Hexacoordinate Silicon(IV) Complexes Containing Thiocyanato-N Ligands – Syntheses, Structural Characterization, and Computational Studies

Oliver Seiler, Rüdiger Bertermann, Nele Buggisch, Christian Burschka, Martin Penka, David Tebbe, and Reinhold Tacke*

Würzburg, Institut für Anorganische Chemie der Bayerischen Julius-Maximilians-Universität

Received April 2nd, 2003.

Dedicated to Professor Heinrich Nöth on the Occasion of his 75th Birthday

Abstract. The hexacoordinate silicon(IV) complexes $[NEt_4]_2$ - $[Si(NCS)_6]$ (2), $[K(18\text{-crown-6})]_2[Si(NCS)_6]\text{-}2CH_3CN$ (3·2CH₃CN), and *cis*- $[(acac)_2Si(NCS)_2]$ (*cis*-4; acac = acetylacetonato-*O*,*O*) were synthesized, starting from Si(NCS)₄ (1). Compounds 1, 2, 3·2CH₃CN, and *cis*-4 were structurally characterized in the solid state (¹³C, ¹⁵N (*cis*-4 only), and ²⁹Si MAS NMR; crystal structure analyses) and in solution (¹H, ¹³C, and ²⁹Si NMR; *cis*-4 only). The

experimental investigations were complemented by computational studies (RI-MP2 geometry optimizations of 1, $[Si(NCS)_6]^{2-}$, *cis*-4, and *trans*-4; calculations of the ²⁹Si NMR chemical shifts using the optimized structures).

Keywords: Coordination chemistry; Hexacoordinate silicon; Silicon; Solid-state NMR spectroscopy; Thiocyanato-*N* ligand

Hexakoordinierte Silicium(IV)-Komplexe mit Thiocyanato-*N*-Liganden – Synthesen, strukturelle Charakterisierung und theoretische Untersuchungen

Inhaltsübersicht. Die hexakoordinierten Silicium(IV)-Komplexe $[NEt_4]_2[Si(NCS)_6]$ (2), $[K(18-Krone-6)]_2[Si(NCS)_6] \cdot 2CH_3CN$ (3·2CH₃CN) und *cis*-[(acac)_2Si(NCS)_2] (*cis*-4; acac = Acetylacetonato-*O*,*O*) wurden ausgehend von Si(NCS)₄ (1) synthetisiert. Die Verbindungen 1, 2, 3·2CH₃CN und *cis*-4 wurden im festen Zustand (¹³C-, ¹⁵N- (nur *cis*-4) und ²⁹Si-MAS-NMR; Kristallstrukturanaly-

Introduction

Compared to the chemistry of dianionic $\lambda^6 Si$ -silicates with SiO_6 skeletons [1], the chemistry of dianionic hexacoordinate silicon(IV) complexes with SiN_6 frameworks is significantly less explored [2]. Compound **2** represents the first example of this particular formula type that has been structurally characterized by single-crystal X-ray diffraction [2b]. As the quality of this structure analysis is poor and no NMR data of the Si(NCS)₆²⁻ dianion have been reported, compound **2** was resynthesized and studied by single-crystal X-ray diffraction and solid-state NMR spectroscopy. In addition, the related potassium-18-crown-6 salt **3** and the neutral silicon(IV) complex *cis*-**4** (SiO_4N_2 skeleton) were synthesized and structurally characterized. In all cases, the silane **1** [3] served as the starting material. Compound **4** has

* Prof. Dr. Reinhold Tacke Institut für Anorganische Chemie Universität Würzburg Am Hubland D-97074 Würzburg, Germany E-mail: r.tacke@mail.uni-wuerzburg.de sen) und in Lösung (¹H-, ¹³C- und ²⁹Si-NMR; nur *cis-*4) strukturell charakterisiert. Die experimentellen Untersuchungen wurden durch theoretische Studien ergänzt (RI-MP2-Geometrieoptimierungen von 1, [Si(NCS)₆]²⁻, *cis-*4 und *trans-*4; Berechnungen der ²⁹Si-NMR-chemischen Verschiebungen für die geometrieoptimierten Strukturen).

already been synthesized by an alternative method (starting material: $(RO)_2Si(NCS)_2$ (R = Et, *n*-Pr) [4]), but its stereochemistry has been studied only by solution NMR spectroscopy. We report here on the syntheses of compounds 1, 2, 3·2CH₃CN, and *cis*-4 and their structural characterization in the solid state (single-crystal X-ray diffraction; ¹³C (except for 1), ¹⁵N (*cis*-4 only), and ²⁹Si MAS NMR) and in solution (¹H, ¹³C, and ²⁹Si NMR; *cis*-4 only). These experimental studies were complemented by computational investigations. The studies presented in this paper were carried out as part of our systematic investigations on higher-

coordinate silicon compounds (for recent publications, see ref. [5]; for reviews dealing with higher-coordinate silicon compounds, see refs. [1] and [6]). Preliminary results of the studies reported here have already been presented elsewhere [7].

Results and Discussion

Syntheses

Compounds 1-4 were synthesized according to Scheme 1. Tetra(thiocyanato-N)silane (1) [3] was obtained by reaction of tetrachlorosilane with four molar equivalents of ammonium thiocyanate. Tetraethylammonium hexa(thiocyanato-N)silicate (2) [2b] was synthesized by treatment of 1 with two molar equivalents each of tetraethylammonium chloride and potassium thiocyanate. The related potassium-18-crown-6 salt 3 was obtained by reaction of 1 with two molar equivalents each of potassium thiocyanate and 18crown-6 and was isolated as the acetonitrile solvate 3.2CH₃CN. The neutral complex *cis*-bis[acetylacetonato-O,O]di(thiocyanato-N)silicon(IV) (cis-4) was synthesized by treatment of 1 with two molar equivalents of acetylacetone. Compounds 1, 2, 3.2CH₃CN, and *cis*-4 were isolated as crystalline solids (yield: 1, 65 %; 2, 71 %; 3.2CH₃CN, 80 %; cis-4, 77 %). Their identities were established by elemental analyses, NMR studies, and crystal structure analyses.

