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Abstract: A practical synthesis of ortho-dialkylchlorosilyl-func-
tionalized triarylphosphanes has been developed. An X-ray crystal
structure analysis of phosphane 3 unambiguously confirmed the
constitution of the new phosphane functionalized chlorosilanes. It
also showed an interesting P/Si interaction, which may render this
compound a model for the early stages of the mechanism of SN2 nu-
cleophilic displacement at silicon.
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Phosphanes are an important class of organic compounds
for a variety of applications ranging from their use as
ligands in transition metal catalysis,1 Wittig ylide forma-
tion,2 Mukaiyama redox condensations,3 Mitsunobu reac-
tions,4 and nucleophilic organocatalysis.5 Particularly
useful are triarylphosphanes occupied with a functional
group in ortho-position, which can be attached easily to
organic substrates (Figure 1). Such phosphanes are useful
for the preparation of ligand libraries applicable to homo-
geneous catalysis,6 they may serve as mediators in
Staudinger ligation reactions7 as well as substrate bound
catalyst/reagent-directing groups in organic synthesis and
catalysis.8

Figure 1 Triarylphosphanes equipped with useful functional
groups in the ortho-position.

In this respect an interesting, yet unknown, ortho-func-
tionalization of a triarylphosphane would be a silyl chlo-
ride group, since it can be attached easily to protic
functions such as alcohols, phenols, amines, carboxylic
acids etc. 

We herein report on a first and practical synthesis of
ortho-dialkylsilyl chloride-functionalized triphenylphos-
phanes and their characterization via X-ray crystal struc-
trure analysis.

Synthesis of these compounds starts from ortho-dibro-
mobenzene, which was treated at –120 °C with one equiv-
alent of n-BuLi to undergo smoothly a monohalogen–
metal exchange (Scheme 1).9 The intermediate organo-
lithium compound was reacted instantaneously at the
same temperature with chlorodiphenylphosphane, which
allowed to suppress elimination to benzyne. After warm-
ing of the reaction mixture to –80 °C during one hour and
aqueous workup, the ortho-bromotriphenylphosphane 1
was obtained in good yield. The reaction has been run on
a 12 g scale.

Scheme 1 Preparation of new phosphane functionalized chlorosi-
lanes 2 and 3.

To install a dialkylchlorosilane function, phosphane 1 was
subjected to halogen–metal exchange at room tempera-
ture by reacting with n-butyllithium. The resulting aryl-
lithium intermediate was quenched at the same
temperature with dichlorodimethylsilane to give phosph-
anyl-substituted chlorosilane 2 (Scheme 1).

Unfortunately, it was found that the dimethylchlorosilane
2 showed extreme sensitivity towards traces of moisture,
which led to the immediate formation of the siloxane
bridged diphosphane 4 (Scheme 2).

Scheme 2 Hydrolysis of chlorosilane 2.
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It was envisioned that incorporation of steric hindrance
into the chlorosilane function could improve stability of
this function towards hydrolysis. Thus, treatment of the
ortho-lithiotriphenylphosphane obtained from compound
1 with diisopropyldichlorosilane at room temperature fur-
nished in quantitative yield the ortho-diphenylphospha-
nyl-functionalized chlorosilane 3 as colorless crystals.
Compound 3 turned out to be rather robust, since it is sta-
ble under air and at room temperature for at least one
month. From a solution of chlorosilane 3 in petroleum
ether suitable single crystals could be obtained which al-
lowed to perform an X-ray-crystal structure analysis
(Figure 2, Table 1,2). 

Figure 2 X-ray plot (ORTEP) of the structure of 3 in the solid state.

The X-ray crystal structure of 3 suggests an electronic in-
teraction between the phosphorus and the silicon atom
(see Figure 3). Thus, the orientation of the P-lone pair is
such that an efficient n(P)–s*(SiCl) orbital interaction is
feasible. Consistently, the P--Si–Cl angle is almost linear
with 162.36(0.03)°. As a consequence of this interaction,
the distance between the phosphorus and the silicon atom
is rather small with 3.31 Å, and the silicon atom adopts a
distorted trigonal bipyramidal geometry, which is indicat-
ed by significantly increased C–Si–C-angles (112–114°)
compared to 109.28° for an ideal tetrahedral system. Fi-
nally, the Si–Cl bond distance is elongated with 2.10 Å
compared to the standard Si–Cl bond length expected for
a tetrahedral R3SiCl system of 2.05 Å.10 This interpreta-
tion of the geometrical data of 3 is in agreement with a re-
cent series of X-ray crystal structures of N-
(halogenodimethylsilylmethyl)lactams, which have been
discussed as a model of the SN2 nucleophilic displacement
at the silicon atom.11 Thus, X-ray structure of compound
3 may be regarded as a model for the early stages of the
SN2 nucleophilic displacement reaction at silicon.

