

Hydrosilylation of Carbonyl Compounds with Hydrosilyliron Complexes Catalyzed by Cationic Silyleneiron Complexes[⊥]

Takako Muraoka,[†] Yuusaku Shimizu,[†] Hideki Kobayashi,[‡] Keiji Ueno,^{*,†} and Hiroshi Ogino[§]

[†]Department of Chemistry and Chemical Biology, Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu 376-8515, Japan, [‡]Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan, and [§]The Open University of Japan, Wakaba 2-11, Mihama-ku, Chiba 261-8586, Japan

Received May 1, 2010

A hydride abstraction from the hydrosilyliron complexes $Cp(OC)_2FeSiR_2H$ ($Cp = \eta^5-C_5H_5$, R = p-tolyl (1a), Me (1b)) in CD₃CN afforded cationic silyleneiron complexes [$Cp(OC)_2Fe=SiR_2(NCCD_3)$][B(Ar^f)₄] (Ar^f = 3,5-bis(trifluoromethyl)phenyl, R = p-tolyl (2a), Me (2b)). The cationic silylene complexes 2 catalyzed hydrosilylation of aldehydes and ketones with 1 to give the corresponding alkoxysilyliron complexes 3–5 in moderate to high yield.

Introduction

Transition metal silylene complexes¹ have attracted much attention because they have been proposed as an intermediate in dehydrogenative condensation of organosilicon compounds,² redistribution of substituents on organosilicon compounds,³ and conversion of origosilanylmetal complexes to monosilyl derivatives.⁴ Silylene complexes have also been suggested as an intermediate or transition state in catalytic hydrosilylation.⁵ However, there are only a few reports on the application of well-defined silylene complexes

(2) (a) Yamamoto, K.; Okinoshima, H.; Kumada, M. J. Organomet. Chem. 1970, 23, C7. (b) Yamamoto, K.; Okinoshima, H.; Kumada, M. J. Organomet. Chem. 1971, 27, C31. (c) Okinoshima, H.; Yamamoto, K.; Kumada, M. J. Am. Chem. Soc. 1972, 94, 9263. (d) Okinoshima, H.; Yamamoto, K.; Kumada, M. J. Organomet. Chem. 1975, 86, C27. (e) Aitken, C.; Harrod, J. F.; Gill, U. S. Can. J. Chem. 1987, 65, 1804.

(3) (a) Ojima, I.; Inaba, S.; Kogure, T. J. Organomet. Chem. **1973**, 55, C7. (b) Pannell, K. H.; Wang, L.-J.; Rozell, J. M. Organometallics **1989**, 8, 550. (c) Yamashita, H.; Tanaka, M.; Goto, M. Organometallics **1992**, 11, 3227.

as a catalyst for hydrosilylation.⁶ Tilley et al. reported recently that cationic silyleneruthenium and -iridium complexes show catalytic activity for hydrosilylation of alkenes and carbonyl compounds with monosubstituted silanes $RSiH_{3}$.⁶

We previously reported the synthesis of cationic basestabilized silyleneiron complexes $[Cp(OC)_2Fe=Si(p-tolyl)_2-(HMPA)]^+$ and $[Cp(OC)_2Fe=SiMe\{(2-CH_2NMe_2)C_6H_4\}]^+$ $(Cp = \eta^5-C_5H_5, HMPA = P(O)(NMe_2)_3)$ by a hydride abstraction from hydrosilyliron complexes $Cp(OC)_2FeSiH(p-tolyl)_2$ (1a) and $[Cp(OC)_2FeSiHMe\{(2-CH_2NMe_2)C_6H_4\}]$, respectively.⁷ The silylene complex coordinated by CD₃CN $[Cp(OC)_2Fe=Si(p-tolyl)_2(CD_3CN)][B(Ar^f)_4]$ (2a, $Ar^f = 3,5$ -bis-(trifluoromethyl)phenyl) was also obtained by a hydride abstraction from 1a with 1 equiv of Ph₃CB(Ar^f)_4 in CD₃CN. During the course of the study on the reactivity of these silyleneiron complexes, we found that 1a was converted to alkoxysilyliron complexes by treatment with ketones in the presence of a catalytic amount of 2a.