Crystal Structure Analyses

The crystal structures of compounds 1, 2, $3 \cdot 2 CH_3 CN$, and *cis*-4 were determined by single-crystal X-ray diffraction.

Scheme 1

zaac.wiley-vch.de

The crystal data and the experimental parameters used for these studies are given in Table 1; selected interatomic distances and angles are listed in Table 2. The structures of the respective molecules (1, cis-4) and dianions $(2, 3\cdot 2CH_3CN)$ in the crystal are shown in Figures 1–4.

The silane 1 crystallizes in the space group $I4_1/a$, with Si-N distances in the range 1.6745(14)-1.6831(15) Å. The Si-coordination polyhedron is an almost ideal tetrahedron, with N-Si-N angles in the range $108.81(7)-109.94(7)^{\circ}$. The Si-N-C angles amount to $174.54(15)-177.12(15)^{\circ}$.

Compounds 2 [8] and $3 \cdot 2 \text{CH}_3 \text{CN}$ crystallize in the space groups $P4_2/m$ and Fdd2, respectively. The Si-coordination polyhedra of the $[\text{Si}(\text{NCS})_6]^{2-}$ dianions are almost ideal octahedra, with N-Si-N angles in the ranges $89.15(10)-90.74(7)^\circ$ and $179.37(12)-180.0^\circ$. The Si-N distances amount to 1.8167(15)-1.8369(17) Å; they are significantly longer than those observed for 1. The Si-N-C angles are in the range $159.01(16)-180.0^\circ$.

The asymmetric unit of **3** contains half an $[Si(NCS)_6]^{2-}$ dianion and one potassium cation that is coordinated by an 18-crown-6 molecule. In addition, there is one acetonitrile molecule completing the coordination sphere of the potassium cation (Figure 5).

The neutral complex *cis*-4 crystallizes in the space group $P2_{1}/c$, with Si-O distances in the range 1.7716(13)-1.7843(13) Å and Si-N distances of 1.8093(17) Å and 1.8145(16) Å. The Si-coordination polyhedron is a slightly distorted octahedron, with N-Si-N, N-Si-O, and O-Si-O angles in the ranges 87.13(6)-94.05(6)° and 177.00(7)-178.69(6)°. The Si-N-C angles amount to 167.43(16)° and 173.01(16)°.

Comparison of the bonding situation in the NCS groups of compound 1 (tetracoordination) and compounds 2, $3\cdot 2CH_3CN$, and *cis*-4 (hexacoordination) reveals significant differences. As can be seen from Table 2, the N-C distances of 1 are longer than those of the hexacoordinate silicon complexes, whereas the C-S distances of 1 are shorter than those of 2, $3\cdot 2CH_3CN$, and *cis*-4.

NMR Studies

Compounds 1, 2, 3·2CH₃CN, and *cis*-4 were characterized by solid-state ²⁹Si NMR spectroscopy (1: single pulse MAS NMR; 2, 3·2CH₃CN, and *cis*-4: VACP/MAS NMR). Compounds 2, 3·2CH₃CN, and *cis*-4 were also studied by solidstate ¹³C VACP/MAS NMR experiments, and *cis*-4 was additionally characterized by ¹⁵N VACP/MAS NMR spectroscopy. All the NMR experiments were performed at 22 °C. The isotropic ²⁹Si chemical shift of the tetracoordinate silicon compound 1 ($\delta = -143.2$) and of the hexacoordinate silicon compounds 2 ($\delta = -256.5$), 3·2CH₃CN ($\delta =$ -253.0), and *cis*-4 ($\delta = -210.2$) indicate that the thiocyanato-*N* ligand causes a significant high-field shift of the ²⁹Si resonance. As shown in Figure 6, all solid-state ²⁹Si NMR spectra are characterized by splitted resonance signals due to ¹J(¹⁴N,²⁹Si) couplings.

