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Abstract. The hexacoordinate silicon(IV) complexes [NEt4]2-
[Si(NCS)6] (2), [K(18-crown-6)]2[Si(NCS)6]·2CH3CN (3·2CH3CN),
and cis-[(acac)2Si(NCS)2] (cis-4; acac � acetylacetonato-O,O) were
synthesized, starting from Si(NCS)4 (1). Compounds 1, 2,
3·2CH3CN, and cis-4 were structurally characterized in the solid
state (13C, 15N (cis-4 only), and 29Si MAS NMR; crystal structure
analyses) and in solution (1H, 13C, and 29Si NMR; cis-4 only). The
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Inhaltsübersicht. Die hexakoordinierten Silicium(IV)-Komplexe
[NEt4]2[Si(NCS)6] (2), [K(18-Krone-6)]2[Si(NCS)6]·2CH3CN
(3·2CH3CN) und cis-[(acac)2Si(NCS)2] (cis-4; acac � Acetylaceton-
ato-O,O) wurden ausgehend von Si(NCS)4 (1) synthetisiert. Die
Verbindungen 1, 2, 3·2CH3CN und cis-4 wurden im festen Zustand
(13C-, 15N- (nur cis-4) und 29Si-MAS-NMR; Kristallstrukturanaly-

Introduction

Compared to the chemistry of dianionic λ6Si-silicates with
SiO6 skeletons [1], the chemistry of dianionic hexacoordi-
nate silicon(IV) complexes with SiN6 frameworks is signifi-
cantly less explored [2]. Compound 2 represents the first
example of this particular formula type that has been struc-
turally characterized by single-crystal X-ray diffraction [2b].
As the quality of this structure analysis is poor and no
NMR data of the Si(NCS)6

2� dianion have been reported,
compound 2 was resynthesized and studied by single-crystal
X-ray diffraction and solid-state NMR spectroscopy. In ad-
dition, the related potassium-18-crown-6 salt 3 and the neu-
tral silicon(IV) complex cis-4 (SiO4N2 skeleton) were syn-
thesized and structurally characterized. In all cases, the sil-
ane 1 [3] served as the starting material. Compound 4 has
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experimental investigations were complemented by computational
studies (RI-MP2 geometry optimizations of 1, [Si(NCS)6]2�, cis-4,
and trans-4; calculations of the 29Si NMR chemical shifts using the
optimized structures).

Keywords: Coordination chemistry; Hexacoordinate silicon; Sili-
con; Solid-state NMR spectroscopy; Thiocyanato-N ligand

sen) und in Lösung (1H-, 13C- und 29Si-NMR; nur cis-4) strukturell
charakterisiert. Die experimentellen Untersuchungen wurden
durch theoretische Studien ergänzt (RI-MP2-Geometrieoptimie-
rungen von 1, [Si(NCS)6]2�, cis-4 und trans-4; Berechnungen der
29Si-NMR-chemischen Verschiebungen für die geometrieoptimier-
ten Strukturen).

already been synthesized by an alternative method (starting
material: (RO)2Si(NCS)2 (R � Et, n-Pr) [4]), but its stereo-
chemistry has been studied only by solution NMR spec-
troscopy. We report here on the syntheses of compounds 1,
2, 3·2CH3CN, and cis-4 and their structural characteri-
zation in the solid state (single-crystal X-ray diffraction; 13C
(except for 1), 15N (cis-4 only), and 29Si MAS NMR) and
in solution (1H, 13C, and 29Si NMR; cis-4 only). These ex-
perimental studies were complemented by computational
investigations. The studies presented in this paper were car-
ried out as part of our systematic investigations on higher-
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coordinate silicon compounds (for recent publications, see
ref. [5]; for reviews dealing with higher-coordinate silicon
compounds, see refs. [1] and [6]). Preliminary results of the
studies reported here have already been presented else-
where [7].