Hydrosilylation catalyzed by transition metal complexes is one of the most powerful tools for synthesis of organosilicon compounds and silicon polymers and has been applied for various combinations of hydrosilanes and unsaturated organic substrates containing C=C, C=C, C=N, and C=O bonds.⁸ However, there are almost no examples of catalytic

 $^{^{\}perp}$ Part of the Dietmar Seyferth Festschrift. This paper is dedicated to Professor Dietmar Seyferth for his dedicated service to Organometallics and to the field of organometallic chemistry.

^{*}To whom correspondence should be addressed. Tel & Fax: +81-277-30-1260. E-mail: ueno@chem-bio.gunma-u.ac.jp.

 ^{(1) (}a) Tilley, T. D. In *The Chemistry of Organosilicon Compounds*;
Patai, S., Rappoport, Z., Eds.; Wiley: New York, 1989; p 1415. (b) Tilley,
T. D. In *The Silicon-Heteroatom Bond*; Patai, S., Rappoport, Z., Eds.; Wiley:
New York, 1991; pp 245 and 309. (c) Ogino, H. *Chem. Rec.* 2002, *2*, 291. (d)
Okazaki, M.; Tobita, H.; Ogino, H. *Dalton Trans.* 2003, 493. (e) Waterman,
R.; Hayes, P. G.; Tilley, T. D. *Acc. Chem. Res.* 2007, 40, 712.
(2) (a) Yamamoto, K.; Okinoshima, H.; Kumada, M. J. Organomet.

^{(4) (}a) Pannell, K. H.; Cervantes, J.; Hernandez, C.; Cassias, J.; Vincenti, S. *Organometallics* **1986**, *5*, 1056. (b) Tobita, H.; Ueno, K.; Ogino, H. *Chem. Lett.* **1986**, 1777. (c) Tobita, H.; Ueno, K.; Ogino, H. *Bull. Chem. Soc. Jpn.* **1988**, *61*, 2797. (d) Pannell, K. H.; Rozell, J. M., Jr.; Hernandez, C. J. Am. Chem. Soc. **1989**, *111*, 4482. (e) Haynes, A.; George, M. W.; Haward, M. T.; Poliakoff, M.; Turner, J. J.; Boag, N. M.; Green, M. J. Am. Chem. Soc. **1991**, *113*, 2011.

Am. Chem. Soc. **1991**, *113*, 2011. (5) (a) Zybill, C. E.; Liu, C. *Synlett* **1995**, 687. (b) Goikhman, R.; Milstein, D. *Chem.—Eur. J.* **2005**, *11*, 2983. (c) Schneider, N.; Finger, M.; Haferkemper, C.; Bellemin-Laponnaz, S.; Hofmann, P.; Gade, L. H. *Chem.— Eur. J.* **2009**, *15*, 11515.

^{(6) (}a) Klei, S. R.; Tilley, T. D.; Bergman, R. G. Organometallics 2002, 21, 4648. (b) Glaser, P. B.; Tilley, T. D. J. Am. Chem. Soc. 2003, 125, 13640. (c) Calimano, E.; Tilley, T. D. J. Am. Chem. Soc. 2008, 130, 9226. (d) Calimano, E.; Tilley, T. D. J. Am. Chem. Soc. 2009, 131, 11161. (e) Brunner, H. Angew. Chem., Int. Ed. 2004, 43, 2749.

^{(7) (}a) Kobayashi, H.; Ueno, K.; Ogino, H. Organometallics **1995**, *14*, 5490. (b) Kobayashi, H.; Ueno, K.; Ogino, H. Chem. Lett. **1999**, 239.

^{(8) (}a) Ojima, I.; Li, Z.; Zhu, J. In *The Chemistry of Organosilicon Compounds*; Rappoport, Z., Apeloig, Y., Eds.; John Wiley & Sons: New York, 1998; p 1687. (b) Brook, M. A. *Silicon in Organic, Organometallic, and Polymer Chemistry*; Wiley: New York, 2000; p 401. (c) Marciniec, B.; Guliński, J. *J. Organomet. Chem.* **1993**, 446, 15. (d) Marciniec, B. *Silicon Chem.* **2002**, *1*, 155. (e) Carpentier, J.-F.; Bette, V. *Curr. Org. Chem.* **2002**, *6*, 913.

and stoichiometric hydrosilylation directed to the functionalization of hydrosilyl fragments in transition metal silyl complexes.⁹

In this paper, we report the details of the hydrosilylation of aldehydes and ketones with hydrosilyliron complexes 1 catalyzed by cationic silyleneiron complexes 2.

