Combined Metalation–Cross Coupling Strategies: A Synthesis of Schumanniophytine by a Key Biaryl O-Carbamate Remote Anionic Fries Rearrangement

Todd K. Macklin,^[a] Mark A. Reed,^[b] and Victor Snieckus*^[a]

Dedicated to the memory of Makoto Kumada^[‡]

Keywords: Total synthesis / Metalation / Directed remote metalation / C–C coupling

A short synthesis of the alkaloid schumanniophytine (1) starting from simple building blocks and involving directed ortho metalation (DoM), Suzuki-Miyaura cross coupling, and a key ortho-silicon-induced O-carbamate remote anionic Fries rearrangement (3) is described.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008)

Introduction

We disclose a synthesis of schumanniophytine (1), a representative of a minor class of alkaloids isolated^[1] from the root bark of Schumanniophyton problematicum, which shows central and autonomic system depressant properties and may have potential antiviral activity.^[2] Schumanniophytine co-occurs with isoschumanniophytine (2), into which it may be converted by base-catalyzed scission and reassembly of the pyrone ring.^[3] In spite of the rare tetracyclic pyranobenzopyranopyridine framework,^[4] schumanniophytine has elicited only a single total synthesis, reported by Kelly, which features a Stille cross-coupling reaction of a 4-stannylated nicotinate ester with an easily procurable 8bromochromone.^[5]

Herein we describe a route that takes advantage of the directed ortho metalation (DoM)-Suzuki-Miyaura crosscoupling strategy^[6] and incorporates a key *ortho*-silicon-directed O-carbamate remote anionic Fries rearrangement (3) for construction of the lactone ring. Whereas a route towards schumanniophytine through an anionic remote Fries–Michael addition sequence (4) – a rational extension of concept 3^[7] - proved unapproachable,^[8] initial model

- [b] Schering-Plough Research Institute
- 320 Bent Street, Cambridge, MA 02141, USA Deceased: June 28, 2007. Like the sunrise, his work awakened the important theme of transition-metal-catalyzed cross coupling, which has momentously enriched synthetic organic chemistrv.
- Supporting information for this article is available on the WWW under http://www.eurjoc.org/ or from the author.

studies^[9] confirmed correctness of concept and resulted in the development of new general and regioselective synthetic methodologies for 4H-1-benzopyran-4-ones (chromones), which is the subject of a separate communication.^[10]

Results and Discussion

The synthesis of schumanniophytine was initiated (Scheme 1) by metalation of symmetrical O-carbamate 8, whose regioselectivity takes advantage of the powerful carbamate-directed metalation group (DMG)^[11] to give, after iodination and boronation, intermediates 9a and 9b, respectively, in excellent yields. Stille cross coupling of 9a with 4tributylstannylpyridine^[12] or, more efficiently, Suzuki-Miyaura coupling of 9b with commercial 4-bromopyridine hydrochloride led to azabiaryl 10. The expected, regioselective second DoM reaction was followed by silvlation with TMSCl and TESCl to afford highly hindered derivatives 11a and 11b, respectively.^[13] With silicon protection in

[[]a] Department of Chemistry, Queen's University Kingston, Ontario K7L 3N6, Canada Fax: +1-613-533-6089 E-mail: snieckus@chem.queensu.ca

