Monatshefte für Chemie Chemical Monthly

© Springer-Verlag 2001 Printed in Austria

Synthesis and Structure of O-silylated 2-Polyfluoroacyl-cycloalkanones

Dmitri V. Sevenard* and Gerd-Volker Röschenthaler

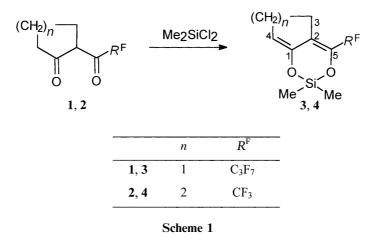
Institute of Inorganic and Physical Chemistry, University of Bremen, D-28334 Bremen, Germany

Summary. 2-Acyl-cycloalkanones containing polyfluoroalkyl groups react with dichlorodimethylsilane to form the corresponding heterocyclic *bis*-enol derivatives. The reaction of 2-polyfluoroacylcycloalkanones with chlorotrimethylsilane leads to mixtures of the corresponding (Z)-configured O-silylethers. The silatropy process in this case is slow on the NMR time scale.

Keywords. Chlorosilanes; Enoles; 2-Polyfluoroacyl-cycloalkanones; Silyl ethers; Tautomerism.

Introduction

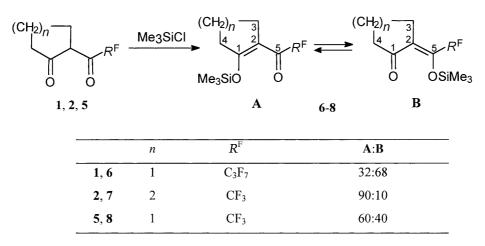
O-Silylated derivatives of 1,3-diketones are an important class of precursors in heteroatom chemistry [1–5]. One of the possible 1,3-diketone tautomeric forms is fixed in these compounds which have been obtained reacting 1,3-dicarbonyls with chlorosilanes. Thus, the reaction of 2-acetyl-cycloalkanones with dichlorosilanes R_2SiCl_2 (R = Me, Ph) has afforded heterocycles with a *bis*-enol structure [6]. Such silyl ethers are not simply the substitution products of the precursor diketones; for example, 1,1,1,5,5,5-hexafluoroacetylacetone exists as a (Z)-enol stabilized by hydrogen bonding, whereas the O-trimethylsilyl substituted derivative is (*E*)-configured [7], resulting in different chemical properties [2–4]. (*Z*)-Configurated silyl ethers of 1,3-diketones equilibrate fast and are indistinguishable by GLC and NMR spectroscopy at room temperature [1, 7, 8]. The transformation of (*Z*)-forms has been considered either as a 1,5-sigmatropic rearrangement [1] or as an internal nucleophilic displacement [7, 8].


We report here the synthesis and structure of O-silyl ethers of 2-polyfluoroacylcycloalkanones as a part of our systematic investigation of this class of compounds.

Results and Discussion

We found that 1,3-diketones 1 and 2 react with dichlorodimethylsilane in the presence of a twofold excess triethylamine to furnish the cyclic *bis*-enol derivatives 3 and 4 in 63 and 77% yield (Scheme 1).

In the ¹³C NMR spectra of **3** and **4** (Table 1), through-space coupling of C³ with fluorine (${}^{4}J_{C-F}$) was observed. An interesting feature was displayed by the carbon


^{*} Corresponding author. E-mail: sevenard@chemie.uni-bremen.de

nuclei of the 1,3-diene system: there is not only a triplet or quartet splitting for C^5 (${}^2J_{C-F}$) and C^2 (${}^3J_{C-F}$), but also for C^1 (${}^4J_{C-F}$) and, unexpectedly, for C^4 (${}^5J_{C-F}$). Moreover, in the 1H NMR spectrum of **4** (Table 2) further fine structure was detected for the olefinic triplet – its single components consist of badly resolved quartets (${}^6J_{H-F} = ca. 0.6$ Hz). Probably, the presence of conjugated C–C double bonds and the favourable W-arrangement of nuclei is responsible for the effective through-bond spin information transmission between C or H and F.

