

Published on Web 05/25/2010

Intramolecular Halogen Stabilization of Silylium Ions Directs Gearing Dynamics

Paola Romanato, Simon Duttwyler, Anthony Linden, Kim K. Baldridge,* and Jay S. Siegel* Organic Chemistry Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland

Received December 30, 2009; E-mail: kimb@oci.uzh.ch; jss@oci.uzh.ch

Silicon cations¹ are highly reactive Lewis acids that are useful in chemical synthesis.^{2,3} Even relatively weak Lewis bases, such as the π -basic solvent toluene, form tetrahedral complexes with silylium ions.^{4,5} Intramolecular π coordination in cationic silicon species with a 2,6-diarylphenyl scaffold distorts the ideal $C_{2\nu}$ -symmetric geometry to adopt the C_1 -symmetric geometry of a Wheland-like complex.⁶ The energy difference between the $C_{2\nu}$ and C_1 forms decreases with lateral rings having lower basicity than benzene are likely candidates for cations without internal π coordination. On the basis of this idea, silyl cations 1 bearing 2,6-dihalophenyl substituents were synthesized. However, instead of free tricoordinate ions, NMR and X-ray crystallographic studies revealed a trigonal-bipyramidal geometry with bridging halogen atoms as the apical ligands.⁷

Double Negishi coupling on triazene 5^8 led to diarylphenyltriazene **4**, which gave the corresponding iodoterphenyl **3a** when treated with iodine.⁹ Lithiation of 3^{10} followed by reaction with chlorodimethylsilane afforded the silanes **2**. Hydride abstraction by [Ph₃C][B(C₆F₅)₄] gave the silylium ions [**1**][B(C₆F₅)₄] (Scheme 1).

The ²⁹Si NMR resonances of **1a** (89 ppm) and **1b** (91 ppm) are downfield-shifted relative to their neutral precursors (-20 ppm), an indication that species with partial positive charge on silicon are formed. While these values are still far from that of a free silylium ion,¹¹ they indicate deshielding in comparison with classical silanium ions.¹²

¹H and ²⁹Si NMR spectra of **1a** revealed magnetic coupling to the fluorine substituents (Figure 1). The signal of the methyl groups attached to silicon in **1a** appeared as a quintet, and the same multiplicity was maintained upon cooling to 223 K. Additionally, the silicon signal, which appeared as a broad resonance at room temperature, was resolved into a quintet at lower temperature.¹³ Coordination by fluorine can explain the multiplicity and the coupling constant (J = 32 Hz) of the silicon signal; the effect of this interaction reached the methyl groups covalently bonded to silicon. ¹⁹F NMR spectroscopy revealed signal isochrony for the fluorine substituents over the temperature range 293–223 K. Computational analysis of a conformational graph showed that this equivalence originated from a dynamic exchange of lower-symmetry conformations rather than a static conformer having $C_{2\nu}$ symmetry.

Eight conformations of **1** can be arranged into a bipartite graph $(K_{4,4})$ with conrotatory or disrotatory (correlated one-ring-flip) connections (Figure 2).¹⁴ Calculations at the density functional theory level favored a C_2 ground state (B_1-C_2) for **1a** and **1b** in which the silicon interacts with one halogen atom from each of the opposing flanking rings (Table 1);¹⁵ the experimental ²⁹Si NMR values matched well the computed values for the B₁- C_2 conformers

 $(\Delta \delta \approx 3 \text{ ppm})$. Computations further predicted that cation **1a** should undergo fluorine exchange at silicon via a disrotatory gearing of the lateral aryl rings (Figure 3); the circuit $(B_1-A_2)_2$ was predicted to require only 4.5 kcal mol⁻¹. In contrast, cation **1b** was predicted to exchange chloro substituents at silicon via a $B_1-A_1-B_1$ conrotatory librational process.

Crystals of composition [**1a**][CB₁₁H₆Cl₆] were obtained from a C₆H₅Cl/C₆H₁₄ mixture using the carborane CB₁₁H₆Cl₆⁻ as the counterion.^{16,17} X-ray crystallographic analysis revealed the cation structure to be essentially the C_2 trigonal-bipyramidal B₁- C_2 form

Figure 1. Variable-temperature ¹H and ²⁹Si NMR analysis of 1a.

Figure 2. Bipartite conformational graph of 1 viewed along the $Si-C_{aryl}$ axis. Blue paths, disrotatory; red paths, conrotatory; bold blue path, gearing circuit. GS, ground state; TS, transition state; HSP, higher-order stationary point. Bold black lines, lateral aryl rings; wedges, methyl groups at silicon.