Compound	1	2	3·2CH ₃ CN	cis-4	
Empirical formula	C ₄ N ₄ S ₄ Si	C22H40N8S6Si	C ₃₄ H ₅₄ K ₂ N ₈ O ₁₂ S ₆ Si	C ₁₂ H ₁₄ N ₂ O ₄ S ₂ Si	
Formula mass/g mol ⁻¹	260.41	637.07	1065.50	342.46	
Collection T/K	173(2)	173(2)	173(2)	173(2)	
λ(MoKα)/Å	0.71073	0.71073	0.71073	0.71073	
Crystal system	tetragonal	tetragonal	orthorhombic	monoclinic	
Space group (no.)	$I4_1/a$ (88)	$P4_2/m$ (84)	Fdd2 (43)	$P2_1/c$ (14)	
a/Å	15.0280(13)	10.3565(15)	25.814(5)	14.463(2)	
b/Å	15.0280(13)	10.3565(15)	29.830(6)	8.2446(8)	
c/Å	18.634(2)	15.369(3)	13.842(3)	13.785(2)	
βl°	90	90	90	98.205(18)	
V/Å ³	4208.3(7)	1648.5(5)	10659(4)	1626.9(4)	
Ζ	16	2	8	4	
$D(\text{calcd})/\text{g cm}^{-3}$	1.644	1.283	1.328	1.398	
μ/mm^{-1}	0.974	0.478	0.493	0.415	
F(000)	2080	676	4464	712	
Crystal dimensions/mm	0.5 x 0.5 x 0.5	0.5 x 0.4 x 0.3	0.8 x 0.8 x 0.6	0.5 x 0.3 x 0.2	
20 Range/°	5.42-52.76	4.74-49.42	4.18-49.44	5.70 - 54.00	
Index ranges	$-18 \le h \le 18$,	$-12 \le h \le 12$,	$-30 \le h \le 30,$	$-18 \le h \le 18$,	
0	$-18 \le k \le 18$,	$-12 \le k \le 12$,	$-35 \le k \le 35$,	$-10 \le k \le 10,$	
	$-23 \le l \le 23$	$-18 \le l \le 18$	$-16 \le l \le 16$	$-17 \le l \le 17$	
Collected reflections	23370	13766	32792	16747	
Independent reflections	2148	1467	4536	3514	
R _{int}	0.0771	0.0430	0.0513	0.0624	
Reflections used	2148	1467	4536	3514	
Parameters	118	98	286	194	
Restraints	0	0	1	0	
S ^{a)}	1.034	1.013	1.032	1.077	
Weight parameters a/b^{b}	0.0386/2.4795	0.0393/0.1215	0.0375/3.0440	0.0658/0.9351	
$R1^{c}[I \ge 2\sigma(I)]$	0.0284	0.0262	0.0228	0.0455	
$wR2^{d}$ (all data)	0.0779	0.0671	0.0578	0.1259	
Max./min. residual electron density/e $Å^{-3}$	+0.181/-0.266	+0.171/-0.143	+0.142/-0.128	+0.905/-0.717	
Absolute structure parameter			0.01(3)		

Table 1	Crystal data and	l experimental	parameters for the crysta	al structure analyse	es of 1 , 2 , 3 ·2CH ₃ CN, and <i>cis</i> - 4
---------	------------------	----------------	---------------------------	----------------------	--

^{a)} $S = \{\Sigma[w(F_o^2 - F_c^2)^2]/(n - p)\}^{0.5}, n = \text{no. of reflections; } p = \text{no. of parameters.}$ ^{b)} $w^{-1} = \sigma^2(F_o^2) + (aP)^2 + bP$, with $P = [\max(F_o^2, 0) + 2F_c^2]/3$. ^{c)} $R1 = \Sigma ||F_o| - |F_c||\Sigma |F_o|$. ^{d)} $wR2 = \{\Sigma[w(F_o^2 - F_c^2)^2]/\Sigma[w(F_o^2)^2]\}^{0.5}$.

Compound cis-4 was also studied by ¹H, ¹³C, and ²⁹Si NMR experiments in solution (CDCl₃, 22 °C) [9]. The ¹H and ¹³C NMR spectra of a freshly prepared solution are compatible with the cis-structure. The ¹³C and ²⁹Si chemical shifts of cis-4 are very similar to the respective isotropic chemical shifts in the solid-state NMR spectra. Upon dissolution of cis-4 in CDCl₃, a cis/trans isomerization was

observed by ¹H, ¹³C, and ²⁹Si NMR spectroscopy. The kinetics of this process were studied by ¹H NMR spectroscopy. As shown in Figure 7, after a period of 20 hours an equilibrium cis/trans ratio of 1.5:1 was observed. This

Fig. 1 Molecular structure of 1 in the crystal (probability level of displacement ellipsoids 50 %).

Fig. 2 Structure of the dianion in the crystal of 2 (probability level of displacement ellipsoids 50 %).