When 2-polyfluoroacyl-cycloalkanones 1, 2, and 5 were allowed to react with *TMS*Cl in the presence of triethylamine, the O-silyl ethers 6-8 were formed as yellowish moisture sensitive liquids in 63-79% yields (Scheme 2).

Compounds **6–8** exist in CDCl₃ solution as an equilibrium mixture of *endo-* and *exo*-enol forms **A** and **B** (Scheme 2). The rapid rearrangement between the (*Z*)-enol forms of silylated unsymmetrical 1,3-diketones at room temperature resulting in only one average set of signals in the respective NMR spectra has been the subject of earlier reports [1, 7]. However, for compounds **6–8**, separate signals of forms **A** and **B** could be observed at 25°C in CDCl₃. The ratio of tautomers in these mixture was determined by the integral intensities of the corresponding signals in the ¹H and

Scheme 2

		•						
	Me	$(CH_2)_n$	C^3	\mathbf{C}^2	C^4	$R^{ m F}$	Cõ	C ¹
e	-2.1	26.4	24.4 (t, ⁴ $J_{\rm C-F} = 3.8$)	112.3 (t, ${}^{3}J_{\rm C-F} = 1.9$)	126.2 (t, $^{5}J_{\rm C-F} = 2.6$)	109.7 (tq, ¹ J _{C-F} = 266.0, ² J _{C-F} = 37.7) 112.6 (tt, ¹ J _{C-F} = 255.8, ² J _{C-F} = 30.5) 118.3 (qt, ¹ J _{C-F} = 287.1, (qt, ¹ J _{C-F} = 287.1,	128.8 (t, $^2J_{\rm C-F} = 29.0$)	149.8 (t, ⁴ $J_{\rm C-F} = 1.9$)
4	- 1.5	22.7, 24.3	24.7 (q, ⁴ $J_{\rm C-F} = 2.8$)	111.2 (q, ${}^{3}J_{\rm C-F} = 1.1$)	115.0 (q, ${}^{5}J_{\rm C-F} = 2.8$)	${}^{2}J_{C-F} = 34.3)$ 121.5 (q, ${}^{1}J_{C-F} = 274.2)$	133.3 $(q, {}^2J_{C-F} = 34.8)$	144.4 (s)

z)	
Table 2. ¹ H and ¹⁹ F NMR data of compounds 3 and 4 (δ /ppm, J/H	H ₁

H1 H1	$(CH_2)_{n+1} = CH$	2.37–2.41, 2.69–2.79 5.23 (t, ${}^{3}J_{\rm H-H} = 2.9$) -128.8 (br s, CF ₂) (two m) -118.34 (m, CF ₂)	i, 2.12–2.21, 2.42–2.52 5.28 (tq, ${}^{3}J_{\rm H-H}=4.6, {}^{6}J_{\rm H-F}pprox 0.6)$
	$(CH_2)_{n+1}$	2.37–2.41 (two m)	1.60–1.75 (three m)
	Me	0.35	0.34
		e	4

O-Silylated 2-Polyfluoroacyl-cycloalkanones

913

¹⁹F NMR spectra. The equilibrium depends not only strongly on the size of the 1,3-diketone carbocycle, but also on the chain length of the polyfluoroalkyl group.

