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Abstract: A new class of amine N-oxides derived from trans-2,5-
diphenylpyrrolidine were synthesized in enantiomerically pure
form and tested as metal-free catalysts in the reaction of aldehydes
with allyl(trichloro)silane to afford homoallylic alcohols. The prod-
ucts were obtained in fair to good yields and up to 85% ee. The be-
havior of structurally different catalysts and the influence of a
coordinating unit present in the organocatalyst on controlling the
stereochemical efficiency of the reaction were also investigated.
Noteworthy a catalyst capable of promoting the allylation of ali-
phatic aldehydes with an almost unprecedent and unusually high
enantioselectivity, up to 85%, was identified.
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The design and the synthesis of novel chiral Lewis bases
which are able to act both as metal ligand as well as metal-
free catalysts is a topic of paramount interest in the field
of stereoselective catalysis.1 Recently, special attention
has been given to the development of an environmentally
benign methodology that involves the use of nontoxic sil-
icon-based reagents.2 The coordination of a Lewis base to
a tetracoordinated silicon atom leads to hypervalent sili-
cate species of increased Lewis acidity at silicon center.
As a consequence, such extracoordinated organosilicon
compounds become very reactive carbon nucleophiles or
hydride donors with a strong electrophilic character at sil-
icon and an enhanced capability to transfer a formally
negative-charged group to an acceptor.3

A paradigmatic example of successful chiral Lewis base
catalyzed reaction is represented by the allylation of alde-
hydes with allyltrichlorosilanes to afford homoallylic al-
cohols with high enantioselectivity. Among the different
classes of compounds which have been employed as
chiral Lewis bases to catalyze the reaction,4 chiral phos-
phoramides,5 and less often diphosphine oxides6 have
been employed with excellent results.

Among Lewis basic catalysts, one class of compounds
that deserve a special attention are chiral N-oxides derived
from tertiary amines and pyridines. The high nucleophi-
licity of the oxygen in N-oxides, coupled with a high af-
finity of silicon for oxygen represent ideal properties for
the development of synthetic methodology based on nu-

cleophilic activation of organosilicon reagents.7 A few ef-
ficient systems were developed, but the high level of
stereocontrol achieved was the result of an extensive opti-
mization of the stereochemical features of the catalysts,
the synthesis of which required long and tedious proce-
dures, sometimes involving also a resolution step. Fur-
thermore a difficult-to-control stereogenic element such
as a stereogenic axis in the catalyst is often required to
achieve high levels of stereocontrol.

Even if systems of relatively easy synthesis were devel-
oped,8 including chiral bispyridine N,N¢-dioxides,9 or sim-
ple pyridine N-oxides easily assembled from inexpensive
aminoacids,10 the search of new, readily available, effi-
cient chiral organocatalysts for the reaction of trichlorosi-
lyl compounds is still very active.

In this field an element of novelty was brought by Hovey-
da which developed an N-oxide prolinamide derivative,
the only representative of aliphatic tertiary amine N-ox-
ides so far reported, that presents a stereogenic center at
the nitrogen.11 We decided to synthesize a new family of
rigid, aliphatic N-oxides bearing the stereocenters close to
the catalytic site. To avoid the problem of the diastereose-
lective oxidation of the amine group, a cyclic structure
was selected, where the nitrogen atom, although chiro-
topic, is not stereogenic. In this context, here we describe
a new class of amine N-oxides derived from trans-2,5-
diphenylpyrrolidine as novel metal-free catalysts for the
addition of allyltrichlorosilane to aldehydes.

According to a known procedure12 starting from the com-
mercially available 1,4-diphenyl-1,4-butandione the
enantiomerically pure (1R,4R)-1,4-diphenyl-1,4-butandi-
ol was obtained through reduction mediated by borane-
(S)-diphenylprolinol complex. Conversion of the diol to
the corresponding bismesylate derivative, followed by re-
action with an excess of a proper amine afforded generally
in good yields the trans-(2R,5R)-2,5-diphenylpyrrolidine
derivative (Scheme 1).13 Finally, the oxidation of the ter-
tiary amine to the corresponding N-oxide was accom-
plished by reaction with MCPBA at low temperature.14

The outlined general synthetic procedure allowed to pre-
pare several molecules characterized by different structur-
al features. Selected examples of the synthesized
compounds are shown in Figure 1.