SHORT COMMUNICATION

Scheme 1. Synthesis of schumanniophytine 1. Reagents and conditions: (a) *s*BuLi (1.3 equiv.), TMEDA (1.3 equiv.), THF, -78 °C, 10 min, then I₂ (1.5 equiv.), 86%; (b) LDA (1.2 equiv.), B(*Oi*Pr)₃ (2.5 equiv.), THF, -78 °C, 1 h, \rightarrow 0 °C, then 1 M HCl, pinacol (1.1 equiv.), 97%; (c) **9a**, [PdCl₂(PPh₃)₂] (0.1 equiv.), 4-tributylstannylpyridine (1.5 equiv.), DMF, 160 °C, 1 h, 73%; (d) **9b**, [Pd(PPh₃)₄] (0.04 equiv.), 4-bromopyridine·HCl (1 equiv.), Na₂CO₃ (4 equiv.), DME/H₂O (2:1), 20 h, 99%; (e) LDA (3.5 equiv.), Me₃SiCl (4.5 equiv.), THF, -78 °C \rightarrow room temp., 10 h, 94%; (f) *n*BuLi (1.2 equiv.), THF, -100 °C, 5 min, then Et₃SiCl (2.5 equiv.), -100 °C, 1.5 h, 91%; (g) LDA (4 equiv.), THF, 0 °C \rightarrow room temp., 1 h, then Ac₂O or BzCl (5 equiv.), 0 °C \rightarrow room temp., **12a** 75%, **12b** 65%; (h) BCl₃ (5 equiv.), CH₂Cl₂, 0 °C, 30 min; (i) HCl (80 equiv.), EtOH/H₂O (1:1), 90 °C, 12 h; (j) Ac₂O (5 equiv.), NEt₃ (5 equiv.), CH₂Cl₂, 0 °C \rightarrow room temp., 1 h, 84% for the three steps; (k) NaHCO₃ (10 equiv.), MeOH/H₂O (1:1), room temp., 4 h; (l) 2-butynoic acid (2 equiv.), P₂O₅/MsOH (1:10, 5 mL per mmol), 80 °C, 12 h, 52% for the two steps; (m) BCl₃ (4 equiv.), CH₂Cl₂, 0 °C, 30 min, 96%. Ac = acetyl, Bn = benzyl, DME = 1,2-dimethoxyethane, DMF = *N*,*N*-dimethylformamide, TMEDA = *N*,*N*,*N*,*N*'-tetramethylethylenediamine.

place, remote anionic Fries rearrangement of TES derivative **11b** resulted in smooth pyridine-ring carbamoyl translocation, to furnish, after direct acetylation and benzoylation, aryl nicotinamides **12a** and **12b**, respectively.^[14] Although TMS derivative **11a** also underwent clean rearrangement to give the corresponding phenol in 80–90% yield, this product underwent rapid decomposition, which thus precluded its further synthetic use.^[15] In order to avoid alternative regiochemical lactonization of **12a** under acidic conditions,^[16] **12b** was subjected to treatment with BCl₃, which resulted in regioselective demethylation,^[17] to give, after acidic protodesilylation, debenzylation, and reacylation (for convenient isolation), lactone **13** in high overall yield.

After numerous unsuccessful attempts to effect pyrone ring annulation,^[18] liberation of the free phenol from **13** by using sodium hydrogen carbonate followed by adaptation of the versatile Eaton's reagent ($P_2O_5/MsOH$, 1:10)^[19] gave the desired tetracycle **14**. To conclude, demethylation proceeded efficiently under BCl₃ conditions^[17] to furnish schumanniophytine (**1**), whose physical and spectroscopic properties were found to be in full accord with those of the natural product^[1,2a,3,5] (see Supporting Information).

Conclusions

A synthesis of schumanniophytine (1) involving a key *or*tho-silicon-induced remote anionic Fries rearrangement was completed in 10 steps and 24% overall yield (optimum sequence, Scheme 1). The synthesis compares favorably with that described by Kelly^[5] (six steps and 5% overall yield). In view of the connections to $DoM^{[11]}$ and cross-coupling strategies,^[6] the route provides opportunity for incorporation of functionality in the aromatic, pyridyl, and pyranyl moieties for potential SAR profiling studies. This and related contributions from our^[20] and other laboratories^[21] further demonstrate the increasing value of carbanionic chemistry for the regioselective construction of aromatics and heteroaromatics.

Supporting Information (see footnote on the first page of this article): Full procedures and spectroscopic data for all compounds, React-IR diagram of DreM for **11b**.

Acknowledgments

We thank NSERC Canada for support through the Discovery Grants program and Merck Frosst Canada for unrestricted grant support. We are grateful to the Canadian Foundation for Innovation (CFI) for infrastructure support to establish our high-field NMR and HRMS facilities.

[3] P. J. Houghton, H. Yang, Planta Med. 1985, 23-27.

^[1] E. Schlittler, U. Spitaler, Tetrahedron Lett. 1978, 19, 2911–2914.