Figure 3 Consideration of chlorosilylphosphane 3 as a model com-
pound for the early stages of the mechanism of SN2 nucleophilic dis-
placement at silicon.

Furthermore, NMR studies in solution indicate that the P-
lone-pair orientation of phosphines 2 and 3 is similar to
the one found in the X-ray crystal structure of 3. Thus, the
signal of b-arylcarbon atom (C36, X-ray plot in Figure 2)
of phosphanes 2 and 3 was observed at d = 142–144.
These signals are split to a doublet with a large 2JC,P cou-
pling constant of 47–51 Hz. A correlation between the di-
hedral angle of P-lone-pair P–C–bC and the size of the
2JC,P coupling is well-established and suggests in this case
a dihedral angle of approximately 0° which is in agree-
ment with the geometry found in the crystalline state of
3.12

In summary, we have developed a practical high-yielding
two-step synthesis of two ortho-silyl chloride functional-
ized triarylphosphanes. X-ray crystal structure analysis of
silylphosphane 3 shows an interesting P/Si interaction,
which may allow to regard 3 as a model compound for the
early stages of the mechanism of SN2 nucleophilic dis-
placement at silicon.

Table 1 Selected Bond Lenghts [Å] of 3 in the Solid State

Bond Lenghts (in Å)

C(41)–Si(1) 1.874(2)

C(45)–Si(1) 1.882(2)

C(36)–Si(1) 1.893(2)

Cl(1)–Si(1) 2.0999(8)

C(31)–C(36) 1.420(3)

C(31)–P(1) 1.845(2)

P(1)–Si(1) 3.3117(8)

Table 2 Selected Bond Angles of 3 in the Solid State

Bond Angles (in degrees)

C(36)–Si(1)–Cl(1) 104.77(7)

C(41)–Si(1)–C(45) 113.98(11)

C(45)–Si(1)–C(36) 112.25(10)

C(41)–Si(1)–C(36) 113.30(10)

C(31)–C(36)–Si(1) 122.99(16)

C(36)–C(31)–P(1) 117.79(16)

P(1)–Si(1)–Cl(1) 162.36(3)

P
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Reactions were performed in flame-dried glassware under argon
(purity >99.998%). Petroleum ether used refers to the fraction with
bp 40–60 °C. The solvents were dried by standard procedures, dis-
tilled and stored under argon. All temperatures quoted are not cor-
rected. 1H, 13C NMR spectra: Varian Mercury 300 HFCP, Bruker
AM 400, Bruker DRX 500, with TMS, CHCl3 or C6H6 as internal
standards. 31P NMR spectra: Varian Mercury 300 HFCP with 85%
H3PO4 as external standard. 29Si NMR: Bruker AM 400 with TMS
as internal standard. Melting points: Melting point apparatus by Dr.
Tottoli (Büchi). Elemental analyses: Vario EL (Elementaranalysen
GmbH). Mass spectrometry: Thermo Finnigan MAT 8200 and TSQ
7000. Flash chromatography: silica gel 40–63 mm (230–400 mesh,
Macherey-Nagel).

o-Bromodiphenylphosphinobenzene (1)
To a solution of 1,2-dibromobenzene (12.4 g, 52.5 mmol) in Et2O–
THF (100 mL/100 mL) at –120 °C (with a cold bath composed of
ca. 85% Et2O, 10% acetone and 5% pentane and liquid N2) was add-
ed dropwise a solution of n-BuLi (1.47 M in hexanes, 35.7 mL, 49
mmol). The resulting mixture was stirred for further 45 min at –
120 °C followed by the addition of chlorodiphenylphosphine (11.03
g, 50 mmol). The reaction mixture was allowed to warm to –80 °C
during 1 h. At this temperature, a sat. aq solution of NH4Cl (80 mL)
was added. The resulting mixture was then allowed to warm to r.t.
during 1.5 h. After phase separation, the aqueous phase was extract-
ed with Et2O (3 × 75 mL). The combined organic phases were dried
(MgSO4) and all volatile components were removed in vacuo to fur-
nish 18 g of the crude product, which directly crystallized. The
product was dissolved in CH2Cl2 (170 mL) and filtered over a small
plug of silica gel to remove the traces of phosphane oxide. Recrys-
tallization from petroleum ether–Et2O (2:1) gave 12.7 g (76%) of
very fine white crystals of 1; mp 125 °C. 
1H NMR (300.00 MHz, CDCl3, 25 °C): d = 6.75–6.81 (m, 1 H,
ArH), 7.16–7.23 (m, 2 H, 2 ArH), 7.30–7.42 (m, 10 H, 2 C6H5),
7.58–7.62 (m, 1 H, ArH). 
13C NMR (75.45 MHz, CDCl3, 25 °C): d = 127.6, 128.8 (d,
3JC,P = 7.2 Hz, 4 C), 129.2 (2 C), 130.1 (d, 2JC,P = 30.1 Hz), 130.3,
133.2 (d, 3JC,P = 2.3 Hz), 134.2 (d, 2JC,P = 20.1 Hz, 4 C), 134.6,
136.1 (d, 1JC,P = 11.2 Hz, 2 C), 139.1 (d, 1JC,P = 12.0 Hz). 
31P NMR (121.5 MHz, CDCl3, 25 °C): d = –4.5.