The catalytic ability of such new trans-(2R,5R)-2,5-
diphenylpyrrolidine-derived N-oxides was then studied in
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the test reaction of the addition of allyltrichlorosilane to
benzaldehyde (Scheme 2). In a typical procedure 0.1 mol
equivalents of catalyst, 1.2 mol equivalents of allyltrichlo-
rosilane, and 3 mol equivalents of DIPEA in acetonitrile
were reacted 48 hours at different temperatures.15 Isolated
yields and ee, as determined by HPLC, are collected in
Table 1; the R absolute configuration was assigned to the
predominant isomer of 10a on the basis of its optical rota-
tion. A comparison of the results obtained with catalysts 1
and 2 (entries 1 and 2 of Table 1) clearly showed that the
presence of a chelating element on the N-alkyl chain was
necessary in order to have a chemically active catalyst.
These findings are in accordance with the general pro-
posed transition state for the reaction involving the coor-
dination of the silicon atom by two binding units.16

Not only the nature of the ancillary coordinating element
besides the aliphatic N-oxide but also the distance be-

tween the two chelating units may play a decisive role in
determining the chemical and stereochemical efficiency
of the catalyst. For this reason in this new family of metal-
free catalysts different silicon-coordinating moieties were
used, such as pyridine, pyridine N-oxides, formamide, and
amide groups, located at variable distances from the pyr-
rolidine N-oxide. The results of entries 3–5 of Table 1
show that a distance of five atoms between the coordinat-
ing elements proved to afford a good balance of activity
and stereocontrol. Catalyst 5, bearing a formamide group
as secondary binding unit with a five-atom distance be-
tween the two coordinating oxygen atoms, offered the
best performance and was able to promote the reaction at
0 °C in decent yield and 81% ee (entry 5 of Table 1).

The substitution of the formamide with a benzamide (en-
try 6), as well as with other coordinating elements such as
a diphenylphosphine oxide or another tertiary amine N-

Scheme 1 General procedure for the synthesis of catalysts 1–9
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oxide (entries 7 and 8) resulted in much less active cata-
lysts. As further demonstration of the importance of the
distance between the chelating units, compound 9 bearing
a C3 alkyl chain instead of a C2 alkyl chain present in cat-
alyst 5 was completely ineffective in promoting the addi-
tion of allyltrichlorosilane to benzaldehyde (entry 9).
Among various tested solvents catalyst 5 performed better
in dichloromethane and specially in acetonitrile;17 the
chemical yield was not dramatically improved even for
longer reaction times, while an increase of the reaction
temperature up to 25 °C led to a decreased enantioselec-
tivity of 61% (entries 8 and 9).

Having thus identified the trans-(2R,5R)-2,5-diphen-
ylpyrrolidine derivative 5 as the more efficient catalyst, its
use was extended to the allylation of other aldehydes to af-
ford alcohols 10b–g (Scheme 2 and Table 2). Interesting-
ly, the chemical yield seemed to depend on the electronic
nature of the aryl substituents in the aldehydes. Electron-

poor aldehydes reacted slower than benzaldehyde, which
reacted in lower yield than the electron-rich 2-methoxy
benzaldehyde (entries 2 and 3 vs. entry 1, entry 1 vs. entry
4).

The 5-catalyzed allylations of cinnamaldehyde and 3-
phenylpropanal were also attempted. While the former
gave adduct 10e in low yield (33%) and fair ee (63%), sur-
prisingly the latter proved to be poorly reactive, but the
product 10f was isolated in high enantioselectivity (23%
yield, 81% ee, entry 6). It must be noted that this result
represents an element of novelty, compared to all the other
known catalytic systems, which usually afforded the ali-
phatic homoallylic alcohol 10f in low stereoselectivities.18

By increasing the catalyst loading the product 10f was ob-
tained in 67% yield and a very interesting 85% ee (entry 8
of Table 2). The use of catalyst 5 with other aliphatic al-
dehydes was also attempted; while the reaction with cy-
clohexanecarboxaldehyde did not lead to the product in
appreciable yields, the addition of allyltrichlorosilane to
dodecanaldehyde afforded the homoallylic alcohol 10g in
47% yield and 81% ee. The result suggests that the pres-
ence of an aryl group in the aldehydic substrate does not
play a decisive role in determining the stereochemical out-
come of the reaction.