1		2		3-2CH ₃ CN		cis-4	
Si-N1	1.6831(15)	Si-N1	1.823(2)	Si-N1	1.8369(17)	Si-O1	1.7816(14)
Si-N2	1.6788(14)	Si-N2	1.822(2)	Si-N2	1.8294(17)	Si-O2	1.7716(13)
Si-N3	1.6779(14)	Si-N3	1.832(2)	Si-N3	1.8167(15)	Si-O3	1.7843(13)
Si-N4	1.6745(14)	N1-C1	1.166(3)	N1-C1	1.165(2)	Si-O4	1.7729(13)
N1-C1	1.182(2)	N2-C2	1.167(3)	N2-C2	1.170(2)	Si-N1	1.8093(17)
N2-C2	1.183(2)	N3-C3	1.166(3)	N3-C3	1.162(2)	Si-N2	1.8145(16)
N3-C3	1.185(2)	C1-S1	1.593(3)	C1-S1	1.6057(19)	N1-C1	1.167(3)
N4-C4	1.183(2)	C2-S2	1.600(3)	C2-S2	1.597(2)	N2-C2	1.168(2)
C1-S1	1.5592(17)	C3-S3	1.602(3)	C3-S3	1.594(2)	C1-S1	1.601(2)
C2-S2	1.5573(16)	N1-Si-N1A	180.0	N1-Si-N1A	89.15(10)	C2-S2	1.6022(19)
C3-S3	1.5576(16)	N1-Si-N2	89.41(9)	N1-Si-N2	90.74(7)	O1-Si-O2	93.30(6)
C4-S4	1.5556(16)	N1-Si-N2A	90.59(9)	N1-Si-N2A	179.61(6)	O1-Si-O3	88.82(6)
N1-Si-N2	109.64(7)	N1-Si-N3	90.0	N1-Si-N3	90.40(7)	O1-Si-O4	87.28(6)
N1-Si-N3	108.81(7)	N1-Si-N3A	90.0	N1-Si-N3A	90.05(7)	O2-Si-O3	87.13(6)
N1-Si-N4	109.42(7)	N1A-Si-N2	90.59(9)	N1A-Si-N2	179.61(8)	O2-Si-O4	178.69(6)
N2-Si-N3	109.34(7)	N1A-Si-N2A	89.41(9)	N1A-Si-N2A	90.74(7)	O3-Si-O4	94.05(6)
N2-Si-N4	109.94(7)	N1A-Si-N3	90.0	N1A-Si-N3	90.05(7)	O1-Si-N1	177.54(7)
N3-Si-N4	109.67(7)	N1A-Si-N3A	90.0	N1A-Si-N3A	90.40(7)	O1-Si-N2	89.99(7)
Si-N1-C1	174.74(15)	N2-Si-N2A	180.0	N2-Si-N2A	89.36(11)	O2-Si-N1	88.96(7)
Si-N2-C2	174.54(15)	N2-Si-N3	90.0	N2-Si-N3	89.57(7)	O2-Si-N2	90.18(7)
Si-N3-C3	176.22(14)	N2-Si-N3A	90.0	N2-Si-N3A	89.97(7)	O3-Si-N1	90.34(7)
Si-N4-C4	177.12(15)	N2A-Si-N3	90.0	N2A-Si-N3	89.97(7)	O3-Si-N2	177.00(7)
N1-C1-S1	179.77(18)	N2A-Si-N3A	90.0	N2A-Si-N3A	89.57(7)	O4-Si-N1	90.47(7)
N2-C2-S2	179.15(16)	N3-Si-N3A	180.0	N3-Si-N3A	179.37(12)	O4-Si-N2	88.64(7)
N3-C3-S3	179.17(16)	Si-N1-C1	170.2(2)	Si-N1-C1	171.34(15)	N1-Si-N2	90.97(8)
N4-C4-S4	178.98(16)	Si-N2-C2	173.40(19)	Si-N2-C2	160.34(15)	Si-N1-C1	167.43(16)
		Si-N3-C3	180.0	Si-N3-C3	159.01(16)	Si-N2-C2	173.01(16)
		N1-C1-S1	178.8(2)	N1-C1-S1	179.62(16)	N1-C1-S1	178.34(18)
		N2-C2-S2	178.5(2)	N2-C2-S2	177.58(17)	N2-C2-S2	178.71(17)
		N3-C3-S3	180.0	N3-C3-S3	177.30(17)		

Table 2 Selected interatomic distances/Å and angles/° for 1, 2, 3·2CH₃CN, and *cis*-4

isomerization was also described in ref. [4]; however, some of our NMR data differ significantly from those reported in ref. [4]. One of the most striking differences concerns the ²⁹Si NMR data of the *cis/trans* mixture (this study: *cis*-4: $\delta = -208.7$; *trans*-4: $\delta = -208.2$ (Figure 8); ref. [4]: $\delta =$ -199.3 and -214.0). Furthermore, separated resonance signals for the NCS groups of both isomers (*cis*-4: $\delta =$ 133.0, ¹J(¹³C,¹⁴N) = 26.3 Hz; *trans*-4: $\delta =$ 134.7; ${}^{1}J({}^{13}C, {}^{14}N) = 24.9$ Hz; Figure 9) were observed in the ${}^{13}C$ NMR spectrum of the *cis/trans* mixture (ref. [4]: one signal for both isomers at $\delta = 133.5$).

Computational Studies

Geometry optimizations for 1, $[Si(NCS)_6]^{2-}$, *cis-*4, and *trans-*4 were performed at the RI-MP2 level [10] using a

Fig. 3 Structure of the dianion in the crystal of $3 \cdot 2 CH_3 CN$ (probability level of displacement ellipsoids 50 %).

Fig. 4 Molecular structure of *cis*-**4** in the crystal (probability level of displacement ellipsoids 50 %).

Fig. 5 Interaction of the [K(18-crown-6)] cations with the $[Si(NCS)_6]^{2-}$ dianion and the CH₃CN molecules in the crystal of 3·2CH₃CN.

Fig. 6 Solid-state ²⁹Si MAS NMR spectra of 1 (a), 2 (b), $3\cdot 2CH_3CN$ (c), and *cis*-4 (d) showing the splittings due to the ${}^{1}J({}^{14}N, {}^{29}Si)$ couplings.

Fig. 7 Kinetics of the *cis/trans* isomerization of 4, starting from a solution of *cis*-4 in CDCl₃ (25 mg mL⁻¹). The kinetics were monitored at 22 °C by ¹H NMR spectroscopy, using the methyl resonance signals of *cis*-4 and *trans*-4 as the probe. After a period of 20 h, an equilibrium *cis/trans* ratio of 1.5:1 was observed.

Fig. 8 Partial ¹H,²⁹Si COSY NMR spectrum of a mixture of *cis*-**4** and *trans*-**4** in CDCl₃ at 22 °C, showing the correlating ¹H signals (CH₃ groups) and ²⁹Si signals of *cis*-**4** and *trans*-**4**.

Fig. 9 Partial ¹³C NMR spectrum of a mixture of *cis*-4 and *trans*-4 in CDCl₃ at 22 °C, showing the NCS resonance signals of *cis*-4 (higher field) and *trans*-4 (lower field) as tripletts due to the ${}^{1}J({}^{13}C, {}^{14}N)$ couplings.

