Downloaded by: Queen's University. Copyrighted material.

A New Strategy for the Synthesis of γ-Nitro Alcohols from Aliphatic Nitro Compounds

Roman A. Kunetsky, Alexander D. Dilman, Konstantin P. Tsvaygboym, Sema L. Ioffe,* Yury A. Strelenko, Vladimir A. Tartakovsky

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Leninsky prosp. 47, Russian Federation Fax +7(095)1355328; E-mail: iof@ioc.ac.ru

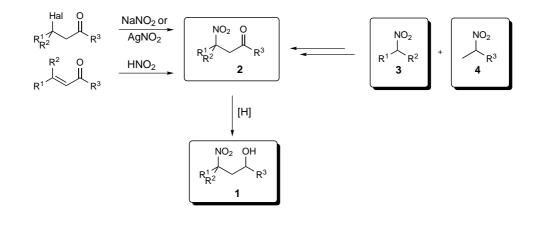
Received 7 March 2003

Abstract: A general method for the synthesis of γ -nitro alcohols **1** via C-C-cross-coupling of nitro compounds 3 with silyl derivatives of nitro compounds 4, deoximination of resulting substrates and selective reduction of carbonyl group of ketones 2 is elaborated.

Key words: γ-nitro alcohols, aliphatic nitro compounds, new strategy, N,N-bis(silyloxy)enamines, selective reduction

Aliphatic nitro alcohols constitute a class of useful intermediates. Their utility in the total synthesis of natural products,¹ as well as their ability to serve as precursors to aminoalcohols,^{2,3} may explain the growing interest in these compounds. However, different types of nitro alcohols are investigated to varying degrees. Indeed, various aspects of the chemistry of β -nitro alcohols are very well elaborated. At the same time, γ -nitro alcohols **1** are scantily studied, and to date there are no general methods for their synthesis. The occasional examples of the preparation of γ -nitro alcohols usually involve chemoselective reduction of their nearest precursors, corresponding carbonyl compounds 2 obtained from either β-haloketones or α,β -enones (Scheme 1).⁴

However, this approach, which includes different manipulations with functional groups on a fixed carbon skeleton, has quite limited scope owing to difficulties associated with introduction of the nitro group.

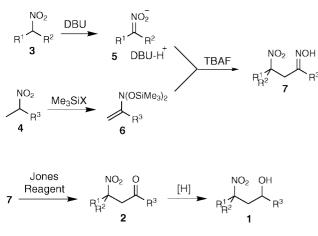

Herein we present a new strategy for the synthesis of γ -nitro alcohols 1 by construction of nitro carbonyl derivatives 2 from two molecules of aliphatic nitro compounds (ANC) (Scheme 1).

ANC 3 can be primary, secondary, or nitro methane. Compound **3** is used as nitro anion **5**, and its nitro group is preserved in the final nitro alcohol 1 (Scheme 2). ANC 4 must possess a methyl group at the α -carbon atom, which is eventually transformed into the methylene group of 1. In the proposed method the ANC 4 is used as doubly silvlated derivatives – N,N-bis(silvloxy)enamines (BENA) 6.5 The nitro group of 4 is finally converted into the hydroxyl group of 1 (Scheme 2).

The proposed strategy towards γ -nitro alcohols includes three steps, namely, the C–C-cross-coupling of anions 5 with BENA 6 affording β -nitrooxymes 7 followed by deoxymination and carbonyl group reduction (Scheme 2, Table 1).

We already studied in detail the first step.⁶ In general it proceeds smoothly if N,N-bis(silyloxy)enamines 6 have a terminal double bond (i.e. the starting ANC 3 has a methyl substitutient).

For the deoximination of compounds 7 we tested several known reagents such as HCl,⁷ [Et₃NH]⁺CrClO₃^{-,8} Bu₄NMnO₄,⁹ and levulinic acid,¹⁰ none of which turned out to be generally applicable. For example, while treat-



Scheme 1

Synthesis 2003, No. 9, Print: 03 07 2003.

Art Id.1437-210X,E;2003,0,09,1339,1346,ftx,en;P02403SS.pdf.

© Georg Thieme Verlag Stuttgart · New York

Scheme 2

ment of **7a,b** with 6% HCl gave ketones **2a,b** in 59% and 89% yields respectively, deoximination of derivative **7c** under the same conditions was accompanied by elimination of HNO₂ from the desired product.

The most suitable reagent for the deoximinaton proved to be CrO_3/H_2SO_4 in aqueous acetone (Jones reagent),¹¹ which neither caused elimination of HNO₂ nor affected other functional groups present in molecule **7**. Though un-

der these conditions aldoximes were smoothly oxidized to carboxylic acids (for $2h-j R^3 = OH$).

The choice of procedure for selective reduction of keto or carboxy group in compounds **2** depends on the type of substrate. In the case of unfunctionalized β -nitro ketones and acids the BH₃·THF worked well leading to desired products without reduction of the nitro group in accordance with literature data.¹² It should be noted that the common reducing agent for ketones – sodium borohydride – is often not applicable to compound **2** owing to facile elimination of HNO₂.

We found that the presence of a nitro function at the β -position to the carbonyl group significantly slows down the reduction of the latter by BH₃·THF. This phenomenon decreases the chemoselectivity of the reduction of corresponding compounds **2**. Thus, reaction of ketone **2e**, having an additional ester group, with BH₃·THF gave rise to desired alcohol **1e**, along with diol **8b**, which can be obtained as the sole product when larger amounts of the reducing agent are used. The reduction of ketones **2k**,**l** with BH₃·THF was even less selective, with the yields of desired alcohols being 31% and 44%, respectively. The reduction of acid **2j** containing the ester function was also non-selective. The latter observation was very surprising,

 Table 1
 Synthesis of γ-Nitro Alcohols

Entry	R ¹	R ²	R ³	ANC 3	BENA 6	Oxime 7	Yield of 7 (%)	Ketone or Acid 2	Yield of 2 (%) ^a	Alcohol or Diol, 1 or 8	Yield of 1 or 8 (%) ^{b,c}
1	Me	Me	Me	3a	6a	7a	72	2a	89	1a	86 (43)
2	Et	Н	Me	3b	6a	7b	72	2b	77	1b	95 (58)
3	(CH ₂) ₂ CO ₂ Me	Н	Me	3c	6a	7c	90	2c	80	1c	78 ^d (51)
4	(CH ₂) ₂ CO ₂ Me	Н	Me	3c	6a	7c	90	2c	80	8a	74 (48)
5	-(CH ₂) ₅ -		Me	3d	6a	7d	81	2d	90	1d	85 (45)
6	(CH ₂) ₂ CO ₂ Me	Me	Me	3e	6a	7e	71	2e	91	1e	84 ^d (47)
7	(CH ₂) ₂ CO ₂ Me	Me	Me	3e	6a	7e	71	2e	91	8b	74 (48)
8	Н	Н	Me	3f	6a	7f	64	2f	50	1f	90
9	Ph	Me	Me	3g	6a	7g	40	2g	77	1g	85
10	-(CH ₂) ₅ -		Н	3d	6b	7h	47	2h ^e	57	1h	62
11	Me	Me	Н	3a	6b	7i	55	2i ^e	80	1i	68
12	(CH ₂) ₂ CO ₂ Me	Me	Н	3e	6b	7j	62	2j ^e	78	1j	54 ^f
13	Et	Н	(CH ₂) ₂ CO ₂ Me	3b	6c	7k	76	2k	86	1k	31
14	Н	Н	(CH ₂) ₂ CO ₂ Me	3f	6c	71	55	21	58	11	44

^a Deoximinaton with CrO₃/H₂O/H₂SO₄ in aqueous acetone.