Results and Discussion

Dimethylsilyleneiron complex $[Cp(OC)_2Fe=SiMe_2(NCCD_3)]$ -[B(Ar^f)₄] (**2b**) was obtained almost quantitatively by the reaction of Cp(OC)₂FeSiMe₂H (**1b**) and 1 equiv of Ph₃CB(Ar^f)₄ in CD₃CN, in a similar manner to the synthesis of **2a** (eq 1). The ²⁹Si NMR spectrum of **2a** or **2b** afforded a signal assignable to the silylene fragment at 77.1 or 93.7 ppm, respectively. These are in the range of the reported resonances for the basestabilized aryl- and alkyl-substituted silyleneiron complexes (74–160 ppm).^{7,10}

Catalytic hydrosilylation of acetone with 1a was achieved by the following two steps: (i) addition of 0.1 equiv of $Ph_3CB(Ar^{t})_4$ to 1 equiv of 1a in CD₃CN to afford a CD₃CN solution containing 0.9 equiv of 1a, 0.1 equiv of 2a, and 0.1 equiv of Ph₃CH, and (ii) addition of 1.1 equiv of acetone to the reaction mixture (eq 2). The NMR spectrum of the resultant mixture revealed that it comprised Cp(OC)₂FeSi-(p-tolyl)₂(OCHMe₂) (3a) in 90% NMR yield and 0.1 equiv of 2a. No reactions took place between 1a and acetone in the absence of **2a** and between $Ph_3CB(Ar^{f})_4$ and acetone in CD_3CN . Complex **2b** was also relevant to the hydrosilylation of acetone with hydrosilvliron complex 1b to afford Cp-(OC)₂FeSiMe₂(OCHMe₂) (3b) in 71% yield (eq 2). Benzophenone and benzaldehyde were hydrosilylated by 1b in the presence of 0.1 equiv of 2b to provide Cp(OC)₂FeSiMe₂-(OCHPh₂) (4) and Cp(OC)₂FeSiMe₂(OCH₂Ph) (5) in 80% and 83% NMR yields, respectively (eq 3). In contrast, the reaction of 1b with methyl vinyl ketone under similar reaction conditions afforded not the expected alkoxysilyliron complex but O(SiMe₂)₂-bridged dimetallic complex [Cp(OC)₂FeSiMe₂]₂O(6)

in 77% yield with a concomitant formation of unidentified organic compounds (eq 4).

The catalytic hydrosilylation should proceed via activation of the C=O bond as a crucial process. It is well known that the silvlene fragment in transition metal silvlene complexes is electron deficient due to the low orbital overlapping between the empty p orbital on Si and the filled $d\pi$ orbital on the metal.^{1a} Actually, silylene complexes **2** are stabilized by the coordination of a Lewis base CD₃CN on the silylene fragment. Ketones and aldehydes could also coordinate to the electron-deficient Si to give the corresponding silylene complexes $[Cp(OC)_2Fe=SiR_2(O=CR^1R^2)]^+$ (A), which consequently activates the carbonyl compounds. A similar activation process via coordination of carbonyl compounds to a cationic silyl fragment (silylium ion) was previously proposed as a key step in the $B(C_6F_5)_3$ -catalyzed hydrosilylation.¹¹ The silvlene complexes A were not observed by NMR; however, formation of such complexes is strongly supported by the fact that addition of 1 equiv of PPh₃ to a mixture of silylene

^{(9) (}a) Pannell., K. H.; Rozell, J. M.; Lii, J.; Tien-Mayr, S.-Y. Organometallics 1988, 7, 2524. (b) Tanabe, M.; Osakada, K. Organometallics 2001, 20, 2118.

^{(10) (}a) Zybill., C.; Wilkinson, D. L.; Leis, C.; Muller, G. Angew. Chem., Int. Ed. Engl. **1989**, 28, 203. (b) Tobita, H.; Ueno, K.; Shimoi, M.; Ogino, H. J. Am. Chem. Soc. **1990**, 112, 3415. (c) Leis, C.; Wilkinson, D. L.; Handwerker, H.; Zybill, C.; Muller, G. Organometallics **1992**, 11, 514. (d) Corriu, R. J. P.; Chauhan, B. P. S.; Lanneau, G. F. Organometallics **1995**, 14, 1646. (e) Chauhan, B. P. S.; Corriu, R. J. P.; Lanneau, G. F.; Priou, C.; Auner, N.; Handwerker, H.; Herdtweck, E. Organometallics **1995**, 14, 1657. (f) Ueno, K.; Nakano, K.; Ogino, H. Chem. Lett. **1996**, 459. (g) Tobita, H.; Kurita, H.; Ogino, H. J. Organomet. Chem. **2000**, 611, 314. (i) Sato, T.; Okazaki, M.; Tobita, H. Chem. Lett. **2004**, 868.