The NMR spectra (Tables 3–5) of **6–8** show two sets of signals. The structure determination of the coexisting isomeric forms **A** and **B** could be achieved by ¹³C NMR spectroscopy (Table 5). The $\delta_{\rm C}$ values of C² in both sets (111.8–128.5 ppm) represent unequivocally their olefinic character, excluding the C-silylated isomer. The assignments for C^{CO} (C¹ and C⁵) could be performed *via* their ²*J*_{C-F} coupling. The respective $\delta_{\rm C}$ values of form **B** differ very strongly ($\Delta\delta({\rm C}^1-{\rm C}^5) = ca.$ 64 ppm), the signal of the the polyfluoroacyl keto carbon C⁵ appearing at higher field (137.5–141.8 ppm). The shielding of the carbonyl carbon nuclei increases substantially upon enolization [9], referring to an *exo*-enol structure for **B**. The magnitude of ¹*J*_{C-F} in the trifluoromethylated compounds **7** and **8** differs markedly for the two coexisting forms; for **B**, ¹*J*_{C-F} = 277.6 (**7**) and 278.0 (**8**) Hz was observed (analogously to the *exo*-enol compound **4** with ¹*J*_{C-F} = 274.2 Hz). The *exo*-enol structure of form **B** in **7** is additionally confirmed by a quartet splitting (⁵*J*_{C-F} = 0.8 Hz) found for the carbons of Me₃Si. The C³ signal exhibits a fine structure resulting from a ⁴*J*_{C-F} coupling, an unequivocal proof for the (*Z*)-configuration of the exocyclic C–C double bond [10, 11].

In form **A**, the signals of C^{CO} are in a similar region ($\Delta\delta$ (C¹-C⁵) = 3.7–13.9 ppm). For the CF₃ group, ${}^{1}J_{C-F}$ values of 289.2 (7) and 289.4 (8) Hz were found. For compounds containing trifluoroacetyl groups in conjugation with a fixed *endo*-enol fragment a coupling constant of ${}^{1}J_{C-F}$ = 289.2 Hz has been

		endo-enol form (A)		exo-enol form (B)
	Me	$(CH_2)_{n+2}$	Me	$(CH_2)_{n+2}$
6 ^a	0.26	1.78–1.97 (m, CH ₂), 2.40–2.67 (m, 2 CH ₂)	0.23	1.78–1.97, 2.73–2.86 (two m) 2.27 (t, CH ₂ , ${}^{3}J_{H-H} = 7.8$)
7 ^b	0.23	1.49–1.72 (m, 2 CH ₂) 2.27 (t, 2 CH ₂ , ${}^{3}J_{H-H} = 5.5$)	0.19	1.65–1.93, 2.39–2.50 (two m)
8 °	0.17	1.71–1.85 (m, CH ₂), 2.47 (t, CH ₂ , ${}^{3}J_{H-H} = 7.6$) 2.59–2.76 (m, CH ₂)	0.13	1.71–1.85 (m, CH ₂) 2.16 (t, CH ₂ , ${}^{3}J_{H-H} = 7.7$) 2.47 (t, CH ₂ , ${}^{3}J_{H-H} = 7.6$)

Table 3. ¹H NMR data of compounds **6–8** (δ /ppm, J/Hz)

^a A:B = 33:67; ^b A:B = 90:10; ^c A:B = 60:40

Table 4. ¹⁹F NMR data of compounds **6–8** (δ /ppm, J/Hz)

	endo-enol form (A)	exo-enol form (B)
6 ^a	-127.37 (s, CF ₂)	-128.11 (s, CF ₂)
	-119.16 (q, CF ₂ , ${}^{4}J_{F-F} = 8.6$)	-116.43 (q, CF ₂ , ${}^{4}J_{\rm F-F} = 5.2$)
	-81.60 (m, CF ₃)	-82.30 (m, CF ₃)
7 ^b	-75.58(s)	-66.54(s)
8 ^c	-77.33 (s)	-70.48(s)