^b Reduction with BH₃·THF if not mentioned otherwise.

^c The yields in parentheses refer to the procedure $[3 + 6] \rightarrow 1$ or 8 without purification of intermediate compounds and are given with respect to ANC 3 or BENA 6 (for 1b).

^d Reduction with NaBH₃CN/HCl in MeOH.

^e $\mathbf{R}^3 = \mathbf{OH}$.

^f Reduction conditions: 1) (PhO)₂POCl/Et₃N; 2) NaBH₄/THF.

since acids are known to be much more reactive then esters with respect to BH_3 ·THF.¹²

The problems outlined above prompted us to find another reducing agents for functionalized substrates **2**. Since there is no general solution, it was necessary to find special conditions for each species. Thus, compounds **2c**,e were cleanly reduced by NaBH₃CN in methanol in the presence of HCl¹³ (Scheme 3). However, no reduction of ketone **2l** took place with NaBH₃CN.

For reduction of acid **2j** we used $(PhO)_2POC1$ to give mixed anhydride which was treated with NaBH₄ according to a known procedure¹⁴ (Scheme 4).

 γ -Nitro alcohols **1b,c,e,g,k** were obtained as a diastereomeric ratio (1:2–1:2.7).

It is of special note that in most cases the whole three-step sequence, $[3 + 6] \rightarrow 7 \rightarrow 2 \rightarrow 1$ (or 8), can be performed without purification of intermediate compounds in about 50% yield with respect to ANC 3 (see Table 1).

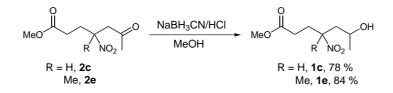
In conclusion, we have demonstrated that γ -nitro alcohols **1** can be assembled simply in a facile manner from two molecules of aliphatic nitro compounds. Our future studies will be aimed at the development of diastereo- and enantioselective approaches toward γ -nitro and γ -aminoalcohols.

NMR spectra were recorded on a Bruker AM-300, WM-250, and AC-200 instruments. Chemical shifts were measured relative to the residual solvent peak (¹H, ¹³C)¹⁵ or external reference (MeNO₂, 0 ppm, for ¹⁴N). Starting reagents were preparated by literature procedures: TBAF,⁶ (PhO)₂POCl,¹⁴ BH₃·THF,¹² **ANC** 3c,e,¹⁶ 3g,¹⁷ BENA 5a-c,⁵ and oximes 7a-f,h,j,k,⁶ Reductions with BH₃·THF were performed in the atmosphere of dry argon in freshly distilled solvents. Commercially available DBU was distilled from CaH₂ in vacuum and stored under argon.

4-Nitro-4-phenylpentan-2-one Oxime (7g)

To a solution of DBU (0.14 mL, 0.95 mmol) in CH_2Cl_2 (5 mL) at 5 °C was added α -nitroethylbenzene (151 mg, 1 mmol), the reaction mixture was stirred at 5 °C for 5 min, a solution of BENA **6a** (243 mg, 1.05 mmol) in CH_2Cl_2 (3 mL) was added dropwise at 5 °C for 5 min. The reaction mixture was stirred at 5 °C for 1 h. A mixture of NH₄F (39 mg, 1.05 mmol), HOAc (0.07 mL, 1.3 mmol), and MeOH (2.7 mL) was added over 5 min and the reaction mixture was poured into H_2O –Et₂O (1:1, 20 mL). The aqueous layer was extracted with Et₂O (3 × 10 mL). The combined organic layers were washed with brine, dried (Na₂SO₄) and evaporated. The residue was recrystallized from petroleum ether–toluene (5:1) to give 88 mg of **7g** (40%, *anti*-isomer); mp 100–105 °C.

¹H NMR (CDCl₃): $\delta = 1.44$ (s, 3 H, MeCNO₂), 1.81 (s, 3 H, CH₃C=NOH), 2.94 (d, 1 H, CH_AH_B, ²J = 14.8 Hz), 3.27 (d, 1 H, CH_AH_B, ²J = 14.8 Hz), 7.10–7.32 (m, 5 H, C₆H₅), 9.26 (br, 1 H, OH).


¹³C NMR (CDCl₃): δ = 14.2 (CH₃C=N), 23.4 (CH₃CNO₂), 45.0 (CH₂), 91.4 (CNO₂), 125.0, 128.6 (*o*,*m*-CH_{Ph}), 128.8 (*p*-CH_{Ph}), 139.6 (*i*-C_{Ph}), 152.2 (C=N).

Anal. Calcd for $C_{11}H_{14}N_2O_3{:}$ C, 59.45; H, 6.35; N, 12.61. Found: C, 59.80; H, 6.37; N, 12.58.

3-Methyl-3-nitrobutanal Oxime (7i)

To a solution of 2-nitropropane (1.35 mL, 15 mmol) in Et₂O (120 mL) at 5 °C was added DBU (2.24 mL, 15 mmol), the reaction mixture was stirred at 5 °C for 5 min, a solution of BENA **5b** (3.285 g, 15 mmol) in mixture of Et₂O–benzene (1:1, 60 mL) was added dropwise at 5 °C over 1 h. The reaction mixture was stirred at 5 °C for 2 h. A mixture of NH₄F (0.555 g, 15 mmol), HOAc (1.29 mL, 22.5 mmol), and MeOH (24 mL) was added and after stirring for 20 min the reaction mixture was poured into H₂O (150 mL). The aqueous layer was extracted with Et₂O (4 × 40 mL), the combined organic layers were washed with brine, dried (Na₂SO₄), and evaporated to give 1.20 g of **7i** (55%, *syn:anti*, 1:1), purity >95% (¹H NMR); oil.

¹H NMR (CDCl₃): $\delta = 1.62$, 1.65 (s, 6 H, Me₂C, *syn* and *anti*), 2.78 (d, 2 H, *syn*-CH₂, ³*J* = 6.6 Hz,), 3.01 (d, 2 H, *anti*-CH₂, ³*J* = 5.4 Hz,), 6.72 (t, 1 H, *anti*-CH=N, ³*J* = 5.4 Hz,), 7.35 (t, 1 H, *syn*-CH=N, ³*J* = 6.6 Hz,), 8.1–9.1 (br, 1 H, OH).

Scheme 3

OPCI(OPh)2 MeO₂C MeO₂C CO2F Et₃N NO20 NO2 PhÓ ÒPh Mé Mé 2j 9j Na_{BH} MeO₂C Mé NO2 1j 54 %

Scheme 4

¹³C NMR (CDCl₃): $\delta = 25.9$, 26.1 (Me, syn and anti), 35.1 (CH₂, syn), 39.8 (CH₂, anti), 86.2, 86.6 (CNO₂, syn and anti), 146.1, 146.7 (C=N, syn and anti).

Methyl 6-Nitro-4-oxyiminohexanoate (71)

To a solution of MeNO₂ (0.81 mL, 15.0 mmol) in CH₂Cl₂ (100 mL) at 5 °C was added DBU (2.23 mL, 15.0 mmol), the reaction mixture was stirred at 5 °C for 5 min and then cooled down to -78 °C. A solution of BENA 6c (4.54 g, 14.9 mmol) in CH₂Cl₂ (30 mL) and Bu₄NF in THF (4.08 mL 0.73 M, 2.97 mmol) were successively added dropwise at -78 °C. The reaction mixture was stirred at -78 °C for 1 h, then a solution of HOAc (1.8 mL, 30.0 mmol) in Et₂O (10 mL) was added at -78 °C, and stirred for an additional 10 min. The reaction mixture was poured into Et₂O-H₂O (2:1, 300 mL). The aqueous layer was extracted with Et_2O (3 × 30 mL), the combined organic layers were washed with H₂O (20 mL), brine, dried (Na₂SO₄), and evaporated. The residue was subjected to column chromatography (silica gel, CHCl₃-Et₂O 3:1) to give 1.67 g of 71 (55%, syn:anti, 1:7); oil; R_f (syn and anti) 0.38 (CHCl₃-Et₂O, 2:1).