 ^{(11) (}a) Parks, D. J.; Piers, W. E. J. Am. Chem. Soc. 1996, 118, 9440.
(b) Parks, D. J.; Blackwell, J. M.; Piers, W. E. J. Org. Chem. 2000, 65, 3090.

complexes 2 and acetone immediately afforded PPh₃-incorporated complexes $[Cp(OC)_2FeSiR_2\{OC(PPh_3)Me_2\}]^+$ (R = *p*-tolyl (7a), Me (7b)) in high yield (eq 5). In the ¹³C{¹H} NMR spectrum of 7a or 7b, a doublet signal assignable to the PPh₃-introduced carbon was observed at 82.9 (${}^{1}J_{PC} = 64.8$ Hz) or 82.1 (${}^{1}J_{PC} = 66.2$ Hz) ppm, respectively. These chemical shifts and coupling constants are comparable to those observed for [RCH(OSiMe_3)PPh_3]⁺ (R = H, Et, Ph, and 4-MeC₆H₄, 58–74 ppm, ${}^{1}J_{PC} = 62-70$ Hz). ¹² The ${}^{29}Si\{{}^{1}H\}$ NMR spectrum of 7a or 7b also showed a doublet signal at 61.1 (${}^{3}J_{PSi} = 10.8$) or 76.5 (${}^{3}J_{PSi} = 7.3$) ppm, respectively.

The formation of complex **7** shows the strong electrophilic character of the carbonyl carbon atom in **A**. The electrophilicity of the carbonyl carbon is very important to drive the catalytic cycle since no reaction occurred in the hydrosilylation for ethyl and methyl acetate with **1b** in the presence of **2b**. Thus, it is certain that complex **A** abstracts a hydride from **1** to give the corresponding alkoxysilyliron complexes and cationic silylene complexes **2**.

On the basis of these results, a plausible reaction mechanism for the silyleneiron complex-catalyzed hydrosilylation of carbonyl compounds is shown in Scheme 1. In the first step, CD₃CNcoordinated silyleneiron complex **2** was formed by hydride abstraction from hydrosilyliron complex **1** with Ph₃CB(Ar^f)₄. A displacement of CD₃CN with ketone or aldehyde in complex **2** resulted in the formation of intermediate **A**. A hydride

abstraction from 1 by complex A affords hydrosilylation products 3-5 and regenerates silyleneiron complex 2.

Complex 6, obtained by the reaction with methyl vinyl ketone (eq 4), would be provided via the following catalytic mechanism: (i) formation of cationic disilyloxoniumdiiron complex $[{Cp(OC)_2FeSiMe_2}_2{\mu-OCH(CH_3)CH=CH_2}]^+$ (Chart 1, B) from silvleneiron complex 2b and transiently produced alkoxysilyl complex Cp(OC)₂FeSiMe₂(OCH- $(CH_3)CH=CH_2$, (ii) immediate decomposition of **B** to complex 6 and allylic cation (CH_2 =CHCHCH₃⁺), and (iii) hydride abstraction by the allylic cation from complex 1b to regenerate silvleneiron complex 2b.¹³ The allylic cation would be converted to butene; however, it and related species were not detected in ¹H NMR or mass spectra. The formation of a cationic disilyloxoniumdiiron intermediate such as **B** is further indicated by the fact that the alkoxyl group transfer reaction takes place from the alkoxysilyliron complex to the cationic silvleneiron complex, i.e., addition of 3a to $[(\eta^{5}-\text{MeC}_{5}\text{H}_{4})\text{Fe}(\text{CO})_{2}=\text{Si}(p-\text{tolyl})_{2}(\text{NCCD}_{3})][\text{B}(\text{Ar}^{f})_{4}] \quad (2a')$ in CD₃CN instantaneously gave a mixture of four silylene/ silvl iron complexes: **3a**, **2a**', **2a**, and $(\eta^5 - \text{MeC}_5H_4)\text{Fe}(\text{CO})_2\text{Si}$ -(*p*-tolyl)₂(OCHMe₂) (**3a**') (eq 6).¹⁴