Results and Discussion

Syntheses

Compounds 1�4 were synthesized according to Scheme 1.
Tetra(thiocyanato-N)silane (1) [3] was obtained by reaction
of tetrachlorosilane with four molar equivalents of am-
monium thiocyanate. Tetraethylammonium hexa(thiocyan-
ato-N)silicate (2) [2b] was synthesized by treatment of 1
with two molar equivalents each of tetraethylammonium
chloride and potassium thiocyanate. The related potassium-
18-crown-6 salt 3 was obtained by reaction of 1 with two
molar equivalents each of potassium thiocyanate and 18-
crown-6 and was isolated as the acetonitrile solvate
3·2CH3CN. The neutral complex cis-bis[acetylacetonato-
O,O]di(thiocyanato-N)silicon(IV) (cis-4) was synthesized by
treatment of 1 with two molar equivalents of acetylacetone.
Compounds 1, 2, 3·2CH3CN, and cis-4 were isolated as
crystalline solids (yield: 1, 65 %; 2, 71 %; 3·2CH3CN, 80 %;
cis-4, 77 %). Their identities were established by elemental
analyses, NMR studies, and crystal structure analyses.

Crystal Structure Analyses

The crystal structures of compounds 1, 2, 3·2CH3CN, and
cis-4 were determined by single-crystal X-ray diffraction.

Scheme 1

 2003 WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim zaac.wiley-vch.de Z. Anorg. Allg. Chem. 2003, 629, 1403�14111404

The crystal data and the experimental parameters used for
these studies are given in Table 1; selected interatomic dis-
tances and angles are listed in Table 2. The structures of
the respective molecules (1, cis-4) and dianions (2,
3·2CH3CN) in the crystal are shown in Figures 1�4.

The silane 1 crystallizes in the space group I41/a, with
Si�N distances in the range 1.6745(14)�1.6831(15) Å. The
Si-coordination polyhedron is an almost ideal tetrahedron,
with N�Si�N angles in the range 108.81(7)�109.94(7)°.
The Si�N�C angles amount to 174.54(15)�177.12(15)°.

Compounds 2 [8] and 3·2CH3CN crystallize in the space
groups P42/m and Fdd2, respectively. The Si-coordination
polyhedra of the [Si(NCS)6]2� dianions are almost ideal oc-
tahedra, with N�Si�N angles in the ranges
89.15(10)�90.74(7)° and 179.37(12)�180.0°. The Si�N dis-
tances amount to 1.8167(15)�1.8369(17) Å; they are signif-
icantly longer than those observed for 1. The Si�N�C
angles are in the range 159.01(16)�180.0°.

The asymmetric unit of 3 contains half an [Si(NCS)6]2�

dianion and one potassium cation that is coordinated by an
18-crown-6 molecule. In addition, there is one acetonitrile
molecule completing the coordination sphere of the potass-
ium cation (Figure 5).

The neutral complex cis-4 crystallizes in the space group
P21/c, with Si�O distances in the range
1.7716(13)�1.7843(13) Å and Si�N distances of
1.8093(17) Å and 1.8145(16) Å. The Si-coordination poly-
hedron is a slightly distorted octahedron, with N�Si�N,
N�Si�O, and O�Si�O angles in the ranges
87.13(6)�94.05(6)° and 177.00(7)�178.69(6)°. The
Si�N�C angles amount to 167.43(16)° and 173.01(16)°.

Comparison of the bonding situation in the NCS groups
of compound 1 (tetracoordination) and compounds 2,
3·2CH3CN, and cis-4 (hexacoordination) reveals significant
differences. As can be seen from Table 2, the N�C distances
of 1 are longer than those of the hexacoordinate silicon
complexes, whereas the C�S distances of 1 are shorter than
those of 2, 3·2CH3CN, and cis-4.

NMR Studies

Compounds 1, 2, 3·2CH3CN, and cis-4 were characterized
by solid-state 29Si NMR spectroscopy (1: single pulse MAS
NMR; 2, 3·2CH3CN, and cis-4: VACP/MAS NMR). Com-
pounds 2, 3·2CH3CN, and cis-4 were also studied by solid-
state 13C VACP/MAS NMR experiments, and cis-4 was ad-
ditionally characterized by 15N VACP/MAS NMR spec-
troscopy. All the NMR experiments were performed at
22 °C. The isotropic 29Si chemical shift of the tetracoordi-
nate silicon compound 1 (δ � �143.2) and of the hexacoor-
dinate silicon compounds 2 (δ � �256.5), 3·2CH3CN (δ �
�253.0), and cis-4 (δ � �210.2) indicate that the thio-
cyanato-N ligand causes a significant high-field shift of the
29Si resonance. As shown in Figure 6, all solid-state 29Si
NMR spectra are characterized by splitted resonance sig-
nals due to 1J(14N,29Si) couplings.
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Table 1 Crystal data and experimental parameters for the crystal structure analyses of 1, 2, 3·2CH3CN, and cis-4