¹H NMR (CDCl₃): *anti*-**71**: $\delta = 2.50-2.70$ (m, 4 H, CH₂CH₂CO), 2.93 (t, 2 H, $CH_2CH_2NO_2$, ³J = 6.7 Hz), 3.67 (s, 3 H, MeO), 4.59 (t, 2 H, CH₂NO₂, ${}^{3}J = 6.7$ Hz); syn-71: $\delta = 4.65$ (t, 2 H, CH₂NO₂, $^{3}J = 7.4$ Hz).

¹³C NMR (CDCl₃): *anti*-**71**: $\delta = 29.7$ (CH₂CH₂CO), 24.0, 31.3 (CH₂CNCH₂), 52.0 (OMe), 71.0 (CH₂NO₂), 155.4 (C=N), 173.3 (COOMe); *syn-71*: $\delta = 29.8$ (CH₂CH₂CO), 27.1, 29.9 (CH₂CNCH₂), 52.0 (OMe), 70.8 (CH₂NO₂), 154.7 (C=N), 173.2 (COOMe).

Anal. Calcd for C₁₇H₁₂N₂O₅: C, 41.18; H, 5.92; N, 13.72. Found: C, 41.39; H, 5.84; N, 13.81.

Preparation of Jones' Reagent¹¹

To a solution of CrO_3 (26.67 g, 0.266 mol) in H₂O (27 mL) were added concd H₂SO₄ (22.1 mL) with vigorous stirring and then H₂O up to a total volume of 100 mL.

Deoximination of 7a-l; General Procedure

To a solution of nitrooxime 7a-l (15 mmol) in acetone (70 mL) was added Jones' reagent (7a-g: 2.66 M, 5.6 mL, 15 mmol; 7h-l: 2.66 M, 11.2 mL, 30 mmol) with vigorous stirring at 20 °C. Two more portions of Jones' reagent (15 mmol each) were added after 1 and 2 h. After additional stirring for 2 h the reaction mixture was poured into Et₂O-H₂O (1:1, 150 mL). The aqueous layer was extracted with Et_2O (4 × 25 mL), the combined organic layers were washed with H_2O (5 × 10 mL), brine (15 mL), dried (MgSO₄), and evaporated to give carbonyl compounds 2.18

4-Methyl-4-nitropentan-2-one (2a)¹⁹

Yield: 89%; oil.

¹H NMR (CDCl₃): $\delta = 1.59$ (s, 6 H, Me₂C), 2.11 (s, 3 H, MeCO), 3.09 (s, 2 H, CH₂CO).

¹³C NMR (CDCl₃): $\delta = 26.2$ [(CH₃)₂C], 30.3 (CH₃CO), 51.2 (CH₂), 84.5 (CNO₂), 203.6 (CO).

4-Nitrohexan-2-one (2b)

Yield: 77%; oil.

¹H NMR spectrum is identical to lit. data.⁷

Methyl 4-Nitro-6-oxoheptanoate (2c)

Yield: 80%; oil.

¹H NMR (CDCl₃): $\delta = 2.05-2.20$ (m, 2 H, CH₂CH₂CO₂), 2.14 (s, 3 H, MeCO), 2.33–2.43 (m, 2 H, CH₂ CH₂CO₂), 2.74 (dd, 1 H, CH_AH_BCO , ${}^2J = 18.8$, ${}^3J = 4.7$ Hz), 3.27 (dd, 1 H, $CH_AH_BC=O$, ${}^{2}J = 18.8$, ${}^{3}J = 9.4$ Hz), 3.63 (s, 3 H, OMe), 4.85–4.96 (m, 1 H, CHNO₂).

¹³C NMR (CDCl₃): $\delta = 28.3, 29.8$ (CH₂CH₂), 29.7 (CH₃CO), 45.3 (CH₂CO), 51.9 (OMe), 81.3 (CNO₂), 172.1 (CO₂), 203.3 (CO).

1-(1-nitrocyclohexyl)propan-2-one (2d) Yield: 90%; oil.

¹H NMR (CDCl₃): $\delta = 1.33-1.77$ (m, 6 H, CH_{2-3'c-hex}, CH_{2-4'c-hex}), 1.84-2.04 and 2.19-2.34 (m, 4 H, CH_{2-2'c-hex}), 2.14 (s, 3 H, Me), 3.07 (s, 2 H, CH₂CO).

¹³C NMR (CDCl₃): $\delta = 22.4$ (CH_{2-3'c-hex}), 24.7 (CH_{2-4'c-hex}), 31.0 (Me), 34.4 (CH_{2-2'c-hex}), 49.4 (CH₂CO), 88.7 (CNO₂), 203.7 (CO).

Methyl 4-Methyl-4-nitro-6-oxoheptanoate (2e)

Yield: 91%; oil.

¹H NMR (CDCl₃): $\delta = 1.67$ (s, 3 H, MeCNO₂), 2.17 (s, 3 H, MeCO), 2.20–2.39 (m, 4 H, CH_2CH_2), 2.93 (d, 1 H, CHHCO, ²J = 17.7 Hz), 3.28 (d, 1 H, CHHCO, ${}^{2}J = 17.7$ Hz), 3.67 (s, 3 H, OMe).

¹³C NMR (CDCl₃): $\delta = 22.6$ (CH₃CNO₂), 28.6 (CH₂CO₂Me), 30.6 (CH₃CO), 34.5 (CH₂CNO₂), 49.9 (CH₂CO), 51.8 (OMe), 87.0 (CNO₂), 172.0 (CO₂), 202.3 (CO).

4-Nitrobutan-2-one (2f)

Yield: 50%; oil.

¹H NMR spectrum is identical to lit. data.²⁰

4-Nitro-4-phenylpentan-2-one (2g)

Yield: 77%; oil.

¹H NMR (CDCl₃): δ = 2.10, 2.14 (s, 6 H, MeCNO₂, MeCO), 3.25 (d, 1 H, CH_AH_B , ²J = 17.7 Hz), 3.77 (d, 1 H, CH_AH_B , ²J = 17.7 Hz), 7.34 (br, 5 H, C₆H₅).

¹³C NMR (CDCl₃): $\delta = 23.8$ (CH₃CNO₂), 30.7 (CH₃CO), 51.6 (CH₂), 89.9 (CNO₂), 124.7, 129.0 (o-, m-, p-CH_{Ph}), 139.5 (i-C_{Ph}), 203.3 (CO).

(1-Nitrocyclohexyl)-acetic Acid (2h)

Yield: 57%; mp 100-104 °C (petroleum ether-toluene, 6:1).

¹H NMR (CDCl₃): $\delta = 1.39 - 1.75$ (m, 6 H, 3'-CH₂, 4'-CH₂), 1.84-2.01 and 2.24-2.41 (m, 4 H, 2'-CH₂), 3.01 (s, 2 H, CH₂CO), 10.30-10.71 (br, 1 H, OH).

¹³C NMR (CDCl₃): $\delta = 22.3$ (3'-CH₂), 24.6 (4'-CH₂), 34.3 (2'-CH₂), 41.8 (CH₂CO), 88.2 (CNO₂), 175.3 (CO).

Anal. Calcd for C₈H₁₃NO₄: C, 51.33; H, 7.00; N, 7.48. Found: C, 51.57; H, 6.94; N, 7.36.