Experimental Section

General Procedures. All manipulations were performed using either standard Schlenk tube techniques under nitrogen, vacuum line techniques, or a drybox under nitrogen. Cp(OC)₂FeSiR₂H (R = *p*-tolyl (1a),¹⁵ Me (1b)¹⁶), Cp(OC)₂FeSiMe₂Cl,¹⁶ and Ph₃CB(Ar^f)₄ (Ar^f = 3,5-bis(trifluoromethyl)phenyl)¹⁷ were prepared according to the published procedures. Acetone was dried over Drierite followed by distillation under a nitrogen atmosphere before use. Benzaldehyde, ethyl acetate, and methyl acetate were

⁽¹²⁾ Anders, E.; Hertlein, K.; Stankowiak, A.; Irmer, E. Synthesis 1992, 577.

⁽¹³⁾ Related hydride abstraction was reported from hydrosilane by carbocation: Kira, M.; Hino, T.; Sakurai, H. *Chem. Lett.* **1992**, 555.

⁽¹⁴⁾ A similar thioalkoxyl exchange reaction was reported between the thioalkoxysilylruthenium complex and a cationic silyleneruthenium complex via the cationic disilylthiooxonium complex: Grumbine, S. K.; Tilley, T. D. J. Am. Chem. Soc. **1994**, *116*, 6951.

⁽¹⁵⁾ Shiozawa, R.; Tobita, H.; Ogino, H. Organometallics 1998, 17, 3497.

⁽¹⁶⁾ King, R. B.; Pannell, K. H.; Bennett, C. R.; Ishaq, M. J. Organomet. Chem. 1969, 19, 327.

^{(17) (}a) Bahr, S. R.; Boudjouk, P. J. Org. Chem. **1992**, 57, 5545. (b) Straus, D. A.; Zhang, C.; Tilley, T. D. J. Organomet. Chem. **1989**, 369, C13.

dried over calcium hydride followed by distillation under a nitrogen atmosphere before use. Methyl vinyl ketone was dried over calcium chloride followed by distillation under a nitrogen atmosphere before use. Benzophenone was recrystallized from dry hexane before use. Toluene, Et_2O , and THF were dried by refluxing over sodium benzophenone ketyl followed by distillation under a nitrogen atmosphere before use. CH_3CN and CD_3CN were dried over calcium hydride followed by distillation under a nitrogen atmosphere before use. C_6D_6 was dried over potassium mirror followed by distillation in vacuo before use.

NMR spectra were recorded on a JEOL JNM-AL300 or a JEOL JNM-AL500 Fourier transform spectrometer at room temperature. IR spectra were recorded on a JASCO FT/IR-600 Plus spectrometer at room temperature. Elemental analyses were performed by the Center for Material Research by Instrumental Analysis, Gunma University.

General Procedure for Catalytic Hydrosilylation of Carbonyl Compounds with Hydrosilyliron Complex 1. A CD₃CN solution of Ph₃CB(Ar^f)₄ (4 mg, 4×10^{-6} mol) was added to a CD₃CN solution (total 0.5 mL) of Cp(OC)₂FeSiHMe₂ (1b) (9 mg, 4×10^{-5} mol) in a NMR sample tube with a Teflon vacuum valve. To this mixture was added acetone (5 μ L, 7 × 10⁻⁵ mol), and the resultant mixture was kept for 0.5 h. Cp(OC)₂FeSiMe₂-(OCHMe₂) (3b) was obtained in 71% yield with a trace amount of 2b determined by ¹H NMR spectrum. Characterization of 3–6 was achieved by isolation of the silyliron complexes from the reaction mixture or comparing these spectroscopic data with those of the authentic samples prepared by the reaction of Cp(OC)₂FeSiMe₂Cl¹⁶ with the corresponding metal alkoxide.