Compound 1 2 3·2CH3CN cis-4

Empirical formula C4N4S4Si C22H40N8S6Si C34H54K2N8O12S6Si C12H14N2O4S2Si
Formula mass/g mol�1 260.41 637.07 1065.50 342.46
Collection T/K 173(2) 173(2) 173(2) 173(2)
λ(MoKα)/Å 0.71073 0.71073 0.71073 0.71073
Crystal system tetragonal tetragonal orthorhombic monoclinic
Space group (no.) I41/a (88) P42/m (84) Fdd2 (43) P21/c (14)
a/Å 15.0280(13) 10.3565(15) 25.814(5) 14.463(2)
b/Å 15.0280(13) 10.3565(15) 29.830(6) 8.2446(8)
c/Å 18.634(2) 15.369(3) 13.842(3) 13.785(2)
β/° 90 90 90 98.205(18)
V/Å3 4208.3(7) 1648.5(5) 10659(4) 1626.9(4)
Z 16 2 8 4
D(calcd)/g cm�3 1.644 1.283 1.328 1.398
µ/mm�1 0.974 0.478 0.493 0.415
F(000) 2080 676 4464 712
Crystal dimensions/mm 0.5 x 0.5 x 0.5 0.5 x 0.4 x 0.3 0.8 x 0.8 x 0.6 0.5 x 0.3 x 0.2
2θ Range/° 5.42�52.76 4.74�49.42 4.18�49.44 5.70�54.00
Index ranges �18 � h � 18, �12 � h � 12, �30 � h � 30, �18 � h � 18,

�18 � k � 18, �12 � k � 12, �35 � k � 35, �10 � k � 10,
�23 � l � 23 �18 � l � 18 �16 � l � 16 �17 � l � 17

Collected reflections 23370 13766 32792 16747
Independent reflections 2148 1467 4536 3514
Rint 0.0771 0.0430 0.0513 0.0624
Reflections used 2148 1467 4536 3514
Parameters 118 98 286 194
Restraints 0 0 1 0
Sa) 1.034 1.013 1.032 1.077
Weight parameters a/bb) 0.0386/2.4795 0.0393/0.1215 0.0375/3.0440 0.0658/0.9351
R1c) [I > 2σ(I)] 0.0284 0.0262 0.0228 0.0455
wR2d) (all data) 0.0779 0.0671 0.0578 0.1259
Max./min. residual electron density/e Å�3 �0.181/�0.266 �0.171/�0.143 �0.142/�0.128 �0.905/�0.717
Absolute structure parameter 0.01(3)

a) S � {Σ[w(Fo
2 � Fc

2)2]/(n � p)}0.5; n � no. of reflections; p � no. of parameters.
b) w�1 � σ2(Fo

2) � (aP)2 � bP, with P � [max(Fo
2,0) � 2Fc

2]/3.
c) R1 � Σ�Fo� � �Fc�/Σ�Fo�.
d) wR2 � {Σ[w(Fo

2 � Fc
2)2]/Σ[w(Fo

2)2]}0.5.

Compound cis-4 was also studied by 1H, 13C, and 29Si
NMR experiments in solution (CDCl3, 22 °C) [9]. The 1H
and 13C NMR spectra of a freshly prepared solution are
compatible with the cis-structure. The 13C and 29Si chemical
shifts of cis-4 are very similar to the respective isotropic
chemical shifts in the solid-state NMR spectra. Upon dis-
solution of cis-4 in CDCl3, a cis/trans isomerization was

Fig. 1 Molecular structure of 1 in the crystal (probability level of
displacement ellipsoids 50 %).
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observed by 1H, 13C, and 29Si NMR spectroscopy. The ki-
netics of this process were studied by 1H NMR spec-
troscopy. As shown in Figure 7, after a period of 20 hours
an equilibrium cis/trans ratio of 1.5:1 was observed. This

Fig. 2 Structure of the dianion in the crystal of 2 (probability
level of displacement ellipsoids 50 %).