3-Methyl-3-nitrobutanoic Acid (2i)

Yield: 80%; mp 95–100 °C (petroleum ether-toluene, 7:1)

¹H NMR (Acetone- d_6): $\delta = 1.68$ (s, 6 H, Me₂C), 3.08 (s, 2 H, CH₂), 3.69–7.40 (br, 1 H, OH).

¹³C NMR (Acetone- d_6): $\delta = 26.5$ [(CH₃)₂C], 43.5 (CH₂), 85.7 (CNO₂), 170.9 (CO).

Anal. Calcd for C5H9NO4: C, 40.82; H, 6.17; N, 9.52. Found: C, 40.79; H, 6.18; N, 9.49.

5-Methoxycarbonyl-3-methyl-3-nitropentanoic Acid (2j)

Purified by column chromatography (silica gel, petroleum ether-EtOAc, 1:1); yield 78%; mp 62-65 °C (petroleum ether-toluene, 3:2); R_f 0.48 (CHCl₃–Et₂O, 1:1).

¹H NMR (CDCl₃): $\delta = 1.71$ (s, 3 H, MeCN), 2.21–2.50 (s, 4 H, CH_2CH_2), 2.87 (d, 1 H, $CH_AH_BCO_2$, ${}^2J = 17.1$ Hz), 3.22 (d, 1 H, $CH_AH_BCO_2$, ²J = 17.1 Hz), 3.68 (s, 3 H, OMe), 8.48–9.17 (br, 1 H, OH).

¹³C NMR (CDCl₃): $\delta = 22.6$ (Me), 28.6, 34.5 (CH₂CH₂), 42.1 (CH₂CO₂H), 52.2 (OMe), 87.0 (CNO₂), 172.5, 174.1 (CO₂).

Anal. Calcd for $C_8H_{13}NO_6$: C, 43.84; H, 5.98; N, 6.39. Found: C, 44.03; H, 5.89; N, 6.21.

Methyl 6-nitro-4-Oxooctanoate (2k) Yield: 86%; oil.

¹H NMR (CDCl₃): $\delta = 0.86$ (t, 3 H, CH₃CH₂, ³J = 7.4 Hz), 1.74– 1.88 (m, 2 H, MeCH₂), 2.36–2.79 (m, 5 H, CH₂CH₂CO₂ and CH_AH_BCO), 3.25 (dd, 1 H, CH_AH_BCO, ²J = 18.4, ³J = 9.5 Hz), 3.54 (s, 3 H, OMe), 4.77 (ddt, 1 H, CHNO₂, ³J = 6.5, ³J = 4.0, ³J = 9.5 Hz).

¹³C NMR (CDCl₃): δ = 9.7 (CH₃C), 26.9, 27.5 (CH₂CO₂, CH₂Me), 36.9 (CH₂CH₂CO₂), 44.0 (CH₂CO), 51.7 (OMe), 83.5 (CNO₂), 172.8 (CO₂), 204.6 (CO).

Methyl 6-Nitro-4-oxohexanoate (2l)

Yield: 58%; oil

¹H NMR spectrum is identical to lit. data.²¹

¹³C NMR (CDCl₃): δ = 27.7 (*C*H₂CO₂), 37.0, 38.5 (*C*H₂COCH₂), 51.9 (MeO), 69.0 (CH₂NO₂), 173.0 (CO₂), 204.4 (CO).

Reduction of Nitrocarbonyl Compounds 2a,b,d,f-i,k,l with BH₃·THF; General Procedure

To a solution of nitrocarbonyl compound **2** (1 mmol) in THF (1.5 mL) was added the specified amount of BH₃·THF at the specified temperature. The mixture was stirred for the specified time, then MeOH (3.5 mmol for 1 mmol BH₃·THF) was added dropwise, in 5 min the reaction mixture was poured into a mixture of H₂O (4 mL) and concd HCl (0.15 mL). The aqueous layer was extracted with Et₂O (6 × 3 mL), the combined organic layers were washed with brine, dried (Na₂SO₄) and evaporated (for the isolation of nitrodiols **8a,b** from the aqueous layer its continuous extraction with Et₂O over 18 h was required). For some alcohols **1** the reaction mixture was quenched with MeOH (9 mmol per 1 mmol of BH₃·THF) followed by evaporation of the solvent in vacuum and column chromatography.

4-Methyl-4-nitropentan-2-ol (1a)

The reaction was carried out with BH₃·THF (1.4 mmol, 1.86 mL 1.33 M solution in THF) at 20 °C for 3.5 h; yield: 86%; bp 65–67 °C (0.2 Torr).

¹H NMR (CDCl₃): $\delta = 1.22$ (d, 3 H, Me, ³*J* = 6.1 Hz), 1.63, 1.66 [s, 6 H, (CH₃)₂C], 1.96 (dd, 1 H, CH_AH_B, ²*J* = 15.3, ³*J* = 3.1 Hz), 2.23–2.32 (br, 1 H, OH), 2.22 (dd, 1 H, CH_AH_B, ²*J* = 15.3, ³*J* = 9.8 Hz), 3.88–4.02 (m, 1 H, CHOH).

¹³C NMR (CDCl₃): δ = 24.6, 25.5 and 26.7 (3 × Me), 48.2 (CH₂), 64.2 (CH), 86.9 (CNO₂).

¹⁴N NMR (CDCl₃): $\delta = 23.4$ (NO₂, $\upsilon_{1/2} = 250$ Hz).

Anal. Calcd $C_6H_{13}NO_3$: C, 48.97; H, 8.90; N, 9.52. Found: C, 49.08; H, 8.88; N, 9.48.

4-Nitrohexan-2-ol (1b)7

The reaction was carried out with BH₃·THF (1.4 mmol, 1.86 mL 1.33 M solution in THF) at 20 °C, for 3.5 h; yield: 95%, minor:major ca. 1:2.7 (¹H NMR); bp 66–67 °C (0.15 Torr).

Major Isomer:

¹H NMR (DMSO-*d*₆): δ = 0.96 (t, 3 H, CH₃CH₂, ³*J* = 7.4 Hz), 1.23 (d, 3 H, CH₃CH, ³*J* = 7.0 Hz), 1.62–2.28 (m, 4 H, 2 × CH₂), 2.42–2.84 (br, 1 H, OH), 3.81–3.92 (m, 1 H, CHOH), 4.51–4.73 (m, 1 H, CHNO₂).

¹³C NMR (CDCl₃): δ = 10.1 (*C*H₃CH₂), 23.6 (*C*H₃CH), 27.3 (MeCH₂), 42.1 (CH₂), 65.3 (CHOH), 87.8 (CHNO₂).

Minor Isomer:

¹H NMR (DMSO-*d*₆): δ = 0.97 (t, 3 H, *C*H₃CH₂, ³*J* = 7.4 Hz), 3.68–3.80 (m, 1 H, CHOH), 4.69–4.76 (m, 1 H, CHNO₂).

¹³C NMR (CDCl₃): $\delta = 10.2$ (*C*H₃CH₂), 23.8 (*C*H₃CH), 27.8 (MeCH₂), 42.2 (CHOH₂), 64.2 (CHOH), 87.2 (CHNO₂).

 ^{14}N NMR (CDCl₃): $\delta = 14.9$ (NO₂ for two diastereomers, $\upsilon_{1/2} = 270$ Hz).

Anal. Calcd for $C_6H_{13}NO_3$: C, 48.97; H, 8.90; N, 9.52. Found: C, 49.15; H, 8.76; N, 9.51.

1-(1-Nitrocyclohexyl)-propan-2-ol (1d)

The reaction was carried out with BH_3 -THF (1.4 mmol, 1.86 mL 1.33 M solution THF) at 20 °C for 3.5 h; Yield: 85%; bp 89–90 °C (0.2 Torr).