Preparation of $Cp(OC)_2FeSiR_2(OCHR'_2)$ (R = *p*-tolyl, R' = Me (3a), $\mathbf{R} = \mathbf{Me}, \mathbf{R}' = \mathbf{Ph}(4)$). To a solution of $Cp(OC)_2FeSi(p-tolyl)_2H$ (1a) (155 mg, 4.00×10^{-4} mol) in CH₃CN (4 mL) in a 50 mL roundbottomed flask was added a CH₃CN solution (5 mL) of Ph₃CB(Ar^f)₄ (44 mg, 4.0×10^{-5} mol) with vigorous stirring. To the resultant mixture was added acetone (60.0 μ L, 8.17 $\times 10^{-4}$ mol), and the mixture was stirred for several hours at 25 °C. After removal of volatiles from the reaction mixture in vacuo, the residue was purified by column chromatography (silica gel, eluent; toluene:hexane, 1:3), and the yellow band ($R_f = 0.32$) was collected. Volatiles were removed from the yellow solution to afford Cp(OC)₂FeSi(p-tolyl)₂- $(OCHMe_2)$ (3a) (69%, 109 mg, 2.44×10^{-4} mol) as yellow solids. ¹H NMR (300 MHz, CD₃CN): δ /ppm 7.51 (d, ${}^{3}J_{HH} = 7.6$ Hz, 4H, C₆H₄)₃ 7.20 (d, ${}^{3}J_{HH} = 7.6$ Hz, 4H, C₆H₄), 4.68 (s, 5H, Cp), 3.97 (sept, ${}^{3}J_{HH} = 6.0$ Hz, 1H, OCH), 2.34 (s, 6H, C₆H₄CH₃), 1.04 (d, ${}^{3}J_{HH} = 6.0$ Hz, 6H, CMe₂). ${}^{13}C{}^{1}H{}$ NMR (75.5 MHz, C₆D₆): δ/ppm 215.9 (CO), 140.5 (C₆H₄), 138.4 (C₆H₄), 134.8 (C₆H₄), 128.7 (C₆H₄), 84.5 (Cp), 65.3 (OCH), 25.7 (CMe₂), 21.4 (C₆H₄CH₃). ${}^{29}Si{}^{1}H$ NMR (59.6 MHz, CD₃CN): δ /ppm 51.6. IR (KBr): ν_{CO} 1990 (vs), 1925 (vs) cm⁻¹. Anal. Calcd for C₂₄H₂₆FeO₃Si: C, 64.58; H, 5.87. Found: C, 64.51; H, 5.75. In a similar manner, $Cp(OC)_2$ -FeSiMe₂(OCHPh₂) (4) was prepared using 1b (187 mg, 7.92 × 10⁻⁴) mol), Ph₃CB(Ar^f)₄ (86 mg, 7.8×10^{-5} mol), benzophenone (166 mg, 9.11×10^{-4} mol), and CH₃CN (14 mL); yield 24% (73 mg, 1.7 × 10^{-4} mol), yellow crystals. ¹H NMR (300 MHz, CD₃CN): δ /ppm 7.44 (d, ${}^{3}J_{HH} = 7.4$ Hz, 4H, o-Ph), 7.29 (dd, ${}^{3}J_{HH} = 7.4$ and 7.4 Hz, 4H, *m*-Ph), 7.20 (t, ${}^{3}J_{HH} = 7.4$ Hz, 2H, *p*-Ph), 5.88 (s, 1H, OCH), 4.72 (s, 5H, Cp), 0.43 (s, 6H, SiMe₂). ${}^{13}C{}^{1}H$ NMR (125.7 MHz, C₆D₆): δ/ppm 215.8 (CO), 146.0 (ipso-Ph), 128.5 (m-Ph), 127.2 (p-Ph), 126.7 (o-Ph), 83.7 (Cp), 77.3 (OCH), 8.7 (SiMe₂). ²⁹Si{¹H} NMR (99.3 MHz, C₆D₆): δ/ppm 69.6. IR (KBr) ν_{CO} 1983 (vs), 1925 (vs); v_{SiO} 1061 (m) cm⁻¹. Anal. Calcd for C₂₂H₂₂FeO₃Si: C, 63.16; H, 5.30. Found: C, 63.18; H, 5.34.