O. Seiler, R. Bertermann, N. Buggisch, C. Burschka, M. Penka, D. Tebbe, R. Tacke

Table 2 Selected interatomic distances/Å and angles/° for 1, 2, 3·2CH3CN, and cis-4

1 2 3·2CH3CN cis-4

Si�N1 1.6831(15) Si�N1 1.823(2) Si�N1 1.8369(17) Si�O1 1.7816(14)
Si�N2 1.6788(14) Si�N2 1.822(2) Si�N2 1.8294(17) Si�O2 1.7716(13)
Si�N3 1.6779(14) Si�N3 1.832(2) Si�N3 1.8167(15) Si�O3 1.7843(13)
Si�N4 1.6745(14) N1�C1 1.166(3) N1�C1 1.165(2) Si�O4 1.7729(13)
N1�C1 1.182(2) N2�C2 1.167(3) N2�C2 1.170(2) Si�N1 1.8093(17)
N2�C2 1.183(2) N3�C3 1.166(3) N3�C3 1.162(2) Si�N2 1.8145(16)
N3�C3 1.185(2) C1�S1 1.593(3) C1�S1 1.6057(19) N1�C1 1.167(3)
N4�C4 1.183(2) C2�S2 1.600(3) C2�S2 1.597(2) N2�C2 1.168(2)
C1�S1 1.5592(17) C3�S3 1.602(3) C3�S3 1.594(2) C1�S1 1.601(2)
C2�S2 1.5573(16) N1�Si�N1A 180.0 N1�Si�N1A 89.15(10) C2�S2 1.6022(19)
C3�S3 1.5576(16) N1�Si�N2 89.41(9) N1�Si�N2 90.74(7) O1�Si�O2 93.30(6)
C4�S4 1.5556(16) N1�Si�N2A 90.59(9) N1�Si�N2A 179.61(6) O1�Si�O3 88.82(6)
N1�Si�N2 109.64(7) N1�Si�N3 90.0 N1�Si�N3 90.40(7) O1�Si�O4 87.28(6)
N1�Si�N3 108.81(7) N1�Si�N3A 90.0 N1�Si�N3A 90.05(7) O2�Si�O3 87.13(6)
N1�Si�N4 109.42(7) N1A�Si�N2 90.59(9) N1A�Si�N2 179.61(8) O2�Si�O4 178.69(6)
N2�Si�N3 109.34(7) N1A�Si�N2A 89.41(9) N1A�Si�N2A 90.74(7) O3�Si�O4 94.05(6)
N2�Si�N4 109.94(7) N1A�Si�N3 90.0 N1A�Si�N3 90.05(7) O1�Si�N1 177.54(7)
N3�Si�N4 109.67(7) N1A�Si�N3A 90.0 N1A�Si�N3A 90.40(7) O1�Si�N2 89.99(7)
Si�N1�C1 174.74(15) N2�Si�N2A 180.0 N2�Si�N2A 89.36(11) O2�Si�N1 88.96(7)
Si�N2�C2 174.54(15) N2�Si�N3 90.0 N2�Si�N3 89.57(7) O2�Si�N2 90.18(7)
Si�N3�C3 176.22(14) N2�Si�N3A 90.0 N2�Si�N3A 89.97(7) O3�Si�N1 90.34(7)
Si�N4�C4 177.12(15) N2A�Si�N3 90.0 N2A�Si�N3 89.97(7) O3�Si�N2 177.00(7)
N1�C1�S1 179.77(18) N2A�Si�N3A 90.0 N2A�Si�N3A 89.57(7) O4�Si�N1 90.47(7)
N2�C2�S2 179.15(16) N3�Si�N3A 180.0 N3�Si�N3A 179.37(12) O4�Si�N2 88.64(7)
N3�C3�S3 179.17(16) Si�N1�C1 170.2(2) Si�N1�C1 171.34(15) N1�Si�N2 90.97(8)
N4�C4�S4 178.98(16) Si�N2�C2 173.40(19) Si�N2�C2 160.34(15) Si�N1�C1 167.43(16)