 ^[2] a) P. J. Houghton in *The Alkaloids* (Ed.: A. Brossi), Academic Press, London, **1987**, vol. 31, pp. 67–100; b) P. J. Houghton, T. Z. Woldemariam, A. I. Khan, A. Burke, N. Mahmood, *Antivir. Res.* **1994**, *25*, 235–244.

- [4] The isolation, structural elucidation, and bioassays of schumanniophytine stimulated the synthesis of heterocycles containing combined chromone-pyridine systems, but studies of their bioactivities were apparently not pursued, see: O. H. Hishmat, N. M. A. El-Ebrashi, Sh. E. El-Naem, *Synthesis* 1982, 1075– 1077.
- [5] T. R. Kelly, M. H. Kim, J. Org. Chem. 1992, 57, 1593–1597. Prepared from phloroacetophenone in four steps and 21% overall yield.
- [6] a) E. J.-G. Anctil, V. Snieckus, J. Organomet. Chem. 2002, 653, 150–160; b) E. J.-G. Anctil, V. Snieckus in Metal-Catalyzed Cross-Coupling Reactions, 2nd ed. (Eds.: F. Diederich, A. de Meijere), Wiley-VCH, Weinheim, 2004, pp. 761–819.
- [7] For a successful model reaction, see: W. Wang, V. Snieckus, J. Org. Chem. 1992, 57, 424–426. For the scope of such directed remote metalation (DreM) reactions in context of the synthetically useful and mechanistically interesting complex induced proximity effect (CIPE) concept, see: M. C. Whisler, S. Mac-Neil, V. Snieckus, P. Beak, Angew. Chem. Int. Ed. 2004, 43, 2206–2225.
- [8] T. K. Macklin, PhD Thesis, Queen's University, Canada, 2007.
- [9] For an instructive discussion of the delicate pro/con intricacies of model studies, see: C. J. Suckling, K. E. Suckling, C. W. Suckling, *Chemistry Through Models*, Cambridge University Press, UK, **1978**, p. 149ff. For recent case studies, see M. A. Sierra, M. C. de la Torre, *Dead Ends and Detours*, Wiley-VCH, Weinheim, **2004**, pp. 41, 59, 61, 108. For a precise statement ("A theory has only the alternative of being right or wrong. A model has a third possibility: it may be right, but irrelevant"), see: M. Eigen in *The Physicist's Conception of Nature* (Ed.: J. Mehra), Dordrecht, Reidel, **1973**.
- [10] T. K. Macklin, J. Panteleev, V. Snieckus, Angew. Chem. Int. Ed., DOI: 10.1002/anie.200704360.
- [11] For recent reviews on the DoM reaction and its connection to cross-coupling chemistry, see: a) T. Macklin, V. Snieckus in *Handbook of C-H Transformations* (Ed.: G. Dyker), Wiley-VCH, Weinheim, 2005, vol. 1, pp. 106–118; b) C. G. Hartung, V. Snieckus in *Modern Arene Chemistry* (Ed.: D. Astruc), Wiley-VCH, Weinheim, 2002, pp. 330–367.
- [12] Handling and purification of this material proved difficult and was an unpleasant odiferous experience.
- [13] The hindrance is corroborated by the need to use -100 °C temperatures for the TESCI reaction owing to its slower reactivity over TMSCI, which thus allowed the faster (intramolecular) anionic *ortho*-Fries rearrangement to occur, see ref.^[8]
- [14] The migration was conveniently followed by React IR by observing the disappearance of the carbamoyl group $(\tilde{v}=1725 \text{ cm}^{-1})$ and the appearance of the amide carbonyl group stretching frequencies ($\tilde{v}=1635 \text{ cm}^{-1}$); the latter was only observed upon aqueous quench, which suggests the potential for trapping of the tetrahedral intermediate (see Supporting Information).
- [15] M. A. Reed, V. Snieckus, unpublished results.
- [16] Although compound 12a, upon treatment with ICl, gave the corresponding *ipso*-Friedel–Crafts product in 89% yield (Z.

