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Abstract: Formation of (S)-4-tert-butylcyclohex-1-enyl nonaflate
4 by reaction with nonafluorobutanesulfonyl fluoride was found to
be highly enantioselective both from (S)-4-tert-butyl-1-(trimethyl-
siloxy)cyclohexene 3 and from the corresponding lithium enolate 2.
The latter was generated by kinetic deprotonation of 4-tert-butylcy-
clohexanone 1 with lithium (R,R’)-bis(1-phenylethyl)amide as
enantiopure base. A number of functionalized 2-(4-tert-butylcyclo-
hex-1-enyl)alkenes  6  were  prepared  with  roughly  90%  enanti-
omeric excess from trimethylsilyl enol ether 3 using a one-pot
nonaflation/Heck reaction sequence.

Key words: enantioselective deprotonation, silyl enol ethers, alke-
nyl nonaflates, Heck reaction, 1,3-dienes

Desymmetrizing transformation of enantiotopic groups in
plane-symmetrical substrates under the action of chiral re-
agents or catalysts is an elegant trick permitting straight-
forward access to enantiomerically pure or enriched
compounds. Since Koga’s discovery of desymmetrization
of 4-substituted cyclohexanones1 by enantioselective ki-
netically controlled deprotonation with enantiopure lithi-
um amides this reaction was broadly extended2 and
adapted as a key step in syntheses of a number of natural
products.3 The most popular protocol implies a fixation of
the initially formed chiral lithium enolate as trialkylsilyl
enol ether;4 in far most cases, the following transforma-
tions exploit the reactivity of the enolate C,C-double
bond.2a,3d,e

We recently found that model substrate 4-tert-butylcyclo-
hexanone 1 could be smoothly transformed into enantio-
merically highly enriched (S)-4-tert-butylcyclohex-1-enyl
nonaflate 45 when known silyl enol ether 3 was subjected
to our fluoride catalysed O-nonaflation procedure.6 The
enantiomerically enriched trimethylsilyl enol ether 3 was
prepared from 4-tert-butylcyclohexanone 1 (Scheme 1)
according to a modified Koga protocol7 using commer-
cially available (R,R’)-bis(1-phenylethyl)ammonium
chloride and isolated after cautious acidic (pH = 2) aque-
ous workup8 by vacuum kugelrohr distillation in 96%
yield.9 Treatment of a mixture of 3 and tetra-n-butylam-
monium fluoride (5 mol%) with nonafluorobutanesulfo-
nyl fluoride (NfF) afforded target compound 4 in 85%
yield after column chromatography (silica gel, hexane).10

Alternatively, this product was prepared by direct trap-

ping of lithium enolate 2 with the O-sulfonylating agent
NfF11 which furnished 4 in 77% yield and almost identical
optical purity ([�]365 = -101.6 (c = 1.73) versus
[�]365 = -104.0 (c = 1.82), both measurements in C6H6).

The following Heck reactions12 of both samples of the
enantiomerically enriched nonaflate 4 with methyl acry-
late 5a (Scheme 1) resulted in high yields of enantiomeri-
cally enriched methyl (E)-3-[(S)-4-tert-butylcyclohex-1-
enyl]propenoate 6a.5,13

Scheme 1
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As nonaflation reaction and Heck coupling imply inter-
mediacy of highly reactive species (ionic enolate and alk-
enyl palladium, respectively) which may suffer proton/
hydrogen migrations resulting in eventual erosion of
enantiomeric purity, we aimed to carefully establish the
enantiomeric excess of product 6a. After several unsuc-
cessful attempts,14 we found that GC-analysis of the rac-
6a on a fused silica capillary column [Macherey-Nagel
heptakis-(6-O-tert-butyl-2,3-di-O-methyl)-�-cyclodex-
trin] provides clean separation of both enantiomers allow-
ing reliable integration of the peaks. The following
analysis of enantiomerically enriched sample of 6a
showed a 94.5: 5.5 ratio of the enantiomers. Thus, the
enantiomeric excess of 89% as generated by the asymmet-
ric deprotonation is fully transferred to nonaflate 4 and
subsequently to coupling product 6a.

Having established the stepwise sequence as described
above, we applied the one-pot nonaflation-Heck coupling
procedure previously reported by us for achiral
substrates15 to synthesize the enantiomerically enriched
functionalized 1,3-dienes 6 from (S)-4-tert-butyl-1-(tri-
methylsiloxy)cyclohexene 3 (Scheme 2, Table). For this
purpose the required components for the second step were
simply added to the reaction mixture containing interme-
diate nonaflate 4.16 The Heck coupling step proceeds
smoothly at 75�80 °C to give the desired 1,3-dienes in
good yields. With exception of nitrile 6b (E/Z = 9:1), the
products obtained were isolated as pure E-isomers.

Heck couplings with enantiopure acrylate derivatives 5e
and  5f  were  performed  to  investigate  the  enantioselec-

tivity of the overall reaction sequence (Scheme 2), which
would be deduced from the diastereomeric excess of the
products 6e and 6f. However, in both cases no signal split-
ting could be observed in the NMR spectra probably be-
cause the two chiral units are too much separated. As
mentioned above we could solve this problem by applying
GC-analysis to 6a. We assume that all dienes 6 presented
in this report have an enantiomeric excess in the range of
89% like precursor silyl enol ether 3.

Scheme 2

In conclusion, we have found that enantioselective depro-
tonation of 4-tert-butylcyclohexanone (1) followed by
nonaflation with the industrial product nonafluorobutane-
sulfonyl fluoride gives (S)-4-tert-butylcyclohex-1-enyl
nonaflate 4 in high yield and with excellent enantioselec-
tivity. The reaction is proven to work equally well in both
direct kinetic O-nonaflation of the lithium enolate 2 and
via the respective trimethylsilyl enol ether 3, thus consti-

Table Synthesis of 1,3-Dienes 6a-f.

a A mixture of E/Z-isomers (9: 1); in the presence of KOAc/K2CO3 in place of LiCl/Et3N, the re-
action of 4 with acrylonitrile gives only 44% conversion of the starting material with the E/Z-ratio
of the product 6b being 4: 1.
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tuting two complementary options. In the latter case, reac-
tion was successfully adapted to the synthesis of chiral
functionalized dienes 6 using one-pot nonaflation-Heck
coupling protocol. We currently investigate whether the
described method is generally applicable to plane-sym-
metrical cyclic ketones. The resulting enantiomerically
highly enriched dienes should be very useful chiral build-
ing blocks for cycloadditions, Michael reactions or other
additions to the 1,3-diene system.
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