Si�N3�C3 180.0 Si�N3�C3 159.01(16) Si�N2�C2 173.01(16)
N1�C1�S1 178.8(2) N1�C1�S1 179.62(16) N1�C1�S1 178.34(18)
N2�C2�S2 178.5(2) N2�C2�S2 177.58(17) N2�C2�S2 178.71(17)
N3�C3�S3 180.0 N3�C3�S3 177.30(17)

isomerization was also described in ref. [4]; however, some
of our NMR data differ significantly from those reported
in ref. [4]. One of the most striking differences concerns the
29Si NMR data of the cis/trans mixture (this study: cis-4:
δ � �208.7; trans-4: δ � �208.2 (Figure 8); ref. [4]: δ �
�199.3 and �214.0). Furthermore, separated resonance
signals for the NCS groups of both isomers (cis-4: δ �
133.0, 1J(13C,14N) � 26.3 Hz; trans-4: δ � 134.7;

Fig. 3 Structure of the dianion in the crystal of 3·2CH3CN
(probability level of displacement ellipsoids 50 %).
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1J(13C,14N) � 24.9 Hz; Figure 9) were observed in the 13C
NMR spectrum of the cis/trans mixture (ref. [4]: one signal
for both isomers at δ � 133.5).

Computational Studies

Geometry optimizations for 1, [Si(NCS)6]2�, cis-4, and
trans-4 were performed at the RI-MP2 level [10] using a

Fig. 4 Molecular structure of cis-4 in the crystal (probability level
of displacement ellipsoids 50 %).
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Fig. 5 Interaction of the [K(18-crown-6)] cations with the
[Si(NCS)6]2� dianion and the CH3CN molecules in the crystal of
3·2CH3CN.

Fig. 6 Solid-state 29Si MAS NMR spectra of 1 (a), 2 (b),
3·2CH3CN (c), and cis-4 (d) showing the splittings due to the
1J(14N,29Si) couplings.

Fig. 7 Kinetics of the cis/trans isomerization of 4, starting from a
solution of cis-4 in CDCl3 (25 mg mL�1). The kinetics were moni-
tored at 22 °C by 1H NMR spectroscopy, using the methyl reso-
nance signals of cis-4 and trans-4 as the probe. After a period of
20 h, an equilibrium cis/trans ratio of 1.5 : 1 was observed.
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Fig. 8 Partial 1H,29Si COSY NMR spectrum of a mixture of cis-
4 and trans-4 in CDCl3 at 22 °C, showing the correlating 1H signals
(CH3 groups) and 29Si signals of cis-4 and trans-4.

Fig. 9 Partial 13C NMR spectrum of a mixture of cis-4 and trans-
4 in CDCl3 at 22 °C, showing the NCS resonance signals of cis-4
(higher field) and trans-4 (lower field) as tripletts due to the
1J(13C,14N) couplings.

TZP basis set [11] and a TZVP auxiliary basis for the fit of
the charge density [12]. The calculations were performed
starting from Td symmetry (1), Oh symmetry
([Si(NCS)]62�), C2 symmetry (cis-4), or Ci symmetry (trans-
4) using the TURBOMOLE program system [13]. The
structures of the respective calculated minima are shown in
Figures 10�13, with selected calculated distances and
angles in the respective figure captions. As can be seen from
Figures 10�12, the calculated and experimentally estab-
lished structures are in reasonable agreement [14]. The ex-
perimental Si�N�C angles vary from 180° (symmetry axis
in the case of 2) to 159.01(16)° (Si�N3�C3 for
3·2CH3CN). As shown by additional computational studies
of the [Si(NCS)6]2� dianion (geometry optimization for CS

symmetry; Figure 14), this variability of the Si�N�C angle
can be explained by intermolecular interactions in the crys-
tal: when all six Si�N�C angles are artificially bent to 160°
(the resulting structure does not represent a local mini-
mum), an energy increase of only 8.8 kJ mol�1 arises which
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Fig. 10 Calculated structure of 1 (Td symmetry); selected bond
lengths/Å and angles/°:

Si�N 1.698, N�C 1.204, C�S 1.569, N�Si�N 109.5, Si�N�C 180.0,
N�C�S 180.0. Calculated 29Si NMR shift for this structure: δ � �141.