¹H NMR (CDCl₃): δ = 1.13 (d, 3 H, Me, ³*J* = 6.1 Hz), 1.20–1.75 [m, 9 H, OH, 4 × CH_{2-c-Hex} except 2 H at -CH(2')], 1.81 (dd, 1 H, CH_AH_BCHOH, ²*J* = 15.0, ³*J* = 2.8 Hz), 2.02 (dd, 1 H, CH_AH_B-CHOH, ²*J* = 15.0, ³*J* = 9.2 Hz), 2.30–2.47 (m, 2 H, -CH_{2-2'c-Hex}), 3.83–3.98 (m, 1 H, CHOH).

 ^{13}C NMR (CDCl₃): δ = 22.2, 22.3 (CH_{2-3'-c-Hex}), 24.7 (CH_{2-4'-c-Hex}), 24.9 (Me), 34.0, 34.9 (CH_{2-2'-c-Hex}), 48.3 (CH₂CHOH), 63.7 (CHOH), 90.3 (CNO₂).

¹⁴N NMR (CDCl₃): δ = 19.4 (NO₂, $v_{1/2}$ = 280 Hz).

Anal. Calc
d $\rm C_9H_{17}NO_3:$ C, 57.73; H, 9.15; N, 7.48. Found: C, 57.44; H, 9.10; N, 7.68.

4-Nitrobutan-2-ol (1f)

The reaction was carried out with BH₃·THF (1.2 mmol, 1.60 mL 1.33 M solution in THF) at 20 °C for 1 h; yield: 90%; bp 100–110 °C (7–8 Torr, short-path apparatus), n_d^{20} 1.4448 (lit.²² n_d^{19} 1.4445).

¹H NMR (CDCl₃): δ = 1.21 (d, 3 H, Me, ³*J* = 5.9 Hz), 1.86–2.25 (m, 2 H, CH₂), 2.31 (br, 1 H, OH), 3.79–3.99 (m, 1 H, CHOH), 4.38–4.64 (m, 2 H, CHNO₂).

¹³C NMR (CDCl₃): δ = 23.6 (Me), 35.9 (CH₂), 64.8 (CHOH), 72.6 (CH₂NO₂).

4-Nitro-4-phenylpentan-2-ol (1g)

The reaction was carried out with BH₃:THF (1.4 mmol, 1.86 mL 1.33 M solution in THF) at 20 °C for 3.5 h; yield: 85%, minor:major ca. 1:2.5 (¹H NMR); bp 130–145 °C (0.2 Torr, short-path apparatus).

Major Isomer:

¹H NMR (CDCl₃): δ = 1.23 (d, 3 H, CH₃COH, ³J = 5.9 Hz), 1.59 (br, 1 H, OH), 2.10 (s, 1 H, MeCNO₂), 2.32–2.47 (m, 1 H, CH_AH_B), 2.75 (dd, 1 H, CH_AH_b, ²J = 14.7, ³J = 10.3 Hz), 3.78–3.97 (m, 1 H, CHOH), 7.31–7.49 (m, 5 H, C₆H₅).

 ^{13}C NMR (CDCl₃): δ = 23.7, 25.2 (*C*H₃CNO₂ and *C*H₃CHOH), 47.6 (CH₂), 64.6 (CHOH), 92.2 (CNO₂), 125.3 (*p*-CH_{Ph}), 128.8 (*o*-, *m*-CH_{Ph}), 139.9 (*i*- C_{Ph}).

Minor Isomer:

¹H NMR (CDCl₃): $\delta = 1.25$ (d, 3 H, CH₃COH, ³J = 6.6 Hz), 2.07 (s, 1 H, MeCNO₂), 2.65 (dd, 1 H, CH_AH_B, ²J = 15.5, ³J = 2.2 Hz).

¹³C NMR (CDCl₃): δ = 24.6, 25.3 (*C*H₃CNO₂ and *C*H₃CHOH), 48.4 (CH₂), 65.1 (CHOH), 93.3 (CNO₂), 125.1 (*p*- CH_{Ph}), 128.8 (*o*-, *m*-CH_{Ph}), 140.4 (*i*-C_{Ph}).

 ^{14}N NMR (CDCl₃): δ = 18.9 (NO₂ for two diastereomers, $\upsilon_{1/2}$ = 275 Hz).

Anal. Calcd for $C_{11}H_{13}NO_3$: C, 63.14; H, 7.23; N, 6.69. Found: C, 63.28; H, 7.23; N, 6.54.

2-(1-Nitrocyclohexyl)-ethanol (1h)

The reaction was carried out with BH_3 ·THF (2 mmol, 2.66 mL 1.33 M solution in THF) at 20 °C for 2 h; yield: 62%; bp 100–105 °C (0.2 Torr, short-path apparatus).

¹H NMR (CDCl₃): $\delta = 1.20-1.72$ (m, 8 H, 4 × CH_{2-c-Hex} except CH_{2-2'-c-Hex}), 2.04 (t, 2 H, CH₂CH₂OH, ³J = 6.8 Hz), 2.28-2.43 (m, 2 H, CH_{2-2'-c-Hex}), 2.52-2.71 (br, 1 H, OH), 3.59 (t, 2 H, CH₂OH, ³J = 6.8 Hz).

¹³C NMR (CDCl₃): δ = 22.3 (CH_{2-3'-c-Hex}), 24.7 (CH_{2-4'-c-Hex}), 34.3 (CH_{2-2'-c-Hex}), 42.1 (CH₂), 57.6 (CH₂OH), 90.2 (CNO₂).

¹⁴N NMR (CDCl₃): δ = 18.7 (NO₂, $υ_{1/2} = 200$ Hz).

Anal. Calcd for $C_8H_{15}NO_3$: C, 55.47; H, 8.73; N, 8.09. Found: C, 55.50; H, 8.66; N, 8.12.

3-Methyl-3-nitrobutanol (1i)

The reaction was carried out with BH_3 ·THF (2 mmol, 2.66 mL 1.33 M solution in THF) at 20 °C for 2 h; yield: 62%; bp 46–52 °C (0.2 Torr, short-path apparatus).

¹H NMR (CDCl₃): $\delta = 1.52$ [s, 6 H, (CH₃)₂C], 2.09 (t, 2 H, CH₂, ³J = 6.6 Hz), 2.95–3.14 (br, 1 H, OH), 3.57 (t, 2 H, CH₂OH, ³J = 6.6 Hz).

¹³C NMR (CDCl₃): $\delta = 21.7$ [(*C*H₃)₂C)], 38.0 (CH₂), 53.6 (CH₂OH), 82.6 (CNO₂).

¹⁴N NMR (CDCl₃): δ = 17.5 (NO₂, υ_{1/2} = 200 Hz).

Anal. Calcd for $C_5H_{11}NO_3$: C, 45.10; H, 8.33; N, 10.52. Found: C, 44.98; H, 8.84; N, 10.64.

Methyl 6-Nitro-4-oxyoctanoate (1k)

The reaction was carried out with BH₃·THF (1.2 mmol, 1.6 mL 1.33 M solution in THF) at 0 °C for 2 h, the crude product was purified by column chromatography (silica gel, CHCl₃ \rightarrow CHCl₃–Et₂O, 3:1); yield: 31%, minor:major ca. 1:2 (¹H NMR), bp 121–128 °C (0.2 Torr, short-path apparatus); R_f 0.31 (CHCl₃–Et₂O, 2:1).

Major Isomer:

¹H NMR (CDCl₃): $\delta = 0.94$ (s, 3 H, CH₃CH₂), 1.60–2.27 (m, 6 H, CH₂CH₂, MeCH₂), 2.37–2.60 (m, 2 H, CH₂CHOH), 2.65–2.85 (br, 1 H, OH), 3.49–3.78 (m, 1 H, HCOH), 3.66 (s, 3 H, OMe), 4.51–4.66 (m, 1 H, CHNO₂).

