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A short synthesis of the alkaloid schumanniophytine (1) start-
ing from simple building blocks and involving directed ortho
metalation (DoM), Suzuki–Miyaura cross coupling, and a key
ortho-silicon-induced O-carbamate remote anionic Fries re-
arrangement (3) is described.

Introduction
We disclose a synthesis of schumanniophytine (1), a rep-

resentative of a minor class of alkaloids isolated[1] from the
root bark of Schumanniophyton problematicum, which
shows central and autonomic system depressant properties
and may have potential antiviral activity.[2] Schumannio-
phytine co-occurs with isoschumanniophytine (2), into
which it may be converted by base-catalyzed scission and
reassembly of the pyrone ring.[3] In spite of the rare tetra-
cyclic pyranobenzopyranopyridine framework,[4] schuman-
niophytine has elicited only a single total synthesis, reported
by Kelly, which features a Stille cross-coupling reaction of
a 4-stannylated nicotinate ester with an easily procurable 8-
bromochromone.[5]

Herein we describe a route that takes advantage of the
directed ortho metalation (DoM)–Suzuki–Miyaura cross-
coupling strategy[6] and incorporates a key ortho-silicon-di-
rected O-carbamate remote anionic Fries rearrangement (3)
for construction of the lactone ring. Whereas a route
towards schumanniophytine through an anionic remote
Fries–Michael addition sequence (4) � a rational extension
of concept 3[7] � proved unapproachable,[8] initial model
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studies[9] confirmed correctness of concept and resulted in
the development of new general and regioselective synthetic
methodologies for 4H-1-benzopyran-4-ones (chromones),
which is the subject of a separate communication.[10]

Results and Discussion

The synthesis of schumanniophytine was initiated
(Scheme 1) by metalation of symmetrical O-carbamate 8,
whose regioselectivity takes advantage of the powerful car-
bamate-directed metalation group (DMG)[11] to give, after
iodination and boronation, intermediates 9a and 9b, respec-
tively, in excellent yields. Stille cross coupling of 9a with 4-
tributylstannylpyridine[12] or, more efficiently, Suzuki–Mi-
yaura coupling of 9b with commercial 4-bromopyridine hy-
drochloride led to azabiaryl 10. The expected, regioselective
second DoM reaction was followed by silylation with
TMSCl and TESCl to afford highly hindered derivatives
11a and 11b, respectively.[13] With silicon protection in
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Scheme 1. Synthesis of schumanniophytine 1. Reagents and conditions: (a) sBuLi (1.3 equiv.), TMEDA (1.3 equiv.), THF, –78 °C, 10 min,
then I2 (1.5 equiv.), 86%; (b) LDA (1.2 equiv.), B(OiPr)3 (2.5 equiv.), THF, –78 °C, 1 h, � 0 °C, then 1  HCl, pinacol (1.1 equiv.), 97%;
(c) 9a, [PdCl2(PPh3)2] (0.1 equiv.), 4-tributylstannylpyridine (1.5 equiv.), DMF, 160 °C, 1 h, 73 %; (d) 9b, [Pd(PPh3)4] (0.04 equiv.), 4-
bromopyridine·HCl (1 equiv.), Na2CO3 (4 equiv.), DME/H2O (2:1), 20 h, 99%; (e) LDA (3.5 equiv.), Me3SiCl (4.5 equiv.), THF, –78 °C
� room temp., 10 h, 94%; (f) nBuLi (1.2 equiv.), THF, –100 °C, 5 min, then Et3SiCl (2.5 equiv.), –100 °C, 1.5 h, 91%; (g) LDA (4 equiv.),
THF, 0 °C � room temp., 1 h, then Ac2O or BzCl (5 equiv.), 0 °C � room temp., 12a 75%, 12b 65%; (h) BCl3 (5 equiv.), CH2Cl2, 0 °C,
30 min; (i) HCl (80 equiv.), EtOH/H2O (1:1), 90 °C, 12 h; (j) Ac2O (5 equiv.), NEt3 (5 equiv.), CH2Cl2, 0 °C � room temp., 1 h, 84% for
the three steps; (k) NaHCO3 (10 equiv.), MeOH/H2O (1:1), room temp., 4 h; (l) 2-butynoic acid (2 equiv.), P2O5/MsOH (1:10, 5 mL per
mmol), 80 °C, 12 h, 52% for the two steps; (m) BCl3 (4 equiv.), CH2Cl2, 0 °C, 30 min, 96%. Ac = acetyl, Bn = benzyl, DME = 1,2-
dimethoxyethane, DMF = N,N-dimethylformamide, TMEDA = N,N,N�,N�-tetramethylethylenediamine.

place, remote anionic Fries rearrangement of TES deriva-
tive 11b resulted in smooth pyridine-ring carbamoyl trans-
location, to furnish, after direct acetylation and benzo-
ylation, aryl nicotinamides 12a and 12b, respectively.[14] Al-
though TMS derivative 11a also underwent clean re-
arrangement to give the corresponding phenol in 80–90%
yield, this product underwent rapid decomposition, which
thus precluded its further synthetic use.[15] In order to avoid
alternative regiochemical lactonization of 12a under acidic
conditions,[16] 12b was subjected to treatment with BCl3,
which resulted in regioselective demethylation,[17] to give,
after acidic protodesilylation, debenzylation, and reacyl-
ation (for convenient isolation), lactone 13 in high overall
yield.

After numerous unsuccessful attempts to effect pyrone
ring annulation,[18] liberation of the free phenol from 13 by
using sodium hydrogen carbonate followed by adaptation
of the versatile Eaton’s reagent (P2O5/MsOH, 1:10)[19] gave
the desired tetracycle 14. To conclude, demethylation
proceeded efficiently under BCl3 conditions[17] to furnish
schumanniophytine (1), whose physical and spectroscopic
properties were found to be in full accord with those of the
natural product[1,2a,3,5] (see Supporting Information).

Conclusions

A synthesis of schumanniophytine (1) involving a key or-
tho-silicon-induced remote anionic Fries rearrangement was
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completed in 10 steps and 24% overall yield (optimum se-
quence, Scheme 1). The synthesis compares favorably with
that described by Kelly[5] (six steps and 5% overall yield).
In view of the connections to DoM[11] and cross-coupling
strategies,[6] the route provides opportunity for incorpora-
tion of functionality in the aromatic, pyridyl, and pyranyl
moieties for potential SAR profiling studies. This and re-
lated contributions from our[20] and other laboratories[21]

further demonstrate the increasing value of carbanionic
chemistry for the regioselective construction of aromatics
and heteroaromatics.

Supporting Information (see footnote on the first page of this arti-
cle): Full procedures and spectroscopic data for all compounds,
React-IR diagram of DreM for 11b.
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