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Abstract: Unit A of cryptophycins is a d-hydroxy acid with two or
four stereogenic centers. The first synthesis of the unit A building
block of cryptophycin-39 is based on a catalytic asymmetric Shi ep-
oxidation of trans-styryl acetic acid followed by an in situ lacton-
ization. The scope of this reaction has been investigated with
respect to various b,g-unsaturated carboxylic acids as substrates for
the asymmetric synthesis of 4-hydroxy-5-phenyl-tetrahydrofuran-
2-ones under Shi conditions.

Key words: asymmetric synthesis, bioorganic chemistry, epoxida-
tions, lactones, natural products

Cryptophycins are a group of 16-membered macrocyclic
depsipeptides which have been isolated from cyanobac-
teria of the genus Nostoc and from the marine sponge
Dysidea arenaria.1 This family of natural products with
its main member cryptophycin-1 (1) is attracting much at-
tention due to their superb cytotoxicity and antitumor ac-
tivity even against multidrug-resistant tumor cell lines. It
often exceeds the activity of vinblastine and paclitaxel.2

Numerous cryptophycin analogues have been synthesized
and their biological activity has been evaluated.1f,2a

Figure 1 Structures of cryptophycin-1 (1) and cryptophycin-39 (2)

Retrosynthetically, cryptophycins can be divided into the
respective hydroxy and amino acid building blocks, that
is, units A–D (Figure 1). From a synthetic point of view
cryptophycin-39 (2) is one of the most interesting crypto-
phycin analogues. It contains a cis-epoxide in its unit A
and was obtained by Chaganty et al. through a semisyn-
thetic approach. Opening of the epoxide in cryptophycin-
1 (1) under acidic conditions gives the corresponding
chlorohydrin.3 The chloro-substituted stereogenic center
in the benzylic position was then partly epimerized by the
addition of excess lithium chloride. After HPLC separa-
tion of the diastereomers the epimeric chlorohydrin was
converted back to an epoxide function under basic condi-
tions yielding cryptophycin-39 (2) on a single-digit milli-
gram scale. It showed moderate bioactivity (IC50 72 nM)
against the human upper throat tumor cell line KB.3

Several recent papers address the synthesis of cryptophy-
cin-1 unit A precursors containing four stereogenic cen-
ters. In many cases the configuration of the future syn-
epoxide is established by conversion of a syn-diol under
retention of the configuration.4 Following this strategy, a
six- or seven-step synthesis of a cryptophycin-1 unit A
building block was recently published.5

However, it had not been known so far, whether the unit
A building block of cryptophycin-39 could be obtained
following a similar route. Our retrosynthetic analysis sug-
gested to start from (4R,5S)-4-hydroxy-5-phenyl-tetrahy-
drofuran-2-one (5) as a key intermediate in the synthesis
(Scheme 1).

An asymmetric three-step synthetic approach to ent-5 had
been published by Kino et al.6 The first step was based on
the enantioselective epoxidation of trans-ethyl-3-
benzoylacrylate with cumene hydroperoxide and a cata-
lyst derived from lanthanum isopropoxide, tris(4-fluoro-
phenyl)phosphine oxide and BINOL. This was followed
by a diastereoselective reduction of the ketone with
Zn(BH4)2, reductive opening, and in situ lactonization
with diphenyl diselenide and NaBH4.

In addition, Burrows and Van Horn published a one-step
synthesis of rac-5 from commercially available trans-
styryl acetic acid (4) by oxidation with Oxone (potassium
monopersulfate triple salt) and in situ lactonization in
aqueous acetonitrile solution in very good yield.7

Those reaction conditions employed are similar to the
ones used in the Shi epoxidation of olefines, a method
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developed by Shi et al. mediated by the D-fructose-de-
rived ketone catalyst 3.8 This epoxidation method was
also used by Hoard et al. on a late stage to synthesize a
cryptophycin derivative.9 Reports of unsaturated carbox-
ylic acids as starting materials for such an asymmetric in
situ lactonization are very rare. To the best of our knowl-
edge, only one Shi epoxidation from the g,d-unsaturated
potassium trans-6-(3-fluorophenyl)-4-hexenoate yielding
the corresponding lactone has been published so far.10

After careful optimization the reaction conditions for sub-
strate 4, the asymmetric epoxidation gave the desired
hydroxy lactone 5. The enantiomeric excess of the reac-
tion (determined by chiral HPLC) was increased by re-
crystallization from 82% ee to 90% ee in 44% yield
(Table 1, entry 1).11 For comparison, application of the
Shi catalyst 3 under the reaction conditions reported for
the racemic synthesis7 led to an improved yield of 81%
but only 50% ee.