 ^{13}C NMR (CDCl₃): δ = 10.0 (CH₃C), 27.1, 30.3 and 32.2 (CH₂CH₂ and MeC), 40.6 (CH₂CHOH), 51.9 (OMe), 68.7 (HCOH), 87.5 (CNO₂), 174.4 (CO₂).

Minor Isomer:

¹H NMR (CDCl₃): δ = 0.95 (s, 3 H, CH₃CH₂), 4.70–4.83 (m, 1 H, CHNO₂).

¹³C NMR (CDCl₃): $\delta = 10.2 \text{ CH}_3\text{C}$), 27.7, 30.4 and 32.4 (CH₂CH₂ and Me*C*), 40.7 (*C*H₂CHOH), 51.9 (OMe), 67.5 (HCOH), 86.9 (CNO₂), 174.4 (CO₂).

 ^{14}N NMR (CDCl₃): δ = 13.6 (NO₂ for two diastereomers, $\upsilon_{1/2}$ = 260 Hz).

Anal. Calcd $C_9H_{17}NO_5$: C, 49.30; H, 7.82; N, 6.39. Found: C, 49.37; H, 7.63; N, 6.42.

Methyl 6-Nitro-4-oxyhexanoate (11)

The reaction was carried out with BH₃·THF (1.2 mmol, 1.6 mL 1.33 M solution in THF) at 0 °C for 2 h; the crude product was purified by column chromatography (silica gel, CHCl₃–Et₂O, 2:1); yield: 44%; bp 105–115 °C (0.2 Torr, short-path apparatus); $R_f 0.17$ (CHCl₃–Et₂O, 2:1)

¹H NMR (CDCl₃): δ = 1.68–1.93, 1.94–2.12 and 2.16–2.30 [m, 4 H, CH₂(CHOH)CH₂], 2.49 (t, 2 H, CH₂CO₂Me, ³J = 7.2 Hz), 2.53–

 ^{13}C NMR (CDCl_3): $\delta=30.8,~32.6$ and 34.9 (3 \times CH_2 except CH_2NO_2), 52.4 (MeO), 68.5 (CHOH), 73.0 (CH_2NO_2), 175.1 (CO_2).

¹⁴N NMR (CDCl₃): $\delta = 4.5$ (NO₂, $v_{1/2} = 140$ Hz).

Anal. Calcd for $C_7H_{13}NO_5$: C, 43.98; H, 6.85; N, 7.33. Found: C, 43.74; H, 6.74; N, 7.23.

4-Nitroheptan-1,6-diol (8a)

The reaction was carried out with BH_3 ·THF (5 mmol, 6.65 mL 1.33 M solution in THF) at 20 °C for 4 h; yield: 74%; minor:major ca. 1:2.7 (¹H NMR); bp 135–137 °C (0.15 Torr).

Major Isomer:

¹H NMR (CDCl₃): δ = 1.26 (d, 3 H, CH₃CHOH, ³J = 6.0 Hz), 1.54–2.27 (m, 8 H, CH₂CH₂, CH₂CHOH, 2 × OH), 3.63–3.82 (m, 2 H, CH₂OH), 3.87–3.96 (m, 1 H, CHOH), 4.67–4.77 (m, 1 H, CHNO₂).

¹³C NMR (CDCl₃): δ = 23.6 (*C*H₃CHOH), 28.3 and 29.9 (CH₂CH₂), 42.4 (*C*H₂CHOH), 61.2, 65.0 (CH₂OH, CHOH), 85.9 (CHNO₂).

Minor Isomer:

¹H NMR (CDCl₃): δ = 1.23 (d, 3 H, CH₃CHOH, ³J = 6.4 Hz), 3.63–3.82 (m, 1 H, CHOH), 4.83–4.93 (m, 1 H, CHNO₂).

¹³C NMR (CDCl₃): $\delta = 23.8$ (CH₃CHOH), 28.5, 30.8 (CH₂CH₂), 42.5 (CH₂CHOH), 61.2, 64.2 (CH₂OH and CHOH), 85.5 (CHNO₂).

 ^{14}N NMR (CDCl₃): δ = 16.0, (NO₂ for two diastereomers, $\upsilon_{1/2}$ = 620 Hz).

Anal. Calcd for $C_7H_{15}NO_4$: C, 47.45; H, 8.53; N, 7.90. Found: C, 47.51; H, 8.48; N, 7.91.

4-Methyl-4-nitroheptan-1,6-diol (8b)

The reaction was carried out with BH_3 ·THF (5 mmol, 6.65 mL 1.33 M solution in THF) at 20 °C for 4 h; yield: 74%; minor:major ca. 1:2 (¹H NMR); bp 124–135 °C (0.2 Torr).

Major Isomer:

¹H NMR (CDCl₃): $\delta = 1.19$ (d, 3 H, CH₃COH, ³J = 5.9 Hz), 1.26–1.70, 1.80–2.20 (m, 5 H, CH₂CH₂ and CH_AH_BCHOH), 1.60 (s, 3 H, MeCNO₂), 2.30 (dd, 1 H, CH_AH_BCHOH, ²J = 15.1, ³J = 9.8 Hz), 2.38–2.60 (br, 2 H, 2×OH), 3.54–3.66 (m, 2 H, CH₂OH), 3.93–4.04 (m, 1 H, CHOH).

¹³C NMR (CDCl₃): δ = 21.8, 24.9 (*C*H₃CNO₂, *C*H₃CHOH), 26.8, 36.6 (CH₂CH₂), 47.5 (*C*H₂CHOH), 61.9, 64.1 (*C*H₂OH and *C*HOH), 89.9 (*C*NO₂).

Minor Isomer:

¹H NMR (CDCl₃): δ = 1.26–1.70 and 1.80–2.20 (m, 2 H, CH₂), 3.81–3.93 (m, 1 H, CHOH).

¹³C NMR (CDCl₃): δ = 23.0, 25.1 (CH₃CNO₂ and CH₃CHOH), 27.0, 36.0 (CH₂CH₂), 47.1 (CH₂CHOH), 61.9, 64.4 (CH₂OH and CHOH), 90.8 (CHNO₂).

 ^{14}N NMR (CDCl_3): δ = 18.6, (NO_2 for two diastereomers, $\upsilon_{1/2}$ = 640 Hz).

Anal. Calcd for $C_8H_{17}NO_4$: C, 50.25; H, 8.96; N, 7.32. Found: C, 50.17; H, 8.95; N, 7.41.

Methyl 4-Methyl-4-nitro-6-oxyhexanoate (1j)

To a solution of nitro acid 2j (205 mg, 1 mmol) in THF (7.5 mL) was added Et₃N (0.14 mL, 1 mmol) followed by (PhO)₂POCl (268.5 mg, 1 mmol) in THF (3.5 mL). The reaction mixture was stirred for 2 h, filtered. Powdered NaBH₄ (76 mg, 2 mmol) was added to the filtrate, and after stirring for 2 h the mixture was quenched with AcCl (0.14 mL) in MeOH (4 mL), the solvent was evaporated, and

the residue was subjected to column chromatography (silica gel, petroleum ether–EtOAc, 1:3) to give 110 mg of **1j**; yield: 54%; bp 125–135 °C (0.06 Torr, short-path apparatus); $R_f 0.48$ (petroleum ether–EtOAc, 1:3)

¹H NMR (CDCl₃): δ = 1.57 (s, 3 H, MeCNO₂), 2.03–2.48 (m, 7 H, CH₂CH₂ and CH₂CH₂OH), 3.65 (s, 3 H, MeO), 3.62–3.80 (m, 2 H, CH₂OH).