Fig. 11 Calculated structure of the [Si(NCS)6]2� dianion (Oh sym-
metry); selected bond lengths/Å and angles/°:

Si�N 1.833, N�C 1.187, C�S 1.613, N�Si�N 90.0/180.0, Si�N�C 180.0,
N�C�S 180.0. Calculated 29Si NMR shift for this structure: δ � �251.

can be easily compensated by packing effects in the crystal.
The isotropic 29Si chemical shifts determined experimen-

tally for 1, 2, 3·2CH3CN, cis-4, and trans-4 were also accu-
rately reproduced by quantum-chemical calculations (see
captions of Figures 10�13). These studies were carried out
at the HF/TZP level.

The calculated relative energies of the cis- and trans-iso-
mers of 4 differ only by 1.8 kJ mol�1, the cis-isomer being
energetically more stable than the trans-isomer. The molar
equilibrium ratio determined by NMR spectroscopy (cis/
trans ratio in CDCl3 at 22 °C ca. 1.5:1) is in good agreement
with the calculated energy difference between cis-4 and
trans-4.
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Fig. 12 Calculated structure of cis-4 (C2 symmetry); selected bond
lengths/Å and angles/°:
Si�O1 1.822, Si�O2 1.802, Si�N 1.800, N�C 1.197, C�S 1.593,
O1�Si�O2 91.4, O1�Si�O1A 86.3, O1�Si�O2A 86.4, O1�Si�N 176.3,
O1�Si�NA 90.2, O2�Si�O2A 176.9, O2�Si�N 89.6, O2�Si�NA 92.5,
N�Si�NA 93.3, Si�N�C 150.7, N�C�S 179.2. Calculated 29Si NMR shift
for this structure: δ � �199.

Fig. 13 Calculated structure of trans-4 (Ci symmetry); selected
bond lengths/Å and angles/°:
Si�O1 1.804, Si�O2 1.801, Si�N 1.815, N�C 1.198, C�S 1.594,
O1�Si�O2 93.3, O1�Si�O1A 180.0, O1�Si�O2A 86.7, O1�Si�N 90.3,
O1�Si�NA 89.7, O2�Si�O2A 180.0, O2�Si�N 90.4, O2�Si�NA 89.6,
N�Si�NA 180.0, Si�N�C 150.0, N�C�S 179.2. Calculated 29Si NMR
shift for this structure: δ � �201.

Experimental Section

General Procedures. All syntheses were carried out under dry nitro-
gen. The organic solvents used were dried and purified according
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Fig. 14 Calculated structure of the “bent� [Si(NCS)6]2� dianion
(Cs symmetry); selected bond lengths/Å and angles/°:
Si�N 1.836�1.844, N�C 1.188�1.190, C�S 1.610�1.614, N�Si�N
89.3�90.7/178.6�179.9, Si�N�C 160.0, N�C�S 177.5�177.9. Calculated
29Si NMR shift for this structure: δ � �246.

to standard procedures and stored under nitrogen. Melting points
were determined with a Büchi Melting Point B-540 apparatus using
samples in sealed capillaries. The 1H, 13C, and 29Si solution NMR
spectra were recorded at 22 °C on a Bruker DRX-300 NMR spec-
trometer (1H, 300.1 MHz; 13C, 75.5 MHz; 29Si, 59.6 MHz) using
CDCl3 as the solvent. Chemical shifts (ppm) were determined rela-
tive to internal CHCl3 (1H, δ � 7.24), internal CDCl3 (13C, δ �

77.00), or external TMS (29Si, δ � 0). Assignment of the 13C NMR
data was supported by DEPT 135 experiments. Assignment of the
29Si NMR data of cis-4 and trans-4 was supported by 1H,29Si
COSY experiments. Solid-state 13C, 15N, and 29Si VACP/MAS
NMR spectra were recorded at 22 °C on a Bruker DSX-400 NMR
spectrometer with bottom layer rotors of ZrO2 (diameter 7 mm)
containing ca. 300 mg of sample (13C, 100.6 MHz; 15N, 40.6 MHz;
29Si, 79.5 MHz; external standard, TMS (13C, 29Si; δ � 0) or glycine
(15N, δ � �342.0); spinning rate, 5�7 kHz; contact time, 1�8 ms
(13C), 3 ms (15N), or 5�8 ms (29Si); 90° 1H transmitter pulse length,
3.6 µs; repetition time, 4 s). Solid-state 29Si single-pulse MAS NMR
spectra were recorded at 22 °C on a Bruker DSX-400 NMR spec-
trometer with bottom layer rotors of ZrO2 (diameter 7 mm) con-
taining ca. 300 mg of sample (79.5 MHz; external standard, TMS
(δ � 0); spinning rate, 5 kHz; 29Si transmitter pulse length, 4 µs;
repetition time, 120 s).