Table 1. B98/DZ(2df,pd)-Calculated Relative Gas-Phase Energies (kcal mol⁻¹) and B98/DZ+(2df,pd) ²⁹Si NMR Shifts (ppm)^a for **1a** and 1b^b

		1a			1b		
		²⁹ Si NMR shift			²⁹ Si NMR shift		
	$E_{\rm rel}$	calcd	exptl	E _{rel}	calcd	exptl	
$A_1 - C_{2v}$	13.2	272.2	-	9.3	208.3	_	
A_2-C_s	4.5	160.3	_	16.6	195.5	_	
A_3-C_{2v}	22.0	33.6	_	79.8	13.6	_	
B_1-C_2	0.0	87.6 ^c	88.6	0.0	93.8 ^c	90.5	
B_2-C_s	9.6	69.2	_	21.4	66.3	_	

^a NMR shift data calibrated relative to TMS. ^b For additional computational details, see the Supporting Information. ^c B98/ DZ+(2df,pd) calibrated ²⁹Si NMR shifts in toluene: **1a**, 87.2; **1b**, 93.7.

Figure 3. Proposed conformational gearing circuit.

Figure 4. ORTEP plot of [1a][CB₁₁H₆Cl₆] with 30% probability ellipsoids; the anion and hydrogen atoms have been omitted. Dashed lines show the Si-F interactions. The conformation is consistent with the B_1 - C_2 form (cf. Figure 1).

Table 2. Selected Bond Lengths (Å) and Dihedral Angles (deg) for the Calculated C₂ Conformer and the Single-Crystal X-Ray Structure of 1a

	C_2 calc	:d		
parameter	gas-phase ^a	in toluene ^b	exptl	
$F2 \rightarrow Si$	2.118 [2.126]	2.133	2.151(2)	
F4 → Si	2.118 [2.126]	2.133	2.065(2)	
C14-F2	1.397 [1.397]	1.394	1.410(3)	
C20-F4	1.397 [1.397]	1.394	1.421(3)	
C10-F1	1.331 [1.332]	1.336	1.352(3)	
C16-F3	1.331 [1.332]	1.336	1.351(3)	
dihedral angle ^c	35.14	36.25	$38.28(13)^d$	
-	35.14	36.25	$31.14(13)^{e}$	
dfp-Si ^f	0.0	0.0	0.0184(7)	

^a B98/DZ(2df,pd) [B98/DZ+(2df,pd)]. ^b B98/DZ+(2df,pd) in toluene. ^c Angle between the least-squares planes of a flanking ring and the central ring.^d Between the ring containing F2 and the central ring.^e Between the central ring and the ring containing F4. ^f Distance between the Si atom and the plane defined by the three C atoms bound to Si.

predicted computationally (Figure 2; cf. Figure 2). The F2-Si and F4-Si distances are longer than a typical F-Si bond by 0.55 and 0.46 Å, respectively (Table 2).¹⁸ The sum of C-Si-C angles, 359.9(1)°, and the F2-Si-F4 angle, 174.20(6)°, indicate that the fluorine atoms occupy the apical positions of a trigonal bipyramid.

Spectroscopic data and computations support similar ground states for 1a and 1b. The observed ²⁹Si NMR shifts for 1a and 1b indicate a slightly weaker electron donation to silicon by 1b. Comparison of the differences in the ¹³C NMR shifts of the flanking rings in silanes 2 versus cations 1 suggests a similar coordination mode in **1a** and **1b**.¹⁹ For the favored C_2 conformation of **1b**, the Si-Cl distance (coordinating chlorine atoms) was predicted to be 2.661 Å, ~ 0.61 Å longer than in a single Si–Cl bond.²⁰

This new class of silylium ions, coordinated by neutral halogen atoms that are part of C(Ar)-X bonds, displays binding to SiR_3^+ that is energetically comparable to that of a π -basic ligand such as benzene. Desymmetrization of the meta-terphenyl scaffold via replacement of one halogenated ring with a methylated ring can refine the energetic details of lone-pair (halogen) or π (aryl) donor stabilization of silyl cations.

Acknowledgment. This work was supported by the Swiss National Science Foundation.