The scope of the reaction was further examined. The
asymmetric and racemic lactonization of substituted
trans-styryl acetic acids12 (Table 1, entries 2 and 3), such
as trans-p-methoxystyryl acetic acid (33% yield, 45% ee)
and trans-p-bromostyryl acetic acid (15% yield, 82% ee)
were performed. The reaction of aliphatic b,g-unsaturated
carboxylic acids, such as trans-n-pent-3-enoic acid and 1-
cyclohexene-1-acetic acid (Table 1, entries 4 and 5) did
not yield any lactone at all. The limited substrate range is
in agreement with the results published by Burrows.7 The

racemic epoxidation of trans-cinnamic acid and p-vinyl-
benzoic acid with Oxone gave the corresponding epoxides
in only 5% and 30% yield, respectively.7

Hydroxy lactone 5 was chemoselectively methylated in
the anti-position to the hydroxyl group using LDA/methyl
iodide and DMPU.

The stereochemical purity of the crude a-methylated lac-
tone 6 (90% ee, 85% de) was increased by recrystalliza-

Scheme 1 Synthesis of cryptophycin-39 unit A building blocks 9 and 10
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Table 1 Asymmetric and Racemic Tandem Epoxidation and Lac-
tonization Reaction of b,g-Unsaturated Acids

Entry Acid Yield (%) ee (%)

1 4
44
82 (rac.)

90a

–

2
33
77 (rac.)
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–

3
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–

4
0
0 (rac.)
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–
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0
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–
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a After recrystallization.
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tion to more than 99% ee (determined by chiral HPLC)
and 92% de in 65% yield. The addition of DMPU acceler-
ated the reaction and the directing power of the hydroxy
group sufficiently outweighed the detrimental influence
of the phenyl substituent. While the absolute configura-
tion in b- and g-position of 5 was defined by the known
enantioselectivity of the Shi epoxidation,8,10 the X-ray
crystal-structure analysis gave proof of the relative con-
figuration of the methyl group in 6. The observed 1H
NMR coupling constant (3J = 9.5 Hz) between Ha and Hb

in 6 was furthermore in accordance with published data
for a similar system.13

Opening of lactone 6 by reaction with 2,2-dimethoxypro-
pane, methanol, and Amberlyst-155,14 provided the methyl
ester 7 with the sterically hindered cis-diol being concom-
itantly protected as an acetonide in 64% overall yield. Re-
covered starting material and intermediate products were
subjected to the same reaction for a second time. Reduc-
tion of 7 with diisobutylaluminium hydride gave aldehyde
8 in 89% yield without any epimerization.

Diastereoselective allylation with allyltributylstannane
under chelation by addition of MgBr2·OEt2 was per-
formed according to a protocol15 published by Lee et al.
and yielded homoallyl alcohol 9 in 73%. In fact, this com-
pound is already a potential unit A precursor for an RCM
approach.5,16 A metathesis reaction with tert-butylacrylate
gave rise to the more traditional unit A precursor 10 in
72% yield after six steps.17 This six-step synthesis repre-
sents the shortest route to a cryptophycin unit A precursor
with four stereogenic centers, so far.

To prove the diastereoselectivity of the allylation, homo-
allyl alcohol 9 was deprotected with aqueous hydrochloric
acid in methanol in 66% yield to provide the crystalline
triol 11, which was subjected to X-ray crystal-structure
analysis.18

In summary, a synthesis of the cryptophycin-39 unit A
building blocks 9 and 10 was developed in five and six
steps, respectively. Furthermore, it was shown that the Shi
epoxidation can be used for the very efficient and straight-
forward synthesis of a versatile lactone, which served as
key building block in an economical asymmetric synthe-
sis.
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enoate (10)
Homoallyl alcohol 9 (0.615 mmol, 170 mg) in CH2Cl2 (0.85 
mL) was added to a solution of Grubbs II catalyst (0.026 
mmol, 22.1 mg) and tert-butylacrylate (0.513 mmol, 74.4 
mL) in CH2Cl2 (3.4 mL). The solution was refluxed in the 
dark overnight. The solvent was removed in vacuo (30 °C), 
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(hexane–EtOAc, 8:2) yielding 10 (0.369 mmol, 138.8 mg, 
72%) as a colorless oil; [a]D

