *Org. Lett.* 2006, 8, 4923.
- For chiral DMF analogs we previously developed for asymmetric reduction of ketimines by trichlorosilane, see (a) Wang, Z.; Ye, X.; Wei, S.; Wu, P.; Zhang, A.; Sun, J. A highly enantioselective Lewis basic organocatalyst for reduction of *N*-aryl mines with unprecedented substrate spectrum. *Org. Lett.* 2006, *8*, 999; (b) Wang, Z.; Cheng, M.; Wu, P.; Wei, S.; Sun, J. L-Piperazine-2carboxylic acid derived *N*-formamide as a highly enantioselective Lewis basic catalyst for hydrosilylation of *N*-aryl imines with an unprecedented substrate profile. *Org. Lett.* 2006, *8*, 3045.