Tetra(thiocyanato-N)silane (1). The synthesis of 1 was carried out
analogously to ref. [3] by reaction of tetrachlorosilane (8.37 g,
49.3 mmol) with ammonium thiocyanate (15.0 g, 197 mmol), using
toluene instead of benzene as the solvent. Yield: 8.32 g (65 %) of a
colorless crystalline solid. Mp. 145 °C.

C4N4S4Si (260.4 g mol�1)
Analyses: C 18.8 (calc. 18.45); N 21.1 (21.51) %.
29Si MAS NMR: δ � �143.2.

Tetraethylammonium Hexa(thiocyanato-N)silicate (2). A mixture
of 1 (750 mg, 2.88 mmol), tetraethylammonium chloride (954 mg,
5.76 mmol), potassium thiocyanate (560 mg, 5.76 mmol), and tetra-
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hydrofuran (20 mL) was heated under reflux for 3 h. After the mix-
ture was cooled to 20 °C, the precipitate was filtered off and dis-
carded, and the filtrate was concentrated to ca. 5 mL and then kept
at �20 °C for 24 h. The resulting precipitate was isolated by fil-
tration, washed with n-pentane (10 mL), and dried in vacuo
(0.01 mbar, 20 °C, 2 h) to give 1.30 g (yield: 71 %) of a colorless
crystalline product. Mp. 76 °C

C22H40N8S6Si (637.1 g mol�1)
Analyses: C 41.6 (calc. 41.48); H 6.3 (6.33); N 17.8 (17.59); S 29.9
(30.20) %.

13C VACP/MAS NMR: δ � 8.7 (NCH2CH3), 52.5 (NCH2CH3),
127.3�131.5 (NCS) [15]. � 29Si VACP/MAS NMR: δ � �256.5.

Potassium-18-crown-6 Hexa(thiocyanato-N)silicate-Diacetonitrile
(3). A mixture of 1 (938 mg, 3.60 mmol), potassium thiocyanate
(700 mg, 7.20 mmol), 18-crown-6 (1.90 g, 7.19 mmol), and aceto-
nitrile (20 mL) was heated under reflux for 3 h. After the mixture
was cooled to 20 °C, the precipitate was filtered off and discarded,
and the filtrate was kept at �20 °C for 24 h. The resulting precipi-
tate was isolated by filtration, washed with n-pentane (10 mL), and
dried in vacuo (0.01 mbar, 20 °C, 2 h) to give 3.08 g (yield 80 %) of
a colorless crystalline product. Mp. 232 °C (dec.)

C34H54K2N8O12S6Si (1065.5 g mol�1)
Analyses: C 38.5 (calc. 38.33); H 5.0 (5.11); N 10.4 (10.52); S 17.9
(18.06) %.

13C VACP/MAS NMR: δ � 2.1 (CH3CN), 71.2 (OCH2C), 117.3 (CH3CN),
126.7 (NCS), 131.1 (NCS), 132.1 (NCS) [15]. � 29Si VACP/MAS NMR:
δ � �253.0.

cis-Bis[acetylacetonato-O,O]di(thiocyanato-N)silicon(IV) (cis-4).
Acetylacetone (1.37 g, 13.7 mmol) was added at 20 °C to a stirred
solution of 1 (1.79 g, 6.87 mmol) in tetrahydrofuran (20 mL). After
the mixture was stirred at 20 °C for 1 h, n-pentane (20 mL) was
added, and the resulting mixture was kept undisturbed at 20 °C for
2 days. The resulting precipitate was isolated by filtration, washed
with n-pentane (10 mL), and dried in vacuo (0.01 mbar, 20 °C, 2 h)
to give 1.82 g (yield 77 %) of a colorless crystalline product. Mp.
180 °C (dec.)