Chlorodimethyl(2¢-diphenylphosphanyl)phenylsilane (2) 
To a solution of bromo-2-diphenylphosphinobenzene (1; 170.6 mg,
0.5 mmol) in a mixture Et2O–toluene (6 mL, 1:2) was added, a so-
lution of n-BuLi (1.57 M in hexanes, 0.350 mL, 0.55 mmol) at r.t.
After 10 min, pure dichlorodimethylsilane (193 mg, 1.5 mmol) was
added. The resulting reaction mixture was filtered under argon with
a syringe equipped with a syringe filter (0.45 mm porosity, 13 mm
diameter). Evaporation of all volatile components in oil pump vac-
uo furnished 2 quantitatively. Spectroscopical analysis showed the
presence of £10% impurity by siloxane 4 which could not be sepa-
rated. 
1H NMR (500.00 MHz, CDCl3, 25 °C): d = 0.74 [s, 6 H, Si(CH3)2],
7.13–7.18 (m, 6 H, ArH), 7.21–7.25 (m, 5 H, ArH), 7.29 [app td, 1
H, 3J2H = 7.5 Hz, 4J1H = 1.5 Hz, C(5)-H], 7.34 [app tt, 1 H, 3J2H = 7.5
Hz, 4J2H = 1.5 Hz, C(4)-H], 7.93 [dddd, 1 H, 3J1H = 7.5 Hz,
3JH,/P = 2.8 Hz, 4J1H = 1.5 Hz, 5J1H = 0.6 Hz, C(3)-H]. 
13C NMR (125,7 MHz, CDCl3, 25 °C): d = 5.78, 5.89, 128.59 (d,
3JC,P = 6.6 Hz, 4 C), 128.62 (2 C), 129.00, 130.54, 133.29 (d,
2JC,P = 18.3 Hz, 4 C), 135.40, 135.53 (d, 2JC,P = 16.4 Hz), 137.22 (d,
1JC,P = 9.4 Hz, 2 C), 142.34 (d, 1JC,P = 10.3 Hz), 144.47 (d,
2JC,P = 47.6 Hz). 
31P NMR (121.5 MHz, CDCl3, 25 °C): d = –10.4. 

MS (EI, 70 eV): m/z (%) = 354 (11), 336 (14), 319 (20), 263 (20),
262 (86), 195 (16), 183 (100), 152 (17), 108 (30), 107 (17), 57 (17). 

HRMS: m/z calcd for C20H20ClPSi: 354.07604; found: 354.07601.

