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Abstract—The reaction of a series of chiral phosphorus triamides with BuLi and subsequent addition of a phosphoroxychloride
diamide afforded the corresponding imidodiphosphoric tetramides in high yield. The use of enantiomerically pure diamides
allowed access to bidentate imidodiphosphoric tetramides without loss of optical purity. These bidentate ligands have been used
successfully to catalyze the addition of allyltrichlorosilane to aldehydes in an enantioselective fashion up to 60% ee. © 2001
Elsevier Science Ltd. All rights reserved.

Phosphoric triamides have found widespread use in
organic chemistry.1 The strong donor properties and
Lewis basicity make them excellent ligands for small
and hard metal ions and thus modulate the reactivity of
metal centers. Recently, chiral representatives of phos-
phoric triamides have been considered as strong Lewis
bases in asymmetric catalysis in the absence of
metals.2,3 To obtain a rigid chiral environment around
a coordinated Lewis acid, chiral bidentate phosphoric
triamide-derived ligands may be employed. However,
such ligands are hitherto still unknown. In our contri-
bution we would like to present an efficient synthetic
approach to that novel class of chiral ligands. It turned
out, that these ligands act as highly enantioselective
chiral catalysts for the asymmetric allylation of alde-
hydes in the reaction with trichloroallylsilane.

The reaction of the chiral bicyclic phosphoric diamides
1a–g with primary amines in toluene and in presence of

triethylamine proceeds smoothly and gives the phos-
phoric triamides 2a–g in high yields (see Table 1).4,5 In
a subsequent step, deprotonation of the amides is
achieved with n-BuLi followed by addition of a second
equivalent of 1a–g leading to the final imidophosphoric
tetramides 3a–g in high yields.6 Chiral primary amines
as bridging units allowed the synthesis of
diastereomeric imido phosphorus tetramides 3d,e in
excellent yields. As a suitable test reaction for asymmet-
ric, Lewis-base-promoted catalysis we have chosen the
allylation of aldehydes with trichlorosilane (Table 2).
The initial observation that Lewis bases are able to
accelerate this type of C�C bond-forming reaction,
originally reported by Sakurai, stimulated in 1994 Den-
mark and later Iseki to introduce chiral phosphoric
triamides as Lewis-base catalysts for this reaction.7–13

We reasoned that a bidentate ligand would be better in
stabilizing the putative hexa-coordinate siliconate spe-
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Table 1. Synthesis of bidentate imidophosphoric tetra-
mides 3a–g

R2Catalyst Yield (%)R1

Ph 833a Me
p-CF3-C6H4Me 873b

Me3c p-MeO-C6H4 76
Me3d (R)-PhEt 68

(S)-PhEtMe 643e
Ph 793f CH2Ph
Ph(CH2)2

tBu 853g

Table 2. Allylation of benzaldehyde in presence of 3a–g

Catalyst Yield (%)R3 ee (%)a

633a 24Ph
653b 27Ph
88Ph 183c

Ph3d 15 19
Ph3e 31 60

67Ph 493f
3g 65Ph 32

a Determined by HPLC (OD-H Daicel).

cies compared to a monodentate ligand thus inducing
higher enantioselectivities.†

Firstly, catalyst 3a led to a high yield but only a low ee
of 24% in the product alcohol 4. The introduction of
electron-withdrawing substituents in the para-position
of the aromatic bridging unit in 3b reduced the catalytic
activity and only moderate yields were accessible (25%)
accompanied by a ee of 27%. Electron-donating sub-
stituents in this position had a tremendous effect on the
rate and the yield of the reaction, almost after 45 min
the reaction was complete and high yields of 4 were
generated. Again the enantioselectivity had not
changed. The introduction of chiral-bridging amines in

the diastereomeric catalysts 3d,e gave raise to a high ee
with 3e (60% ee, 31% yield, matched case) and to a low
ee with 3d (19% ee, 15% yield, mismatched case), but in
general moderate yields. The replacement of the N-
methyl groups in the five-membered heterocycle by
more bulky benzyl groups in 3f led to a good ee of 49%
and high yield (67%), in contrast to the introduction of
(CH2)2

tBu groups, which led only to 32% ee (65%
yield).

In summary we have shown the bidentate imidophos-
phoric triamides are easily accessible in a few steps.
These compounds act as enantioselective catalysts in
the allylation of benzaldehydes with allyltrichlorosilane.
Further studies focus on the use of Lewis-base catalysts
in metal-free epoxide openings.14
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