TZP basis set [11] and a TZVP auxiliary basis for the fit of the charge density [12]. The calculations were performed starting from $T_{\rm d}$ symmetry (1), $O_{\rm h}$ symmetry $([Si(NCS)]_6^{2-})$, C_2 symmetry (*cis*-4), or C_i symmetry (*trans*-4) using the TURBOMOLE program system [13]. The structures of the respective calculated minima are shown in Figures 10-13, with selected calculated distances and angles in the respective figure captions. As can be seen from Figures 10-12, the calculated and experimentally established structures are in reasonable agreement [14]. The experimental Si-N-C angles vary from 180° (symmetry axis in the case of 2) to $159.01(16)^{\circ}$ (Si-N3-C3 for 3.2CH₃CN). As shown by additional computational studies of the $[Si(NCS)_6]^{2-}$ dianion (geometry optimization for C_S symmetry; Figure 14), this variability of the Si-N-C angle can be explained by intermolecular interactions in the crystal: when all six Si-N-C angles are artificially bent to 160° (the resulting structure does not represent a local minimum), an energy increase of only 8.8 kJ mol⁻¹ arises which

Fig. 10 Calculated structure of 1 (T_d symmetry); selected bond lengths/Å and angles/°:

Si-N 1.698, N-C 1.204, C-S 1.569, N-Si-N 109.5, Si-N-C 180.0, N-C-S 180.0. Calculated ²⁹Si NMR shift for this structure: $\delta = -141$.

Fig. 11 Calculated structure of the $[Si(NCS)_6]^{2-}$ dianion (O_h symmetry); selected bond lengths/Å and angles/°:

Si-N 1.833, N-C 1.187, C-S 1.613, N-Si-N 90.0/180.0, Si-N-C 180.0, N-C-S 180.0. Calculated ²⁹Si NMR shift for this structure: $\delta = -251$.

can be easily compensated by packing effects in the crystal.

The isotropic ²⁹Si chemical shifts determined experimentally for 1, 2, $3 \cdot 2CH_3CN$, *cis*-4, and *trans*-4 were also accurately reproduced by quantum-chemical calculations (see captions of Figures 10–13). These studies were carried out at the HF/TZP level.

The calculated relative energies of the *cis*- and *trans*-isomers of **4** differ only by 1.8 kJ mol^{-1} , the *cis*-isomer being energetically more stable than the *trans*-isomer. The molar equilibrium ratio determined by NMR spectroscopy (*cis*/ *trans* ratio in CDCl₃ at 22 °C ca. 1.5:1) is in good agreement with the calculated energy difference between *cis*-**4** and *trans*-**4**.

Fig. 12 Calculated structure of *cis*-4 (C_2 symmetry); selected bond lengths/Å and angles/°:

Si-O1 1.822, Si-O2 1.802, Si-N 1.800, N-C 1.197, C-S 1.593, O1-Si-O2 91.4, O1-Si-O1A 86.3, O1-Si-O2A 86.4, O1-Si-N 176.3, O1-Si-NA 90.2, O2-Si-O2A 176.9, O2-Si-N 89.6, O2-Si-NA 92.5, N-Si-NA 93.3, Si-N-C 150.7, N-C-S 179.2. Calculated ²⁹Si NMR shift for this structure: $\delta = -199$.

Fig. 13 Calculated structure of *trans*-4 (C_i symmetry); selected bond lengths/Å and angles/°:

Si-O1 1.804, Si-O2 1.801, Si-N 1.815, N-C 1.198, C-S 1.594, O1-Si-O2 93.3, O1-Si-O1A 180.0, O1-Si-O2A 86.7, O1-Si-N 90.3, O1-Si-NA 89.7, O2-Si-O2A 180.0, O2-Si-N 90.4, O2-Si-NA 89.6, N-Si-NA 180.0, Si-N-C 150.0, N-C-S 179.2. Calculated ²⁹Si NMR shift for this structure: $\delta = -201$.

Experimental Section

General Procedures. All syntheses were carried out under dry nitrogen. The organic solvents used were dried and purified according

Fig. 14 Calculated structure of the "bent" $[Si(NCS)_6]^{2-}$ dianion (C_s symmetry); selected bond lengths/Å and angles/°:

Si–N 1.836–1.844, N–C 1.188–1.190, C–S 1.610–1.614, N–Si–N 89.3–90.7/178.6–179.9, Si–N–C 160.0, N–C–S 177.5–177.9. Calculated 29 Si NMR shift for this structure: δ = –246.

to standard procedures and stored under nitrogen. Melting points were determined with a Büchi Melting Point B-540 apparatus using samples in sealed capillaries. The 1H, 13C, and 29Si solution NMR spectra were recorded at 22 °C on a Bruker DRX-300 NMR spectrometer (1H, 300.1 MHz; 13C, 75.5 MHz; 29Si, 59.6 MHz) using CDCl₃ as the solvent. Chemical shifts (ppm) were determined relative to internal CHCl₃ (¹H, $\delta = 7.24$), internal CDCl₃ (¹³C, $\delta =$ 77.00), or external TMS (²⁹Si, $\delta = 0$). Assignment of the ¹³C NMR data was supported by DEPT 135 experiments. Assignment of the ²⁹Si NMR data of *cis*-4 and *trans*-4 was supported by ¹H,²⁹Si COSY experiments. Solid-state 13C, 15N, and 29Si VACP/MAS NMR spectra were recorded at 22 °C on a Bruker DSX-400 NMR spectrometer with bottom layer rotors of ZrO₂ (diameter 7 mm) containing ca. 300 mg of sample (13C, 100.6 MHz; 15N, 40.6 MHz; ²⁹Si, 79.5 MHz; external standard, TMS (¹³C, ²⁹Si; $\delta = 0$) or glycine (¹⁵N, $\delta = -342.0$); spinning rate, 5–7 kHz; contact time, 1–8 ms (^{13}C) , 3 ms (^{15}N) , or 5–8 ms (^{29}Si) ; 90° ¹H transmitter pulse length, 3.6 µs; repetition time, 4 s). Solid-state ²⁹Si single-pulse MAS NMR spectra were recorded at 22 °C on a Bruker DSX-400 NMR spectrometer with bottom layer rotors of ZrO₂ (diameter 7 mm) containing ca. 300 mg of sample (79.5 MHz; external standard, TMS $(\delta = 0)$; spinning rate, 5 kHz; ²⁹Si transmitter pulse length, 4 µs; repetition time, 120 s).