¹³C NMR (CDCl₃): δ = 22.1 (*Me*CNO₂), 28.8, 34.5 (CH₂CH₂), 41.2 (CH₂COH), 52.1 (CH₂OH), 58.1 (MeO), 89.3 (CNO₂), 172.9 (CO₂).

¹⁴N NMR (CDCl₃): δ = 18.0 (NO₂, $v_{1/2} = 165$ Hz).

Anal. Calcd for $C_8H_{15}NO_5$: C, 46.82; H, 7.37; N, 6.83. Found: C, 46.58; H, 7.09; N, 6.89.

Methyl 4-Nitro-6-oxyheptanoate (1c)

To a solution of ketone **2c** (203 mg, 1 mmol) and NaBH₃CN (94.5 mg, 1.5 mmol) in MeOH (1.7 mL) a solution of AcCl (106 μ L, 1.5 mmol) in MeOH (5 mL) was added dropwise over 3 h. To achieve complete conversion (TLC control) the addition of NaBH₃CN and AcCl/MeOH could be repeated, in 24 h the reaction mixture was evaporated and residue was poured into H₂O–Et₂O (1:1, 40 mL), the aqueous layer was extracted with Et₂O (3 × 5 mL). The combined organic layers were washed with brine (5 mL), dried (Na₂SO₄), the solvent evaporated and distilled in a short-path apparatus, to give 160 mg of **1c**; yield: 78%; minor:major ca. 1:2.5 (¹H NMR); bp 100–107 °C (0.05 Torr).

Major Isomer:

¹H NMR (CDCl₃): $\delta = 1.22$ (d, 3 H, CH₃CHOH, ³J = 6.0 Hz), 1.82 (ddd, 1 H, CH_AH_BCHOH, ²J = 14.8, ³J = 4.7, ³J = 6.7 Hz), 2.03–2.45 (m, 6 H, CH₂CH₂, CH_AH_BCHOH), 3.67 (s, 3 H, OMe), 3.85–3.97 (m, 1 H, CHOH), 4.69 (q, 1 H, CHNO₂, ³J = 6.7 Hz).

¹³C NMR (CDCl₃): δ = 23.6 (CH₃C), 28.2, 29.8 (CH₂CH₂), 42.2 (CH₂), 51.8 (OMe), 64.9 (CHOH), 85.0 (CHNO₂), 172.6 (CO).

Minor Isomer:

¹H NMR (CDCl₃): δ = 1.19 (d, 3 H, CH₃CHOH, ³J = 6.0 Hz), 1.72 (ddd, 1 H, CH_AH_BHOH, ²J = 14.8, ³J = 3.4, ³J = 9.4 Hz), 3.70–3.82 (m, 1 H, CHOH), 4.79–4.89 (m, 1 H, CHNO₂).

¹³C NMR (CDCl₃): δ = 23.7 (CH₃C), 29.0, 29.9 (CH₂CH₂), 42.3 (CH₂), 51.8 (OMe), 64.0 (CHOH), 84.6 (CHNO₂), 172.3 (CO).

 ^{14}N NMR (CDCl₃): $\delta = 13.0$ (NO₂ for two diastereomers, $\upsilon_{1/2} = 380$ Hz).

Anal. Calcd for $C_8H_{15}NO_5$: C, 46.82; H, 7.36; N, 6.82. Found: C, 46.89; H, 7.22; N, 6.86.

Methyl 4-Methyl-4-nitro-6-oxyheptanoate (1e)

Nitro ketone **2e** was reduced to **1e** analogously. After concentration of the organic phase the residue was subjected to column chromatography (silica gel, CHCl₃–Et₂O, 3:1) to give ester **1e**; yield: 84%, minor:major ca. 1:2 (¹H NMR); bp 137–142 °C (0.7 Torr); R_f 0.31 (CHCl₃–Et₂O, 3:1)

Major Isomer:

¹H NMR (CDCl₃): δ = 1.23 (d, 3 H, CH₃CHOH, ³J = 6.4 Hz), 1.62 (s, 3 H, MeCNO₂), 1.85 (dd, 1 H²J = 15.1,³J = 2.7 Hz, OH), 2.30–2.45 (6 H, 3 × CH₂), 3.67 (s, 3 H, OMe), 3.98–4.06 (m, 1 H, CHNO₂).

¹³C NMR (CDCl₃): δ = 21.6, 25.0 (CH₃CNO₂ and CH₃CHOH), 28.7, 35.0 (CH₂CH₂), 47.4 (CH₂CHOH), 51.9 (OMe), 64.0 (CHOH), 89.1 (CNO₂), 172.7 (CO).

Minor Isomer:

¹H NMR (CDCl₃): $\delta = 1.22$ (d, 3 H, CH₃CHOH, ³J = 6.4 Hz), 1.63 (s, 3 H, MeCNO₂), 3.89–3.98 (m, 1 H, CHNO₂).

 ^{13}C NMR (CDCl₃): δ = 22.7, 25.2 (CH₃CNO₂ and CH₃CHOH), 28.9, 34.4 (CH₂CH₂), 47.2 (CH₂CHOH), 51.9 (OMe), 64.4 (CHOH), 90.0 (CNO₂), 172.9 (CO).

 ^{14}N NMR (CDCl₃): $\delta = 18.5$ (NO₂ for two diastereomers, $\upsilon_{1/2} = 600$ Hz).

Anal. Calcd for $C_9H_{17}NO_5$: C, 49.31; H, 7.82; N, 6.39. Found: C, 49.71; H, 7.60; N, 6.48.

$\label{eq:preparation} Preparation of γ-Nitroalcohols 1a-e and Nitrodiols 9a, b without Purification of Intermediate Compounds$

Preparation of 1a,d,e; General Procedure for Secondary ANC To a solution of DBU (2.78 mL, 18.6 mmol) in Et₂O (180 mL) at 5 °C was added nitrocyclohexane (3d) (2.26 mL, 18.6 mmol), the mixture was stirred at 5 °C for 5 min, then a solution of BENA 6a (4.77 g, 20.46 mmol) in Et₂O (180 mL) was added dropwise at 5 °C for 2 h, the reaction mixture was stirred at 0 °C for 1 h, the mixture of NH₄F (0.69 g, 18.6 mmol), HOAc (1.60 mL, 27.9 mmol), and MeOH (30 mL) was added, the reaction mixture was stirred for an extra 20 min, and poured into H₂O (150 mL). The aqueous layer was extracted with Et_2O (4 × 80 mL), the combined organic layers were washed with brine, dried (Na₂SO₄) and concentrated to give 7d (3.00 g). To a solution of 7d in acetone (70 mL) Jones' reagent (5.62 mL 2.67 M solution, 15 mmol) was added at 20 °C. Two more portions of Jones' reagent (15 mmol each) were added after 1 and 2 hours. After additional stirring for 2 h the reaction mixture was poured into H₂O-Et₂O (1:1, 150 mL), the aqueous layer was extracted with Et_2O (4 × 25 mL), the combined organic layers were washed with $H_2O(4 \times 10 \text{ mL})$, brine, dried (MgSO₄) and the solvent evaporated, the residue was azeotropically dried with toluene to give 2.59 g of 2d. To a solution of 2d in THF (20 mL) at 20 °C was added BH₃·THF (12.5 mL 1.33 M solution in THF, 16.55 mmol). MeOH (2.4 mL, 59 mmol) was added in 3 h, the mixture was poured into HCl (1.7 mL concd HCl and 50 mL H₂O), and extracted with Et_2O (5 × 20 mL). The combined organic layers were washed with brine, dried (Na₂SO₄), and the solvent evaporated, the residue was distilled to give 1.57 g of 1c (8.4 mmol, yield 45% refers to ANC without purification of intermediate compounds 3d). Nitroalcohols 1a and 1e were obtained analogously (yields are given in Table 1).