24 –7.50 (c 1.10, CHCl3). 
1H 

NMR (500 MHz, CDCl3): d = 7.28–7.40 (m, 5 H), 6.77 (m, 
1 H), 5.80 (d, J = 15.7 Hz, 1 H), 5.38 (d, J = 7.5 Hz, 1 H), 
4.70 (dd, J = 3.8, 7.5 Hz, 1 H), 3.50 (m, 1 H), 2.37 (m, 1 H), 
2.22 (m, 1 H), 1.58–1.72 (m, 4 H), 1.41–1.56 (m, 12 H), 0.71 
(d, J = 6.9 Hz, 3 H). 13C NMR (126 MHz, CDCl3): 
d = 165.5, 144.0, 138.0, 128.2, 127.5, 126.6 125.7, 108.2, 
80.3, 79.4, 78.1, 73.5, 38.3, 37.4, 28.2, 26.3 24.7, 11.2. IR 
(neat): 3453, 2979, 2934, 2360, 1709, 1651, 1494, 1454, 
1379, 1367, 1326, 1253, 1210, 1086, 1044, 1029, 1006, 980, 
917, 879, 850, 730, 700, 647, 512, 466 cm–1. ESI-MS: m/z = 
399.2 [M + Na+]. ESI-HRMS: m/z calcd for C22H32O5Na+ [M 
+ Na+]: 399.21420; found: 399.21373.

(18) (a) Synthesis of (1S,2R,3S,4S)-3-Methyl-1-phenylhept-6-
ene-1,2,4-triol (11)
A 5% aq HCl soln (4 mL) was added to a solution of 
homoallyl alcohol 9 (0.615 mmol, 170.0 mg) in MeOH (6 
mL). After refluxing the solution for 90 min MeOH was 
removed in vacuo (40 °C), and the aqueous phase was 
extracted with Et2O (5 × 30 mL), dried over MgSO4, and 
purified by flash chromatography (hexane–EtOAc, 7:3). A 
colorless crystalline solid (11, 0.405 mmol, 95.7 mg, 66%) 
was obtained; [a]D

24 43.59 (c 1.22, CHCl3); mp 77 °C. 1H 
NMR (500 MHz, CDCl3): d = 7.26–7.49 (m, 5 H), 5.80 (m, 
1 H), 5.13–5.20 (m, 2 H), 4.70 (d, J = 7.5 Hz, 1 H), 4.15 (d, 
J = 7.5 Hz, 1 H), 3.70 (m, 1 H), 2.60 (d, J = 2.5 Hz, 1 H), 
2.27–2.44 (m, 3 H), 2.21 (s, 1 H), 1.98 (m, 1 H), 1.16 (d, 
J = 6.9 Hz, 3 H). 13C NMR (126 MHz, CDCl3): d = 141.8, 
134.8, 128.6, 128.1, 126.8, 118.4, 75.1 75.0, 74.1, 40.0, 37.2, 
11.2. IR (neat): 3545, 3345, 3063, 3030, 2970, 2923, 2360, 
2341, 1639, 1493, 1455, 1431, 1404, 1382, 1340, 1269, 
1212, 1135, 1071, 1023, 1000, 989, 974, 917, 870, 842, 786, 
697, 639, 604, 544, 475, 419 cm–1. ESI-MS: m/z = 259.2 [M 
+ Na+]. ESI-HRMS: m/z calcd for C14H20O3Na+ [M + Na+] 
259.13047; found: 259.13030. Anal. Calcd (%) for 
C14H20O3: C, 71.16; H, 8.53. Found: C, 71.00; H, 8.60. 
(b) CCDC 703493 contains the crystallographic data of 11. 
They can be obtained free of charge from The Cambridge 
Crystallographic Data Centre via www.ccdc.cam.ac.uk/
data_request/cif.
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