C12H14N2O4S2Si (342.5)
Analyses: C 42.1 (calc. 42.09); H 4.2 (4.12); N 8.2 (8.18); S 18.4
(18.73) %.

1H NMR (CDCl3): δ � 2.10 (s, 6 H, CH3), 2.24 (s, 6 H, CH3), 5.86 (s, 2 H,
CH). � 13C NMR (CDCl3): δ � 25.7 (CH3), 25.9 (CH3), 102.89 (CH), 133.0
(t, 1J(13C,14N) � 26.3 Hz , NCS), 191.9 (CO), 193.1 (CO). � 29Si NMR
(CDCl3): δ � �208.7. � 13C VACP/MAS NMR: δ � 26.3 (CH3), 27.1 (CH3),
27.3 (CH3), 103.2 (CH), 106.0 (CH), 131.4 (NCS), 132.8 (NCS) [15], 193.0
(CO), 194.3 (CO), 194.9 (CO). � 15N VACP/MAS NMR: δ � �233.5 and
�230.8. � 29Si VACP/MAS NMR: δ � �210.2 (quint., 1J(14N,29Si) � 29.3
and 32.4 Hz ).

Solution NMR data of trans-4: 1H NMR (CDCl3): δ � 2.21 (s, 12 H, CH3),
5.86 (s, 2 H, CH). � 13C NMR (CDCl3): δ � 25.8 (CH3), 102.93 (CH),
134.7 (t, 1J(13C,14N) � 24.9 Hz , NCS), 192.8 (CO). � 29Si NMR (CDCl3):
δ � �208.2.

Single-Crystal X-Ray Diffraction Studies. A suitable single crystal
of 1 was obtained directly from the reaction mixture. Suitable single
crystals of 2, 3·2CH3CN, and cis-4 were obtained as follows: 2,
crystallization from THF at �20 °C; 3·2CH3CN, crystallization
from acetonitrile (cooling of a saturated solution from 20 °C to
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�20 °C); cis-4, crystallization from THF/n-pentane (1:1 (v:v)) at
20 °C. The crystals were mounted in inert oil (perfluoroalkyl ether,
ABCR) on a glass fiber and then transferred to the cold nitrogen
gas stream of the diffractometer (Stoe IPDS diffractometer; graph-
ite-monochromated MoKα radiation, λ � 0.71073 Å). The struc-
tures were solved by direct methods (1, ref. [16a]; 2, 3·2CH3CN,
and cis-4, ref. [16b]). The non-hydrogen atoms were refined aniso-
tropically [17]. A riding model was employed in the refinement of
the CH hydrogen atoms. Crystallographic data (excluding structure
factors) for the structures reported in this paper have been de-
posited with the Cambridge Crystallographic Data Centre as sup-
plementary publication nos. CCDC-206855 (1), CCDC-206856 (2),
CCDC-206857 (3·2CH3CN), and CCDC-206858 (cis-4). Copies of
the data can be obtained free of charge on application to CCDC,
12 Union Road, Cambridge CB2 1EZ, UK (fax: (�44) 1223/
336033; e-mail: deposit@ccdc.cam.ac.uk).

Computational Studies. RI-MP2 [10] geometry optimizations of 1,
[Si(NCS)6]2�, cis-4, and trans-4 were carried out at the TZP level
(with a TZVP auxiliary basis for the fit of the charge density)
[11,12] using the TURBOMOLE program system [13]. The calcu-
lations were performed starting from the following symmetries: Td

(1), Oh ([Si(NCS)6]2�), Cs (“bent” [Si(NCS)6]2�), C2 (cis-4), and Ci

(trans-4). The optimized structures were characterized as minima
(the “bent” [Si(NCS)6]2� dianion is not a minimum because the
Si�N�C angles were fixed during the optimization) on the poten-
tial energy surfaces by harmonic vibrational frequency analysis.
The calculations of the 29Si NMR chemical shifts for the optimized
structures of 1, [Si(NCS)6]2�, cis-4, and trans-4 were carried out at
the HF/TZP level using the module mpshift implemented in TUR-
BOMOLE. Computed absolute shieldings (σ) were converted to
relative shifts (δ) using the shielding of TMS (399.4 ppm), com-
puted at the same theoretical level. The reported energy differences
include the MP2 and zero-point vibrational energies obtained by
HF calculations.
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