Preparation of Cp(OC)₂**FeSiMe**₂(**OCHRR**') (**R** = **R**' = **Me** (**3b**), **R** = **H**, **R**' = **Ph**(**5**)). To a solution of sodium isopropoxide (2.3 × 10⁻³ mol) in 2-propanol (30 mL) in a 100 mL roundbottomed flask was added a Et₂O solution of Cp-(OC)₂FeSiMe₂Cl¹⁶ (610 mg, 2.25 × 10⁻³ mol) with vigorous stirring. The resultant mixture was stirred for 3 h at 25 °C. After removal of volatiles from the reaction mixture in vacuo, the residue was extracted with hexane (30 mL). The extract was filtrated through a glass filter. The filtrate was concentrated in vacuo, and the residue was purified by bulb-to-bulb distillation (120 °C/0.7 mmHg) to give $Cp(OC)_2FeSiMe_2(OCHMe_2)$ (3b) (40%, 263 mg, 8.94×10^{-4} mol) as an orange liquid. ¹H NMR $(300 \text{ MHz}, \text{CD}_3\text{CN}): \delta/\text{ppm } 4.84 \text{ (s, 5H, Cp)}, 4.07 \text{ (sept, } ^3J_{\text{HH}} =$ 6.2 Hz, 1H, OCH), 1.11 (d, ${}^{3}J_{HH} = 6.2$ Hz, 6H, CMe₂), 0.48 (s, 6H, SiMe₂). ¹³C{¹H} NMR (125.7 MHz, C₆D₆): δ /ppm 215.9 (CO), 83.6 (Cp), 65.3 (OCH), 26.0 (CMe₂), 9.0 (SiMe₂). ²⁹Si{¹H} NMR (99.3 MHz, C₆D₆): δ /ppm 63.3. IR (KBr): ν_{CO} 1993 (vs), 1935 (vs); ν_{SiO} 1017 (m) cm⁻¹. Anal. Calcd for C₁₂H₁₈FeO₃Si: C, 48.99; H, 6.17. Found: C, 49.47; H, 6.40. As a similar manner, $Cp(OC)_2FeSiMe_2-(OCH_2Ph)$ (5) was prepared using $Cp(OC)_2FeSiMe_2Cl^{16}$ (500 mg, 1.85×10^{-3} mol), sodium benzyloxide (1.8×10^{-3} mol), and THF (10 mL); yield 19% (120 mg, 3.51×10^{-4} mol), 150 °C/0.7 mmHg, an orange liquid. ¹H NMR (300 MHz, CD₃CN): δ /ppm 7.20 (m, 5H, Ph), 4.85 (s, 5H, Cp), 4.71 (s, 2H, OCH₂), 0.53 (s, 6H, SiMe₂). ¹³C{¹H} NMR (125.7 MHz, C₆D₆): δ /ppm 215.7 (CO), 142.1 (*ipso-*Ph), 128.5 (*m*-Ph), 127.1 (*p*-Ph), 126.6 (*o*-Ph), 83.6 (Cp), 65.1 (OCH₂), 8.3 (SiMe₂). 29 Si{¹H} NMR (99.3 MHz, C₆D₆): δ /ppm 69.2. IR (KBr): ν_{CO} 1991 (vs), 1932 (vs); ν_{SiO} 1065 (m) cm⁻¹. Anal. Calcd for C₁₆H₁₈FeO₃Si: C, 56.15; H, 5.30. Found: C, 56.60; H, 5.38.

Preparation of [Cp(OC)₂FeSiMe₂]₂O (6). To a solution of **1b** (184 mg, 7.79 × 10⁻⁴ mol) in CH₃CN (5 mL) in a 50 mL roundbottomed flask was added a CH₃CN solution (10 mL) of Ph₃CB(Ar^f)₄ (82 mg, 7.4 × 10⁻⁵ mol) with vigorous stirring. To the resultant mixture was added a CH₃CN solution (5 mL) of benzaldehyde (100 µL, 9.8 × 10⁻⁴ mol), and then the solution was stirred for 2 h at 25 °C. After removal of volatiles from the reaction mixture in vacuo, the residue was extracted with hexane (2 mL × 5). The extract containing Cp(OC)₂FeSiMe₂(OCH₂Ph) (**5**) as a main product was hydrolyzed to afford [Cp(OC)₂Fe-SiMe₂]₂O (**6**) (21%, 40 mg, 8.2 × 10⁻⁵ mol) as yellow crystals. ¹H NMR (300 MHz, CD₃CN): δ/ppm 4.82 (s, 10H, Cp), 0.52 (s, 12H, SiMe₂). ¹³C{¹H} NMR (125.7 MHz, C₆D₆): δ/ppm 216.0 (CO), 83.6 (Cp), 11.3 (SiMe₂). ²⁹Si{¹H} NMR (99.3 MHz, C₆D₆): δ/ppm 54.7. IR (KBr): ν_{CO} 1985 (vs), 1917 (vs); ν_{SiO} 1045 (m) cm⁻¹. Anal. Calcd for C₁₈H₂₂Fe₂O₅Si₂: C, 44.46; H, 4.56. Found: C, 44.70; H, 4.61.

