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Transition metal catalyzed allylic substitution reactions with carbon
nucleophiles are powerful C-C bond formation methods because of
their broad substrate scopes under mild reaction conditions.1 Charac-
teristic among them are Cu-catalyzed allylic substitutions, which have
excellent γ-regioselectivity. However, these reactions are only possible
with strongly nucleophilic organometallic reagents such as Grignard
or organozinc reagents.2 Also, the reaction of sp2-carbon nucleophiles
such as aryl or alkenylmetal reagents have not been well exploited
due to the poor nucleophilicity of these reagents.3

Herein, we report a new Pd-catalyzed allylic substitution methodol-
ogy, which allows for the reaction of allylic acetates with arylboronic
acids with high γ-selectivity and E/Z-selectivity. The reaction of
optically active allylic acetates having an R-stereogenic center took
place with excellent R-to-γ chirality transfer with syn-selectivity and
gave the corresponding optically active allyl-aryl coupling products
with a stereogenic center at the benzylic position.4-8

The reaction of allylic acetate 1a with phenylboronic acid (1.5 equiv)
in the presence of Pd(OAc)2 (10 mol %), 1,10-phenanthroline (12 mol
%) and AgSbF6 (10 mol %) in 1,2-dichloroethane at 60 °C for 6 h
afforded allyl-aryl coupling product 2a in 80% isolated yield (91%
convn of 1a) with complete regio- (2a/2a′ 100:0) and E/Z- (>20:1)
selectivities (Scheme 1).9,10 Conversely, the reaction of 1a′ afforded
2a′, an isomer of 2a with regard to the R/γ-regioselectivity, with
complete regio- (2a/2a′ 0:100) and E/Z- (>20:1) selectivities. Notably,
the Pd-catalyzed allylic substitution can be performed even under air
without affecting the product yield and selectivities.

In contrast, the reaction without 1,10-phenanthroline afforded a
complex mixture with no allyl-aryl coupling product (100% convn).
While 2,2′-bipyridyl was as effective as 1,10-phenanthroline (80%
yield), other diamines that we tested were less effective under otherwise
identical conditions. Phosphine ligands inhibited the reaction com-
pletely, giving only a trace of biphenyl. The catalytic reaction even
proceeded without AgSbF6 but with a significantly reduced yield
(54%).

The Pd-catalyzed allyl-aryl coupling can be applied to various
combinations of allylic acetates (1) and arylboronic acids (Table 1).10,11

The reactions afforded the γ-substitution products 2 exclusively (entries
3-13) or predominantly (entries 1 and 2), irrespective of the substitu-
tion patterns of the allylic acetates. Moreover, the reactions took place
with complete E-selectivity (not applicable for 1h, entry 13). The

reaction tolerates a variety of functional groups in both 1 and
arylboronic acids; MeO, CF3, chloride, ketone, aldehyde, ester, and
silyl ether functionalities can be present in the substrates (entries 2-8).

Table 1 also shows that the efficiency of the reaction is sensitive to
the steric demand of the arylboronic acids and the γ-substituent of 1,
but substantial steric bulk is tolerated at the R-position. For instance,
the reaction of 1a with o-tolylboronic acid is much slower than that
with phenylboronic acid and gave the coupling product 2ab in only
26% yield (entry 1). Furthermore, as the γ-substituent became bulkier
(H < Me < Et < i-Bu), the product yield decreased (Scheme 1 and
Table 1, entries 9-11). On the other hand, allylic acetates 1g and 1h,
bearing a bulky isopropyl group and two methyl groups, respectively,
at the R-position were efficiently coupled with phenylboronic acid
(entries 12 and 13).

Scheme 1

Table 1. Palladium-Catalyzed Reaction of Allylic Acetates with
Arylboronic Acidsa

a Conditions: Pd(OAc)2 (10 mol %), 1,10-phenanthroline (12 mol %),
AgSbF6 (10 mol %), 1 (0.50 mmol), arylboronic acid (0.75 mmol),
1,2-dichloroethane (3.0 mL), 60 °C, 12 h. b Isomeric ratios: E/Z > 20:1.
See ref 10. c Isolated yield. d Determined by 1H NMR. e Unreacted
allylic acetate (1) was detected in the crude material by 1H NMR
analysis (entry 1, 40%; entry 6, 14%; entry 11, 15%). f Conditions:
Pd(OAc)2 (5 mol %), 1,10-phenanthroline (10 mol %), AgSbF6 (10 mol
%), 1 (0.50 mmol), PhB(OH)2 (1.0 mmol), THF (3.0 mL), 60 °C, 12 h.
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The reaction of (S)-(E)-1g (97% ee), which has R-i-Pr and γ-Me
substituents, with phenylboronic acid in the presence of Pd(OAc)2,
1,10-phenanthroline, and AgSbF6 gave (R)-(E)-2g with 97% ee,
showing that the allyl-aryl coupling with R-chiral allylic acetates took
place with excellent R-to-γ chirality transfer with syn-selectivity
(Scheme 2).10 The reaction of (S)-(E)-1i (97% ee), which has R-Bu
and γ-Me substituents, with phenylboronic acid gave (R)-(E)-2i with
97% ee, suggesting that the efficiency of the chirality transfer is not
significantly influenced by the steric demand of the R-substituent. On
the other hand, the reaction of (S)-(E)-1j (97% ee), which has R-Hex
and γ-Et groups, afforded (S)-(E)-2j (89% ee) with slightly decreased
enantiomeric purity.

A possible mechanism for the Pd-catalyzed reaction is proposed in
Scheme 3. First, the reaction of 1,10-phenanthroline-ligated Pd(OAc)2

and AgSbF6 forms the cationic palladium(II) complex A. The catalytic
cycle is initiated by transmetalation between A and an arylboronic
acid to form the (σ-aryl)palladium(II) intermediate B.12 Subsequently,
B forms π-complex C with allylic acetate 1. Then, the π-complex C
undergoes the regioselective C-C double bond insertion into the
aryl-Pd bond with the assistance of intramolecular coordination of
the carbonyl oxygen of the acetoxy group to the cationic Pd center,
forming metallacyclic alkylpalladium(II) D. Finally, �-acetoxy elimina-
tion, rather than �-hydride elimination, from D affords coupling product
2 and regenerates A.13

The stereochemical outcome observed in the reaction of the chiral
allylic acetate (S)-(E)-1i can be rationalized by considering the
A1,3-strain in the substrate during the coordination-assisted insertion
(C′ to D′) and the syn-�-acetoxy elimination (from D′) as shown in
Scheme 4.14

In summary, we have established an air-tolerable, Pd-catalyzed
γ-selective and stereospecific substitution reaction between allylic
acetates and arylboronic acids, which gives allyl-aryl coupling

products with a stereogenic center at the benzylic position. Exploration
of the reaction mechanism and development of more advanced catalyst
systems and enantioselective reactions with a chiral catalyst are ongoing
in our laboratory.
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Scheme 2

Scheme 3. Proposed Mechanism

Scheme 4. Proposed Mechanism for the Pd-Catalyzed Allyl-Aryl
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