^a A:B = 31:69; ^b A:B = 90:10; ^c A:B = 60:40

Tab	le 5. ¹³ C NMR data	Table 5. ¹³ C NMR data of compounds 6–8 ($\delta/\text{ppm}, J/\text{Hz}$)	$/\mathrm{ppm},J/\mathrm{Hz})$					
	Me	C ³	$(\mathrm{CH}_2)_n$	C ⁴	C ²	$R^{ m F}$	C ¹	C2
6 ^a	0.2 (s)	28.6 (s) ^c	19.5 (s)	36.6 (s)	113.6 (s)	109.0–117.8	172.4	178.7 1. 2 r 27 33
7 a	0.6 (s)	21.6, 22.2, 24.1	, 24.1	32.3 (s)	111.8 (s)	(m s) 116.7 /2 17 200.2)	166.7	$\begin{array}{ccc} (t, \ J_{C-F} = 21.5) \\ 180.6 \\ (z, \ 2T \\ z \in S) \end{array}$
Sa	-0.2 (s)	(unee s) 27.9 (s)	19.6 (s)	36.2 (s)	111.9 (s)	$(q, -J_{C-F} = 209.2)$ 116.4 (-1, -1, -200.4)	171.8	$(q, -r_{C-F} = 33.3)$ 175.5
6 b	0.2 (s)	27.0	19.9	39.0 (s)	122.9 (s)	$(q, J_{C-F} = 289.4)$ 109.0	205.0	$(q, {}^{z}J_{C-F} = 36.4)$ 141.8
		$(t, {}^{4}J_{C-F} = 5.5)$	(t, $^{5}J_{\rm C-F} = 1.9$)			$\begin{array}{l} (\mathrm{tq},\ ^{1}J_{\mathrm{C-F}}=266.4,\\ ^{2}J_{\mathrm{C-F}}=38.1)\\ 112.1\\ (\mathrm{tt},\ ^{1}J_{\mathrm{C-F}}=259.2,\\ ^{2}J_{\mathrm{C-F}}=31.8)\\ 117.7\\ (\mathrm{ct}^{-1}L_{\mathrm{C-F}}=287.8)\\ (\mathrm{ct}^{-1}L_{\mathrm{C-F}}=287.8)\end{array}$		$(t, {}^{2}J_{C-F} = 26.4)$
						$^{2}J_{\rm C-F} = 33.9$		
7 b	-0.2	24.9	26.4, 29.6	43.2 (s)	128.5	120.1	201.9	137.5 $f_{2} = 21 = -36.6$
S ^b	$(q, J_{C-F} = 0.0)$ -0.4 (s)	(q. $J_{\rm C-F} = 0.6$) 26.4 (q. ${}^4J_{\rm C-F} = 2.7$)	(100 s) 19.5 (s)	38.9 (s)	(q, $J_{C-F} = 2.3$) 120.0 (q, $^{3}J_{C-F} = 1.8$)	$\begin{array}{l} (q, \ \ J_{C-F} = 271.0) \\ 120.1 \\ (q, \ \ ^{1}J_{C-F} = 278.0) \end{array}$	204.7	(q, $^{2}J_{C-F} = 30.0$) 141.2 (q, $^{2}J_{C-F} = 35.5$)
a en	ido-enol form A; ^b es	^a endo-enol form A ; ^b exo-enol form B ; ^c broad signal, probably due to unresolved ${}^{4}J_{\rm C-F}$	d signal, probably du	ie to unresolv	red ⁴ J _{C-F}			

O-Silylated 2-Polyfluoroacyl-cycloalkanones

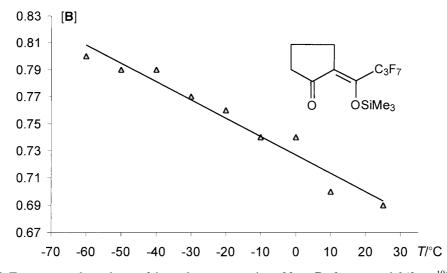


Fig. 1. Temperature dependence of the molar concentration of form B of compound 6 (from ¹⁹F NMR data); $\Delta H^{\circ}_{A-B} = -3685 \pm 324 \text{ J/mol}, \Delta S^{\circ}_{A-B} = -6.22 \pm 1.48 \text{ eu}$

observed [12]. These arguments account for the *endo*-enol structure of **A** (cf. Ref. [13]). In the case of a third possible form with (*E*)-configuration of the *exo*-C-C-double bond, the shifts of the carbonyl carbons would obviously be similar to those in form **B** and should show considerably larger $\Delta \delta_{\rm C}$ values, an additional argument for the *endo*-structure of the second form.

In the ¹H NMR spectra (Table 3) the Me₃Si signals of **A** und **B** are distinctly separated. The respective signal of the *exo*-form **B** is shifted for all three compounds to higher field compared to *endo*-form **A**.