Zhao, V. Snieckus, *Org. Lett.* **2005**, *7*, 2523–2526), attempts to effect *ipso-ortho*-Fries and *ipso*-Friedel–Crafts acylation on both **12a** and **12b**, respectively, as a prelude for chromone ring annulation, resulted only in desilylation and other undesired products, see ref.^[8]

- [17] For similar amide coordinative-assisted demethylation, see: a)
 M. J. Sharp, V. Snieckus, *Tetrahedron Lett.* **1985**, *26*, 5997–6000;
 b) B. I. Alo, A. Kandil, P. A. Patil, M. J. Sharp, V. Snieckus, P. D. Joseph, *J. Org. Chem.* **1991**, *56*, 3763–3768;
 c) A. V. Kalinin, M. A. Reed, B. H. Norman, V. Snieckus, *J. Org. Chem.* **2003**, *68*, 5992–5999.
- [18] Subjection of compound 13 to classical Lewis acid Fries rearrangement [H. Heaney, *Comprehensive Organic Synthesis* (Ed.: B. M. Trost), Pergamon, Oxford, 1991, vol. 2, pp. 733–752] followed by reacylation afforded a 1:1 mixture of the corresponding 9- and 7-acetyl derivatives. Attempts to effect a Baker–Venkataraman chromone ring syntheses (I. Hirao, M. Yamaguchi, M. Hamada, *Synthesis* 1984, 1076–1078. For use in natural product synthesis, see S. Gattinoni, L. Merlini, S. Dallavalle, *Tetrahedron Lett.* 2007, *48*, 1049–1051) on the 9-acetyl derivative as well as on the corresponding C-10 phenol afforded 14 albeit in low and poorly reproducible yields, see ref.^[8] Attempts to adapt recent electrophilic Meldrum's acid chemistry were also unsuccessful, see: E. Fillion, A. M. Dumas, B. A. Kuropatwa, N. R. Malhotra, T. C. Sitler, *J. Org. Chem.* 2006, *71*, 409–412.
- [19] P. E. Eaton, G. R. Carlson, J. T. Lee, *J. Org. Chem.* 1973, 38, 4071–4073. For application to chromone ring construction, see:
 L. W. McGarry, M. R. Detty, *J. Org. Chem.* 1990, 55, 4349–4356.
- [20] See, inter alia: N-anionic Fries rearrangement: S. L. MacNeil, B. J. Wilson, V. Snieckus, Org. Lett. 2006, 8, 1133–1136; remote metalation route to fluorenones: J. A. McCubbin, X. Tong, R. Wang, Y. Zhao, V. Snieckus, R. P. Lemieux, J. Am. Chem. Soc. 2004, 126, 1161–1167; vinylogous Fries rearrangement: M. A. Reed, M. T. Chang, V. Snieckus, Org. Lett. 2004, 6, 2297–2300; remote metalation to indolocarbazoles: X. Cai, V. Snieckus, Org. Lett. 2004, 6, 2293–2295; carbamoyl Baker–Venkataraman reaction: A. V. Kalinin, A. J. M. da Silva, C. C. Lopes, R. S. C. Lopes, V. Snieckus, Tetrahedron Lett. 1998, 39, 4995– 4998.
- [21] See, inter alia: regiospecific arene metalation: T.-H. Nguyen, N. T. T. Chau, A.-S. Castanet, K. P. P. Nguyen, J. Mortier, J. Org. Chem. 2007, 72, 3419–3429; regiocontrolled ferrocene metalation: D. Herault, K. Aelvoet, A. J. Blatch, A. Al-Majid, C. A. Smethurst, A. Whiting, J. Org. Chem. 2007, 72, 71–75; regioselective heteroarene metalation: C. Berghian, E. Condamine, N. Ple, A. Turck, I. Silaghi-Dumitrescu, C. Maiereanu, M. Darabantu, Tetrahedron 2006, 62, 7339–7354; anionic ortho-quinone methide generation: R. M. Jones, R. W. Van De Water, C. C. Lindsey, C. Hoarau, T. Ung, T. R. R. Pettus, J. Org. Chem. 2001, 66, 3435–3441.

Received: November 27, 2007 Published Online: February 11, 2008