Finally, the use of catalyst 5 was extended to the reaction
of benzaldehyde with a 81:19 mixture of (E)- and (Z)-cro-
tyltrichlorosilane. A mixture of diastereoisomeric alco-
hols anti-11 and syn-11 in 78:22 ratio was obtained in
37% yield, the anti isomer having a 85% ee (Scheme 3).
The fact that the anti/syn diastereoisomeric ratio reflected
the E/Z ratio of the starting silane is generally considered19

a strong indication that a six-membered cyclic chair-like

Scheme 2 Addition of allyltrichlorosilane to different aldehydes
promoted by catalysts 1–9.
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Table 1 Addition of Allyltrichlorosilane to Benzaldehyde Promot-
ed by Catalysts 1–9a

Entry Temp (°C) Catalyst (10 mol%) Yield (%)b ee (%)c

1 0 1 n.r. n.d.

2 0 2 45 11

3 25 3 55 17

4 25 4 24 21

5 0 5 51 81

6 0 6 11 23

7 0 7 33 33

8 0 8 24 11

9 0 9 n.r. n.d.

10d 0 5 45 61

11e 25 5 65 61

a Reaction conditions: DIPEA (0.9 mmol), allyltrichlorosilane (0.36 
mmol), aldehyde (0.3 mmol), catalyst (0.03 mmol), 48 h in MeCN.
b Yields determined after chromatographic purification.
c The ee determined by HPLC (Chiracel OD).
d Reaction run in CH2Cl2.
e Reaction run at 25 °C for 60 h.

Table 2 Stereoselective Addition of Allyltrichlorosilane to Differ-
ent Aldehydes Promoted by Catalysts 5a

Entry Temp 
(°C)

Product R
Yield 
(%)b

ee 
(%)c

1 0 10a Ph 51 81

2 0 10b 4-NO2C6H4 35 55

3 0 10c 4-ClC6H4 50 60

4 0 10d 2-OMeC6H4 71 67

5 0 10e (E)-PhCH=CH 33 63

6 0 10f PhCH2CH2 23 81

7d 0 10f PhCH2CH2 67 85

8e 25 10f PhCH2CH2 17 67

9d 0 10g Me(CH2)10 47 81

a Reaction conditions: DIPEA (0.9 mmol), allyltrichlorosilane (0.36 
mmol), aldehyde (0.3 mmol), catalyst (0.03 mmol), 48 h in MeCN.
b Yields determined after chromatographic purification.
c The ee determined by HPLC (Chiracel OD).
d Reaction run with 30% cat mol.
e Reaction run at 25 °C for 60 h.
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transition structure is involved in the allylation. Accord-
ing to this model, the hypervalent silicon atom (common-
ly believed to be involved in this type of reactions) would
be coordinated by the N-oxide oxygen and the formamide
group in an even-membered chelate ring.9,10

In conclusion a new class of Lewis bases to be used as
metal-free catalysts in the addition of allyltrichlorosilane
to aldehydes has been developed.

The proximity of the catalytically active N-oxide group to
the stereocenters, the possibility to modulate the distance
and the nature of a second silicon-binding unit, and the
easy preparation in enantiomerically pure form in only
three or maximum four steps from commercially available
reagents are all positive features of the new catalytic sys-
tem. Interestingly, a member of this new class of organo-
catalysts has shown an unusual ability to promote the
allylation of aliphatic aldehydes with high enantioselec-
tivity. Further studies directed to the development of new
members of this new class of Lewis bases are under way
in order to improve their stereochemical and specially
their chemical activity.
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