The ¹⁹F NMR spectra of the CF₃ substituted compounds **7** and **8** (Table 4) show the *endo*-enol **A** singulet at higher field than in the *exo*-enol **B** ($\delta_F = -75.58$ and -66.54 (**7**), -77.33 and -70.48 (**8**) ppm). The CF₃ signal of the *exo*-enol **B** in **7** was observed in the same region as the corresponding resonance of the related compound **4** with a fixed *exo*-enol fragment ($\delta_F = -66.54 vs. -65.87 ppm$), which is in good agreement with the signal assignment.

Low temperature ¹⁹F NMR measurements of **6** prove the presence of the equilibrium $\mathbf{A} \rightleftharpoons \mathbf{B}$. With increasing concentration of **B** that of **A** decreases (Fig. 1), thus confirming the structure of the coexisting isomers (the (*E*)-*exo*-enol form is unable to be converted into the other forms [7]).

In conclusion, 2-polyfluoroacyl cycloalkanones act as O-nucleophiles in reactions with Si-electrophiles. For monosilylated derivatives of 2-polyfluoroacyl-cycloalkanones (unlike for linear CF_3 -1,3-diketones), the silatropy process in $CDCl_3$ is slow on the NMR time scale.

Experimental

General

Boiling points are uncorrected. Mass spectra (EI, 70 eV) were measured on a MAT 8200 spectrometer. NMR spectra (standards: *TMS* (¹H, ¹³C), CFCl₃(¹⁹F)) were recorded as 50% CDCl₃

solutions on a Bruker DPX-200 spectrometer operating at 200.1 (¹H), 50.3 (¹³C), and 188.3 (¹⁹F) MHz. 2-Polyfluoroacyl-cycloalkanones **1** [14], **2** [15, 16] and **5** [15] were prepared by a *Claisen*-type condensation of cyclopentanone or cyclohexanone and alkylpolyfluoroacylates in the presence of sodium methylate in dry ether [15, 16].

General method for the synthesis of compounds 3 and 4

To a solution of 52 mmol 1,3-diketone and 100 mmol dry triethylamine (10.4 g) in 100 cm³ dry diethyl ether, a solution of 52 mmol (6.7 g) freshly distilled dichlorodimethylsilane in 20 cm³ dry diethyl ether was added within 0.5 h. After stirring for 16 h, triethylamine hydrochloride was filtered off and washed with cold diethyl ether (2×10 cm³). The solvent was removed, and the residue was distilled *in vacuo*.

7-Perfluoropropyl-1,2-dihydro-5,5-dimethyl-4,6-dioxa-5-silaindene (3; C₁₁H₁₁F₇O₂Si)

Yellow oil; yield: 63%; b.p.: 94–96°C (20 torr); MS: m/z (%) = 336 (M⁺, 100), ([M-C₂F₅]⁺, 72), 167 ([M-C₃F₇]⁺, 38), and other fragments; HRMS: found 336.0409, calcd. 336.0417.

4-Trifluoromethyl-6,7-dihydro-2,2-dimethyl-5H-1,3-dioxa-2-silanaphthalene (4; C₁₀H₁₃F₃O₂Si)

Colorless liquid; yield: 77%; b.p.: 48–51°C (0.8 torr, first distillation), 41–44°C (0.9 torr, second distillation); MS: m/z (%) = 250 (M⁺, 100), 235 ([M-Me]⁺, 62), 181 ([M-CF₃]⁺, 70), 166 ([M-Me-CF₃]⁺, 10), and other fragments; HRMS: found: 250.0633, calcd. 250.0637.

General method for the synthesis of compounds 6-8

To a solution of 8 mmol 1,3-diketone and 8 mmol (0.8 g) dry triethylamine in 10 cm^3 dry diethyl ether, a solution of 8 mmol (0.9 g) freshly distilled chlorotrimethylsilane in 5 cm³ dry diethyl ether was added within 0.5 h. After stirring for 0.5 h, triethylamine hydrochloride was filtered off and washed with cold diethyl ether (2 × 5 cm³). The solvent was removed, and the residue was distilled *in vacuo*. The products are yellowish liquids (compound **8** could not be isolated in pure state, but was characterized by MS and NMR spectroscopy).