Supporting Information Available: Experimental procedures, details, and CIFs for computational $[1a][CB_{11}H_6Cl_6],$ $[1a \cdot THF][B(C_6F_5)_4]$,¹⁶ and $[1a \cdot Et_2O][B(C_6F_5)_4]$.¹⁶ This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) (a) Kochina, T. A.; Vrazhnov, D. V.; Sinotova, E. N.; Voronkov, M. G. Russ. Chem. Rev. 2006, 75, 95. (b) Reed, C. A. Acc. Chem. Res. 1998, 31, 325. (c) Lambert, J. B.; Zhao, Y.; Zhang, S. M. J. Phys. Org. Chem. 2001, 14, 370.
- For catalytic activation of carbonyl groups, see: (a) Klare, H.; Bergander, K.; Oestreich, M. Angew. Chem., Int. Ed. 2009, 48, 9077. (b) Hara, K.; Akiyama, R.; Sawamura, M. Org. Lett. 2005, 7, 5621.
 For Lewis base activation of silicon Lewis acids, see: Denmark, S. E.; Chung, W. J. Org. Chem. 2008, 73, 4582.
- (4) This paper uses current IUPAC recommendations for cationic species (see: Powell, W. H. Pure Appl. Chem. 1993, 65, 1357). The term silvlium ion refers to a tricoordinate silicon cation. A silanium ion is a pentacoordinate species with a formal positive charge at silicon. The expression silyl cation
- is used for species without specification of the coordination number.
 (5) Lambert, J. B.; Zhang, S.; Ciro, S. M. Organometallics 1994, 13, 2430.
 (6) Duttwyler, S.; Do, Q.; Linden, A.; Baldridge, K. K.; Siegel, J. S. Angew. Chem., Int. Ed. 2008, 47, 1719.
 (7) For halogen → Si coordination in silylium ions, see: (a) Lehmann, M.;
- Schulz, A.; Villinger, A. Angew. Chem., Int. Ed. 2009, 48, 7444. (b) Panisch, Schutz, A.; Villinger, A. Angew. Chem., Int. Ed. 2009, 48, 1444. (b) Panisch,
 R.; Bolte, M.; Müller, T. J. Am. Chem. Soc. 2006, 128, 9676. (c) Küppers,
 T.; Bernhardt, E.; Eujen, R.; Willner, H.; Lehmann, C. W. Angew. Chem.,
 Int. Ed. 2007, 46, 6346. (d) Hoffmann, S. P.; Kato, T.; Tham, F. S.; Reed,
 C. A. Chem. Commun. 2006, 767. (e) Xie, Z.; Manning, J.; Reed, R. W.;
 Mathur, R.; Boyd, P. D. W.; Benesi, A.; Reed, C. A. J. Am. Chem. Soc.
 1996, 118, 2922.
 Liu, C.-Y.; Knochel, P. Org. Lett. 2005, 7, 2543.
- (9) Moore, J. S. Tetrahedron Lett. 1994, 35, 5539.
- (10) For the synthesis of 3b, see: Saednya, A.; Hart, H. Synthesis 1996, 1455.
- A typical value would be 225 ppm, as for trimesitylsilylium ion. See: Kim, K.-C.; Reed, C. A.; Elliot, D. W.; Mueller, L. J.; Tham, F.; Lin, L.; Lambert, (11)J. B. Science 2002, 297, 825.
- (12) For silanium ions, see: (a) Kost, D.; Kalikhman, I. Acc. Chem. Res. 2009, 42, 303. (b) Chauhan, M.; Chuit, C.; Corriu, R. J. P.; Mehdi, A.; Reyé, C. Organometallics 1996, 15, 4326. (c) Belzner, J.; Schär, D.; Kneisel, B. O.; Herbst-Irmer, R. Organometallics 1995, 14, 1840. (d) Berlekamp, U.-H.; Jutzi, P.; Mix, A.; Neumann, B.; Stammler, H.-G.; Schoeller, W. W Angew. Chem., Int. Ed. 1999, 38, 2048. (e) Ebata, K.; Inada, T.; Kabuto, C.; Sakurai, H. J. Am. Chem. Soc. 1994, 116, 3595.
- (13) For an earlier example of a rapidly exchanging F–Si system, see: Olah, G. A.; Mo, Y. K. J. Am. Chem. Soc. 1971, 93, 4942.
 (14) Mislow, K. Chemtracts: Org. Chem 1989, 2, 151.
 (15) The C₁ starting geometry converged to the C₂ structure.

- (16) Initial attempts to crystallize 1a showed that traces of THF and Et₂O had coordinated to the silicon center. Cocrystals containing $[1a \cdot THF][B(C_6F_5)_4]$ and [1a·Et₂O][B(C₆F₅)₄] were obtained, and X-ray analysis displayed a distorted-tetrahedral arrangement around silicon (see the Supporting Information).
- (17) For the carborane CB₁₁H₆Cl₆⁻, see: Reed, C. A. Acc. Chem. Res. 1998, 31, 133.
- (18) The Si-F bond length of 1.600(1) Å in Me₃SiF (see: Rempfer, B.; Oberhammer, H.; Auner, N. J. Am. Chem. Soc. 1986, 108, 3893) was used as a reference.
- (19) For comparison of the ¹³C NMR shifts in cations 1, see the Supporting Information. Analysis of the ¹³C NMR shifts of analogues with methylated flanking rings revealed π coordination via C_{ortho} with a resonance pattern typical of Wheland intermediates (ref 6). The data for cations 1 are not consistent with this kind of electron donation.
- (20) Reference 7a indicates a Si-Cl bond length of 2.055(2) Å for Me₃SiCl.
- JA9109665