Tetra(*thiocyanato-N*)*silane* (1). The synthesis of 1 was carried out analogously to ref. [3] by reaction of tetrachlorosilane (8.37 g, 49.3 mmol) with ammonium thiocyanate (15.0 g, 197 mmol), using toluene instead of benzene as the solvent. Yield: 8.32 g (65 %) of a colorless crystalline solid. Mp. 145 °C.

C₄N₄S₄Si (260.4 g mol⁻¹) Analyses: C 18.8 (calc. 18.45); N 21.1 (21.51) %. ²⁹Si MAS NMR: δ = -143.2.

Tetraethylammonium Hexa(thiocyanato-N)silicate (2). A mixture of **1** (750 mg, 2.88 mmol), tetraethylammonium chloride (954 mg, 5.76 mmol), potassium thiocyanate (560 mg, 5.76 mmol), and tetra-

hydrofuran (20 mL) was heated under reflux for 3 h. After the mixture was cooled to 20 °C, the precipitate was filtered off and discarded, and the filtrate was concentrated to ca. 5 mL and then kept at -20 °C for 24 h. The resulting precipitate was isolated by filtration, washed with *n*-pentane (10 mL), and dried in vacuo (0.01 mbar, 20 °C, 2 h) to give 1.30 g (yield: 71 %) of a colorless crystalline product. Mp. 76 °C

 $C_{22}H_{40}N_8S_6Si (637.1 \text{ g mol}^{-1})$

Analyses: C 41.6 (calc. 41.48); H 6.3 (6.33); N 17.8 (17.59); S 29.9 (30.20) %.

¹³C VACP/MAS NMR: $\delta = 8.7$ (NCH₂CH₃), 52.5 (NCH₂CH₃), 127.3–131.5 (NCS) [15]. – ²⁹Si VACP/MAS NMR: $\delta = -256.5$.

Potassium-18-crown-6 Hexa(thiocyanato-N)silicate-Diacetonitrile (3). A mixture of 1 (938 mg, 3.60 mmol), potassium thiocyanate (700 mg, 7.20 mmol), 18-crown-6 (1.90 g, 7.19 mmol), and acetonitrile (20 mL) was heated under reflux for 3 h. After the mixture was cooled to 20 °C, the precipitate was filtered off and discarded, and the filtrate was kept at -20 °C for 24 h. The resulting precipitate was isolated by filtration, washed with *n*-pentane (10 mL), and dried in vacuo (0.01 mbar, 20 °C, 2 h) to give 3.08 g (yield 80 %) of a colorless crystalline product. Mp. 232 °C (dec.)

C₃₄H₅₄K₂N₈O₁₂S₆Si (1065.5 g mol⁻¹)

Analyses: C 38.5 (calc. 38.33); H 5.0 (5.11); N 10.4 (10.52); S 17.9 (18.06) %.

¹³C VACP/MAS NMR: δ = 2.1 (CH₃CN), 71.2 (OCH₂C), 117.3 (CH₃CN), 126.7 (NCS), 131.1 (NCS), 132.1 (NCS) [15]. – ²⁹Si VACP/MAS NMR: δ = -253.0.

cis-*Bis[acetylacetonato*-O,O]*di*(*thiocyanato*-*N*)*silicon*(*IV*) (cis-4). Acetylacetone (1.37 g, 13.7 mmol) was added at 20 °C to a stirred solution of 1 (1.79 g, 6.87 mmol) in tetrahydrofuran (20 mL). After the mixture was stirred at 20 °C for 1 h, *n*-pentane (20 mL) was added, and the resulting mixture was kept undisturbed at 20 °C for 2 days. The resulting precipitate was isolated by filtration, washed with *n*-pentane (10 mL), and dried in vacuo (0.01 mbar, 20 °C, 2 h) to give 1.82 g (yield 77 %) of a colorless crystalline product. Mp. 180 °C (dec.)

C₁₂H₁₄N₂O₄S₂Si (342.5)

Analyses: C 42.1 (calc. 42.09); H 4.2 (4.12); N 8.2 (8.18); S 18.4 (18.73) %.

¹H NMR (CDCl₃): δ = 2.10 (s, 6 H, CH₃), 2.24 (s, 6 H, CH₃), 5.86 (s, 2 H, CH). $^{-13}$ C NMR (CDCl₃): δ = 25.7 (CH₃), 25.9 (CH₃), 102.89 (CH), 133.0 (t, $^{1}J(^{13}C^{14}N)$ = 26.3 Hz , NCS), 191.9 (CO), 193.1 (CO). $^{-29}$ Si NMR (CDCl₃): δ = $^{-208.7. - 13}$ C VACP/MAS NMR: δ = 26.3 (CH₃), 27.1 (CH₃), 27.3 (CH₃), 103.2 (CH), 106.0 (CH), 131.4 (NCS), 132.8 (NCS) [15], 193.0 (CO), 194.3 (CO), 194.9 (CO). $^{-15}$ N VACP/MAS NMR: δ = $^{-203.5}$ and $^{-29}$ Si VACP/MAS NMR: δ = $^{-210.2}$ (quint., $^{1}J(^{14}N,^{29}Si)$ = 29.3 and 32.4 Hz).