Preparation of 1b,c; General Procedure for Primary Nitro Compounds

To a solution of 1-nitropropane **3b** (2 mL, 22.5 mmol) in CH₂Cl₂ (150 mL) at 5 °C was added DBU (3.32 mL, 22.5 mmol), the reaction mixture was stirred at 5 °C for 5 min and then cooled down to -78 °C. A solution of BENA 6a (5.0 g, 21.4 mmol) in CH₂Cl₂ (49 mL) was added followed by Bu₄NF (5.35 mL 0.8 M solution in THF, 4.28 mmol). The mixture was stirred at -78 °C for 1 h, a solution of HOAc (2.57 mL, 45.0 mmol) in Et₂O (27 mL) was added, kept for additional 10 min, and poured into Et₂O-H₂O (5:3, 400 mL). The aqueous layer was extracted with Et₂O (3×50 mL), the combined organic layers were washed with H₂O (30 mL), brine (30 mL), dried (Na₂SO₄) and evaporated to give **7b** (3.25 g). Jones' reagent (6.80 mL 2.66 M solution, 18.0 mmol) was added at 20 °C to a solution of 7b in acetone (60 mL). Two more portions of Jones' reagent (18 mmol each) were added after 1 and 2 hours. After additional stirring for 2 h the reaction mixture was poured into Et₂O- H_2O (1:1, 130 mL), the aqueous layer was extracted with Et_2O (4 × 40 mL), the combined organic layers were washed with H_2O (4 × 8 mL), brine (10 mL), dried (MgSO₄) and the solvent evaporated, the residue was azeotropycally dried with toluene to give 2d (2.43 g). To a solution of 2d in THF (22 mL) at 20 °C was added BH₃·THF (14.7 mL, 1.33 M solution in THF, 19.6 mmol), after 3 h MeOH (2.48 mL, 61mmol). The mixture was poured into HCl (from 1.6 mL concd HCl and 47 mL H₂O), the aqueous layer was extracted with Et_2O (5 × 30 mL). The combined organic layers were washed with brine (20 mL), dried (Na2SO4) and evaporated, the residue was distilled to give 1b (1.81 g, yield 58% refers to BENA 6a).

Nitroalcohol **1c** was obtained analogously (yield 51% refers to **ANC** without purification of intermediate compounds **3c**).

Preparation of Diols 8a,b without Purification

This was performed analogously to that described above using BH_3 -THF (3.2 mmol per 1 mmol of **ANC 3**, 2.4 mL, 1.33 M solution in THF) at 20 °C for 4 h. Yields of target diols are given in Table 1.

Acknowledgment

This work was performed at the Scientific Educational Center for young chemists and supported by Russian Foundation for Basic Research (grants ## 99-03-32015 and 00-15-97455) and by The Federal Target Program 'Integration' (projects ## A0082 and B0062).

References

- (a) Nakamura, K.; Kitayama, T.; Inoue, Y.; Ohno, A. *Bull. Chem. Soc. Jpn.* **1990**, *63*, 91. (b) Ballini, R.; Astolfi, P. *Liebigs Ann. Chem.* **1996**, 1879. (c) Baer, H. H.; Chin, S.-H. L.; Shields, D. C. *Can. J. Chem.* **1973**, *51*, 2828.
- (2) Svekhgeimer, M.-G. A. Russ. Chem. Rev. (Engl. Trans.) 1998, 67, 35.
- (3) (a) Guy, A.; Marcel, S. X.; Andre, B. Ger. Offen. Patent 2603076, **1976**; *Chem. Abstr.* **1977**, *86*, 4928.
 (b) Pichuleac, I. A. M.; Bradescu, I.; Panaitescu, T.; Cilianu, S.; Ionescu, M. Rom. Patent 60029, **1976**; *Chem. Abstr.* **1978**, *88*, 190067.
- (4) (a) Ohrlein, R.; Schwab, W.; Ehrler, P.; Jager, V. Synthesis 1986, 535. (b) Ballini, R.; Bosica, G. J. Org. Chem. 1994, 59, 5466. (c) Nakamura, K.; Kitayama, T.; Inoue, Y.; Ohno, A. Bull. Chem. Soc. Jpn. 1990, 63, 91. (d) Astle, M. J.; Donat, F. J. J. Org. Chem. 1960, 25, 507. (e) Baer, H. H.; Chin, S.-H. L.; Shields, D. C. Can. J. Chem. 1973, 51, 2828.

PAPER

- (5) (a) Dilman, A. D.; Tishkov, A. A.; Lyapkalo, I. M.; Ioffe, S. L.; Strelenko, Yu. A.; Tartakovsky, V. A. *Synthesis* 1998, 181. (b) Dilman, A. D.; Tishkov, A. A.; Lyapkalo, I. M.; Ioffe, S. L.; Kachala, V. V.; Strelenko, Yu. A.; Tartakovsky, V. A. *J. Chem. Soc., Perkin Trans. 1* 2000, 2926.
- (6) Dilman, A. D.; Lyapkalo, I. M.; Ioffe, S. L.; Strelenko, Yu. A.; Tartakovsky, V. A. Synthesis 1999, 1767.
- (7) Kadentsev, V. I.; Kolotyrkina, N. G.; Stomakhin, A. A.; Chizhov, O. S.; Ioffe, S. L.; Lyapkalo, I. M.; Dilman, A. D.; Tishkov, A. A. *Russ. Chem. Bull. (Engl. Trans.)* **1998**, 47, 1225.
- (8) Rao, C. G.; Radnakrishna, A. S.; Singh, B. B.; Bhanagar, S. P. Synthesis 1983, 808.
- (9) Vankar, P.; Rathore, R.; Chandrasekan, S. J. Org. Chem. 1986, 51, 3063.
- (10) DePuy, C. H.; Ponder, B. W. J. Am. Chem. Soc. 1959, 81, 4629.
- (11) Kleinfelter, D. C.; Schleyer, P. R. Org. Synth. 1962, 42, 79.
- (12) Brown, H. C.; Heim, P.; Yoon, N. M. J. Am. Chem. Soc. 1970, 92, 1637.
- (13) Borch, R. F.; Bernstein, M. D.; Durst, H. D. J. Am. Chem. Soc. 1971, 93, 2897.
- (14) Koizumi, T.; Yamamoto, N.; Yosh, E. Chem. Pharm. Bull. 1973, 21, 312.
- (15) Gottlieb, H. E.; Katlyar, V.; Nudelman, A. J. Org. Chem. 1997, 62, 7512.
- (16) Bruson, H. A. U.S. Patent 2390918, **1945**; *Chem. Abstr.* 1946, 40, 2456.
- (17) α-Nitroethylbenzene was obtained by oxidation of acetophenone oxime: Emmons, W. D.; Pagano, A. S. J. Am. *Chem. Soc.* **1955**, *77*, 4557.
- (18) The ketones 2 (oils) were obtained with 95% purity (¹H NMR data). Their purification via distillation was complicated by elimination of HNO₂.
- (19) Harries, C.; Ferrari, U. Berichte 1903, 36, 656.
- (20) Fuso, R.; Rossi, S. Chem. Ind. (London) 1957, 1650.
- (21) Grimm, E. L.; Zschiesche, R.; Reissig, H.-U. J. Org. Chem. 1985, 50, 5543.
- (22) Stevens, T. E.; Emmons, W. D. J. Am. Chem. Soc. 1957, 22, 6008.