2-Perfluorobutanoyl-1-trimethylsiloxycyclopentene (6; C12H15F7O2Si)

Yield: 79%; b.p.: $52-55^{\circ}C$ (1 torr); MS: m/z (%) = 352 (M⁺, 13), 337 ([M-Me]⁺, 100), 183 ([M-C₃F₇]⁺, 45), 73 (Me₃Si⁺, 21), 15 (Me⁺, 10), and other fragments; HRMS: found 352.0720, calcd. 352.0730.

2-Trifluoroacetyl-1-trimethylsiloxycyclohexene (7; C₁₁H₁₇F₃O₂Si)

Yield: 63%; b.p.: 114–116°C (10 torr); MS: m/z (%) = 266 (M⁺, 18), 251 ([M-Me]⁺, 70), 197 ([M-CF₃]⁺, 100), 169 ([M-CF₃CO]⁺, 6), 97 (CF₃CO]⁺, 8), 73 (Me₃Si⁺, 76), 69 (CF₃⁺, 10), and other fragments; HRMS: found 266.0966, calcd. 266.0950.

$\label{eq:2-Trifluoroacetyl-1-trimethylsiloxycyclopentene} (8; C_{10}H_{15}F_3O_2Si)$

Yield: 74%; b.p.: 50–51°C (1 torr); MS: m/z (%) = 252 (M⁺, 12), 237 ([M-Me]⁺, 100), 183 ([M-CF₃]⁺, 32), 73 (Me₃Si⁺, 56), and other fragments.

918 D. V. Sevenard and G.-V. Röschenthaler: O-Silylated 2-Polyfluoroacyl-cycloalkanones

Acknowledgements

We gratefully acknowledge generous gifts of chemicals from Dr. K.-H. Hellberg, Solvay Fluor and Derivate GmbH, Hannover, Germany. I. Erxleben and Dr. P. Schulze are thanked for recording mass spectra.

References

- [1] Jullien J, Pechine JM, Perez F, Piade JJ (1982) Tetrahedron 38: 1413
- [2] Francke R, Röschenthaler G-V (1988) Phosphorus, Sulfur, and Silicon 36: 125
- [3] Francke R, Röschenthaler G-V (1989) Z Anorg Allg Chem 572: 135
- [4] Seifert F-U, Röschenthaler G-V (1994) Phosphorus, Sulfur, and Silicon 86: 157
- [5] Schoth R-M, Sevenard D, Pashkevich K, Röschenthaler G-V (2000) Coordination Chem Rev 210: 101
- [6] Cella JA, Mitchell TD (1983) J Organomet Chem 244: C5
- [7] McClarin JA, Schwartz A, Pinnavaia TJ (1980) J Organomet Chem 188: 129
- [8] Howe JJ, Pinnavaia TJ (1969) J Am Chem Soc 91: 5378
- [9] Kol'tsov AI, Ignat'ev Yu A, Kopeykin VV, Panarin EF (1976) Zh Org Khim 12: 2036
- Bouillon J-P, Wynants C, Janousek Z, Viehe HG, Tinant B, Feneau-Dupont J, Declercq JP (1994) Bull Soc Chim Belg 103: 243
- [11] Bouillon JP, Frisque-Hesbain A-M, Janousek Z, Viehe HG (1995) Heterocycles 40: 661
- [12] Sevenard DV, Khomutov OG, Kodess MI, Pashkevich KI, Loop I, Lork E, Röschenthaler G-V (2001) Australian J Chem (in press)
- [13] Ebraheem KAK (1991) Monatsh Chem 122: 157
- [14] Trabelsi H, Cambon A (1992) Synthesis 315
- [15] Park JD, Brown HA, Lacher JR (1953) J Am Chem Soc 75: 4753
- [16] Lyga JW, Henrie RN, Meier GA, Creekmore RW, Patera RM (1993) Mag Res Chem 31: 323

Received February 26, 2001. Accepted (revised) March 27, 2001