Solution NMR data of *trans*-4: ¹H NMR (CDCl₃): δ = 2.21 (s, 12 H, CH₃), 5.86 (s, 2 H, CH). – ¹³C NMR (CDCl₃): δ = 25.8 (CH₃), 102.93 (CH), 134.7 (t, ¹J(¹³C, ¹⁴N) = 24.9 Hz, NCS), 192.8 (CO). – ²⁹Si NMR (CDCl₃): δ = -208.2.

Single-Crystal X-Ray Diffraction Studies. A suitable single crystal of 1 was obtained directly from the reaction mixture. Suitable single crystals of 2, $3\cdot 2$ CH₃CN, and *cis*-4 were obtained as follows: 2, crystallization from THF at -20 °C; $3\cdot 2$ CH₃CN, crystallization from acetonitrile (cooling of a saturated solution from 20 °C to

-20 °C); cis-4, crystallization from THF/n-pentane (1:1 (v:v)) at 20 °C. The crystals were mounted in inert oil (perfluoroalkyl ether, ABCR) on a glass fiber and then transferred to the cold nitrogen gas stream of the diffractometer (Stoe IPDS diffractometer; graphite-monochromated MoK_{α} radiation, $\lambda = 0.71073$ Å). The structures were solved by direct methods (1, ref. [16a]; 2, 3.2CH₃CN, and cis-4, ref. [16b]). The non-hydrogen atoms were refined anisotropically [17]. A riding model was employed in the refinement of the CH hydrogen atoms. Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication nos. CCDC-206855 (1), CCDC-206856 (2), CCDC-206857 (3·2CH₃CN), and CCDC-206858 (cis-4). Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: (+44) 1223/ 336033; e-mail: deposit@ccdc.cam.ac.uk).

Computational Studies. RI-MP2 [10] geometry optimizations of 1, $[Si(NCS)_6]^{2-}$, *cis*-4, and *trans*-4 were carried out at the TZP level (with a TZVP auxiliary basis for the fit of the charge density) [11,12] using the TURBOMOLE program system [13]. The calculations were performed starting from the following symmetries: T_{d} (1), O_h ([Si(NCS)₆]²⁻), C_s ("bent" [Si(NCS)₆]²⁻), C_2 (cis-4), and C_i (trans-4). The optimized structures were characterized as minima (the "bent" $[Si(NCS)_6]^{2-}$ dianion is not a minimum because the Si-N-C angles were fixed during the optimization) on the potential energy surfaces by harmonic vibrational frequency analysis. The calculations of the ²⁹Si NMR chemical shifts for the optimized structures of 1, $[Si(NCS)_6]^{2-}$, cis-4, and trans-4 were carried out at the HF/TZP level using the module mpshift implemented in TUR-BOMOLE. Computed absolute shieldings (σ) were converted to relative shifts (δ) using the shielding of TMS (399.4 ppm), computed at the same theoretical level. The reported energy differences include the MP2 and zero-point vibrational energies obtained by HF calculations.

Acknowledgment. We thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support.

References and Notes

- Recent review dealing with penta- and hexacoordinate silicon(IV) complexes with SiO₅ and SiO₆ skeletons: R. Tacke, O. Seiler, in: Silicon Chemistry: From Molecules to Extended Systems, P. Jutzi, U. Schubert (eds.), Wiley-VCH, Weinheim, in press.
- [2] Publications dealing with hexacoordinate silicon(IV) complexes with SiN₆ skeletons: (a) E. Bär, W. P. Fehlhammer, D. K. Breitinger, J. Mink, Inorg. Chim. Acta 1984, 82, L17. (b) W. Heininger, R. Stucka, G. Nagorsen, Z. Naturforsch. 1986, 41b, 702. (c) W. Heininger, K. Polborn, G. Nagorsen, Z. Naturforsch. 1988, 43b, 857. (d) M. Fritz, D. Rieger, E. Bär, G. Beck, J. Fuchs, G. Holzmann, W. P. Fehlhammer, Inorg. Chim Acta 1992, 198–200, 513. (e) A. C. Filippou, P. Portius, G. Schnakenburg, J. Am. Chem. Soc. 2002, 124, 12396.
- [3] Synthesis of 1: R. G. Neville, J. J. McGee, in: *Inorganic Syntheses, Vol. VIII*, H. F. Holtzclaw, Jr. (ed.), McGraw-Hill, New York, 1966, pp. 27–31.
- [4] Alternative synthesis and solution NMR studies of 4: S. P. Narula, R. Shankar, B. Kaur, S. Soni, *Polyhedron* 1991, 10, 2463.