Chlorodiisopropyl(2¢-diphenylphosphanyl)phenylsilane (3)
To a solution of bromo-2-diphenylphosphinobenzene (1; 3.41 g, 10
mmol) in a mixture of Et2O–toluene (60 mL, 1:2) was added at r.t.,
a solution of n-BuLi (1.6 M in hexanes, 6.87 mL, 11 mmol). After
15 min, pure dichlorodiisopropylsilane (2.77 g, 15 mmol) was add-
ed. The resulting mixture was stirred for further 2 h, followed by
successive filtration with a filter paper and a syringe filter (0.45mm
porosity; 30 mm diameter). All volatile components were removed
in vacuo to give analytically pure phosphane 3; yield: 4.0 g (97%);
colorless crystals; mp 92 °C. 
1H NMR (300.00 MHz, C6D6, 25 °C): d = 0.97 [d, 6 H, 3J1H = 7.3
Hz, CH(CH3)2], 1.28 [d, 6 H, 3J1H = 7.3 Hz, CH(CH3)2], 2.03 [sept,
1 H, 3J6H = 7.3 Hz, CH(CH3)2], 2.04 [sept, 1 H, 3J6H = 7.3 Hz,
CH(CH3)2], 6.97–7.16 (m, 8 H, ArH), 7.25 (m, 4 H, ArH), 7.36 (m,
1 H, ArH), 8.34 (m, 1 H, ArH). 
13C NMR (125.7 MHz, C6D6, 25 °C): d = 17.69, 17.80, 18.40,
18.42, 18.44, 18.45, 128.75 (2 C), 128.83 (d, 3JC,P = 6.5 Hz, 4 C),
129.41 (d, 4JC,P = 1.2 Hz), 130.21, 133.48 (d, 2JC,P = 18.1 Hz, 4 C),
135.90 (d, 4JC,P = 1 Hz), 137.71 (d, 2JC,P = 17.6 Hz), 142.08 (d,
1JC,P = 8.8 Hz, 3 C), 142.81 (d, 2JC,P = 51 Hz). 
31P NMR (121.5 MHz, C6D6, 25 °C): d = –9.7. 
29Si NMR (79.46 MHz, CDCl3, 25 °C): d = 32.6 (d, JSi,P = 7.4 Hz). 

MS (EI, 70 eV): m/z (%) = 410 (34), 369 (39), 368 (33), 367 (100),
325 (26), 290 (42), 248 (54), 212 (16), 211 (16), 183 (97), 152 (43),
107 (20). 

HRMS: m/z calcd for C24H28ClPSi: 410.1386; found: 410.1387. 

Anal. Calcd for C24H28ClPSi (410.97): C, 70.14; H, 6.86. Found: C,
70.05; H, 6.87.

X-ray Crystal Structure Analysis of Phosphane 313

Colorless crystals of phosphane 3 were grown from a petroleum
ether solution at r.t.: C24 H28 Cl P Si, M = 410.97, a = 10.1647(6),
b = 12.3576(6), c = 17.7690(10) Å, b = 97.319(3)°, V = 2213.8(2)
Å3, Z = 4, dcalcd = 1.233 Mg/m3. Crystal system: monoclinic, space
group P21/c. Data collection and processing: crystal size:
0.3 × 0.1 × 0.08 mm, Enraf-Nonius KappaCCD diffractometer,
l = 0.71073 Å, collected reflections: 8505, independent: 5024
(Rint = 0.048), observed: 3036 [I > 2s(I)], m = 0.306 mm–1, no ab-
sorption correction. Solution by  direct phase determination (SIR-
97), full-matrix least-squares refinement on F2 (SHELXL-97), and
hydrogen positions were refined isotropically. Parameters 356, final
indices [I > 2 s(I)]: R = 0.0432, Rw

2 = 0.0822, Goodness-of-fit on
F2: 0.915, largest diff. peak: 0.292 eÅ–3.

Degradation Product 4
Exposure of the arylchlorodimethylsilane 2 to air led to the quanti-
tative formation of siloxane 4; colorless crystals; mp 141 °C. 
1H NMR (500.00 MHz, CDCl3, 25 °C): d = 0.49 (s, 12 H, 4 CH3),
7.15–7.23 (m, 10 H, ArH), 7.25–7.30 (m, 12 H, ArH), 7.30–7.36
(m, 4 H, ArH), 7.88 [m, 2 H, 2 C(3)-H]. 
13C NMR (125.7 MHz, CDCl3, 25 °C): d = 9.6 (2 C), 10.1 (2 C),
128.25 (4 C), 128.41 (d, 3JC,P = 6.4 Hz, 8 C), 128.48 (2 C), 129.49
(2 C), 133.36 (d, 2JC,P = 18.5 Hz, 8 C), 135.06 (d, 2JC,P = 16.4 Hz, 2
C), 135.18 (2 C), 138.21 (d, 1JC,P = 11.5 Hz, 4 C), 141.9 (d,
1JC,P = 12.0 Hz, 2 C), 148.1 (d, 2JC,P = 47.1 Hz, 2 C). 
31P NMR (121.5 MHz, CDCl3, 25 °C): d = –9.94. 

MS (EI, 70 eV): m/z = 654 (38), 577 (48), 468 (90), 377 (28), 327
(25), 319 (62), 262 (68), 195 (32), 183 (100), 108 (26). 

HRMS: m/z calcd for C40H40OPSi: 654.2092; found: 654.2090.
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