Observation of $[Cp(OC)_2FeSiR_2{OC(PPh_3)Me_2}]^+$ (R = p-tolyl (7a), $\mathbf{R} = \mathbf{Me}$ (7b)). To a CD₃CN solution of [Cp(OC)₂Fe=Si- $(p-tolyl)_2(NCCD_3)$ [B(Ar¹)₄] (2a) (25 mg, 2.0 × 10⁻⁵ mol) was added a CD₃CN solution (total 0.5 mL) of 1 equiv of acetone and PPh₃ in a NMR sample tube with a Teflon vacuum valve. The formation of 7a was identified by NMR. ¹H NMR (300 MHz, CD₃CN): δ /ppm 7.78-7.14 (m, 15H, PPh₃), 7.32-7.14 (m, 4H, C₆H₄Me), 4.50 (s, 5H, Cp), 2.33 (s, 6H, C_6H_4Me), 1.67 (d, ${}^3J_{PH} = 17.4$ Hz, 6H, CMe₂). ¹³C{¹H} NMR (75.5 MHz, CD₃CN): δ/ppm 216.8 (CO), 140.2, 139.9 (p-, ipso-C₆H₄Me), 136.2 (p-PPh₃), 136.1, 135.3 (o-, m- C_6H_4Me), 131.1 (d, ${}^{3}J_{PC} = 11.8$ Hz, *m*-PPh₃), 129.4 (d, ${}^{2}J_{PC} = 12.2$ Hz, *o*-PPh₃), 118.1 (d, ${}^{1}J_{PC} = 78.0$ Hz, *ipso*-PPh₃), 86.6 (Cp), 82.9 (d, ${}^{I}J_{PC} = 64.8 \text{ Hz}, \text{ OC}(PPh_3)Me_2), 28.4 (d, {}^{2}J_{PC} = 6.6 \text{ Hz}, \text{ OC}(PPh_3)Me_2), 21.4 (C_6H_4Me). {}^{31}P\{{}^{1}H\} \text{ NMR (121 MHz, CD_3CN):} \delta/\text{ppm 34.1. }^{29}Si\{{}^{1}H\} \text{ NMR (59.6 MHz, CD_3CN): }\delta/\text{ppm 61.1 (d, C_6H_4Me)}$ ${}^{3}J_{PSi} = 10.8$ Hz). In a similar manner, **7b** was identified by NMR. ¹H NMR (300 MHz, CD₃CN): δ/ppm 8.0-7.0 (m, 15H, PPh₃), 4.65 (s, 5H, Cp), 1.79 (d, ${}^{3}J_{PH} = 17.1$ Hz, 6H, CMe₂), 0.59 (S, 6H, SiMe₂). ¹³C{¹H} NMR (125.7 MHz, CD₃CN): δ/ppm 216.1 (CO), 136–115 (PPh₃), 85.1 (Cp), 82.1 (d, ${}^{J}_{PC} = 66.2$ Hz, OC(PPh₃)Me₂), 28.6 (d, ${}^{2}_{J_{PC}} = 6.2$ Hz, OC(PPh₃)Me₂), 12.3 (SiMe₂). ${}^{31}P{}^{1}H$ NMR (202.5 MHz, CD₃CN): ${}^{\delta}/ppm$ 30.0. ${}^{29}Si{}^{1}H$ NMR (99.3 MHz, CD₃CN): δ /ppm 76.5 (d, ${}^{3}J_{PSi} = 7.3$ Hz).

Acknowledgment. This work was supported by a Grantin-Aid for Scientific Research on Priority Areas (No. 20036011) and for Scientific Research (Nos. 21750056 and 20655011) from the Ministry of Education, Culture, Sports, Science and Technology of Japan. K.U. expresses his sincere thanks to Professor Dietmar Seyferth for continuing encouragement and support.