- [5] Recent publications dealing with compounds of higher-coordinate silicon: (a) R. Tacke, M. Penka, F. Popp, I. Richter, *Eur. J. Inorg. Chem.* 2002, 1025. (b) A. Biller, C. Burschka, M. Penka, R. Tacke, *Inorg. Chem.* 2002, 41, 3901. (c) I. Richter, M. Penka, R. Tacke, *Inorg. Chem.* 2002, 41, 3950. (d) I. Richter, M. Penka, R. Tacke, *Inorg. Chem.* 2002, 41, 3950. (d) I. Richter, M. Penka, R. Tacke, *Organometallics* 2002, 21, 3050. (e) O. Seiler, C. Burschka, M. Penka, R. Tacke, *Z. Anorg. Allg. Chem.* 2002, 628, 2427. (f) O. Seiler, C. Burschka, M. Penka, R. Tacke, R. Bertermann, A. Biller, C. Burschka, M. Penka, *Can. J. Chem.*, submitted. (h) R. Bertermann, A. Biller, M. Kaupp, M. Penka, O. Seiler, R. Tacke, *Organometallics*, submitted.
- [6] Selected reviews dealing with compounds of higher-coordinate silicon: (a) S. N. Tandura, M. G. Voronkov, N. V. Alekseev, Top. Curr. Chem. 1986, 131, 99. (b) W. S. Sheldrick, in: The Chemistry of Organic Silicon Compounds, Part 1, S. Patai, Z. Rappoport (eds.), Wiley, Chichester, U.K., 1989, pp. 227-303. (c) A. R. Bassindale, P. G. Taylor, in: The Chemistry of Organic Silicon Compounds, Part 1, S. Patai, Z. Rappoport (eds.), Wiley, Chichester, U.K., 1989, pp. 839-892. (d) R. J. P. Corriu, J. C. Young, in: The Chemistry of Organic Silicon Compounds, Part 2, S. Patai, Z. Rappoport (eds.), Wiley, Chichester, U.K., 1989, pp. 1241-1288. (e) R. R. Holmes, Chem. Rev. 1990, 90, 17. (f) C. Chuit, R. J. P. Corriu, C. Reye, J. C. Young, Chem. Rev. 1993, 93, 1371. (g) R. Tacke, J. Becht, A. Lopez-Mras, J. Sperlich, J. Organomet. Chem. 1993, 446, 1. (h) J. G. Verkade, Coord. Chem. Rev. 1994, 137, 233. (i) R. Tacke, O. Dannappel, in: Tailor-made Silicon-Oxygen Compounds - From Molecules to Materials, R. Corriu, P. Jutzi (eds.), Vieweg, Braunschweig-Wiesbaden, Germany, 1996, pp. 75-86. (j) E. Lukevics, O. A. Pudova, Chem. Heterocycl. Compd. (Engl. Transl.) 1996, 32, 1381. (k) R. R. Holmes, Chem. Rev. 1996, 96, 927. (l) D. Kost, I. Kalikhman, in: The Chemistry of Organic Silicon Compounds, Vol. 2, Part 2, Z. Rappoport, Y. Apeloig (eds.), Wiley, Chichester, U.K., 1998, pp. 1339-1445. (m) V. Pestunovich, S. Kirpichenko, M. Voronkov, in: The Chemistry of Organic Silicon Compounds, Vol. 2, Part 2, Z. Rappoport, Y. Apeloig (eds.), Wiley, Chichester, U.K., 1998, pp. 1447-1537. (n) C. Chuit, R. J. P Corriu, C. Reye, in: Chemistry of Hypervalent Compounds, K. Akiba (ed.), Wiley-VCH, New York, 1999, pp. 81-146. (o) R. Tacke, M. Pülm, B. Wagner, Adv. Organomet. Chem. 1999, 44, 221. (p) M. A. Brook, Silicon in Organic, Organometallic, and Polymer Chemistry, Wiley, New York, 2000, pp. 97-114.
- [7] O. Seiler, N. Buggisch, M. Penka, R. Tacke, XIII International Symposium on Organosilicon Chemistry – 35th Organosilicon Symposium, Guanajuato, Mexico, August 25–30, 2002, Abstracts Book, Abstract P2-45, p. 161.
- [8] The quality of the crystal structure analysis described in this paper is significantly better than that reported in ref. [2b].
- [9] Attempts to obtain solution NMR spectra of 1 and the [Si(NCS)₆]²⁻ dianion of 2 and 3·2CH₃CN were unsuccessful.
- [10] (a) F. Weigend, M. Häser, *Theor. Chem. Acc.* **1997**, *97*, 331.
 (b) F. Weigend, M. Häser, H. Patzelt, R. Ahlrichs, *Chem. Phys. Lett.* **1998**, *294*, 143.
- [11] A. Schäfer, H. Horn, R. Ahlrichs, J. Chem. Phys. 1992, 97, 2571.
- [12] A. Schäfer, C. Huber, R. Ahlrichs, J. Chem. Phys. 1994, 100, 5829.
- [13] Program system TURBOMOLE: R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kölmel, *Chem. Phys. Lett.* **1989**, *162*, 165.
- [14] A perfect agreement between the calculated and experimentally established structures of 1, $[Si(NCS)_6]^{2-}$, and *cis*-4 cannot

be expected since the latter are influenced by intermolecular interactions in the crystal.

- [15] The expected splittings due to the ${}^{1}J({}^{13}C, {}^{14}N)$ coupling of the NCS carbon atoms were only poorly resolved because of the low signal to noise ratio of the respective signals and the large chemical shift anisotropy (CSA) of the NCS carbon atoms.
- [16] (a) A. Altomare, G. Cascarano, G. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori, M. Camalli, SIR97, University of

Bari, Bari, Italy, 1997. A. Altomare, G. Cascarano, G. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori, M. Camalli, *J. Appl. Cryst.* **1994**, *27*, 435. (b) G. M. Sheldrick, SHELXS-97, University of Göttingen, Göttingen, Germany, 1997. G. M. Sheldrick, *Acta Crystallogr., Sect. A* **1990**, *46*, 467.

[17] G. M. Sheldrick, SHELXL-97, University of Göttingen, Göttingen, Germany, 1997.