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Abstract: The formal [3+3] cyclocondensation of 1,3-bis(trimeth-
ylsilyloxy)buta-1,3-dienes with 1,1-bis(methoxy)trifluoromethyl-
1-en-3-ones afforded functionalized 3-methoxy-5-(trifluorometh-
yl)phenols with very good regioselectivity.
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Trifluoromethyl-substituted arenes and hetarenes play an
important role in drug discovery.1 On the one hand, the
size of the CF3 group is similar to the methyl group. On
the other hand, its high electronegativity results in a great
change of the reactivity, which can play an important role
in drug-receptor interactions. The increased lipophilicity
of CF3-substituted molecules often results in a better
transport of the drug in vivo. Due to the high chemical and
biological stability of the CF3 group, undesirable metabol-
ic transformations are often reduced. Besides, CF3-substi-
tuted molecules play an important role as ligands2 for
catalytic reactions in fluorous biphasic systems,3 as orga-
nocatalysts,4 and as liquid crystals.5

Trifluoromethyl-substituted arenes and hetarenes have
been prepared, for example, by reaction of aryl halides
with trifluoromethylcopper.6,7 Trifluoromethylcopper is
rather unstable and rapidly undergoes decomposition in
reactions with ‘difficult’ substrates. In addition, it has to
be taken into consideration that the synthesis of complex
aromatic starting materials is often a difficult task. Anoth-
er approach relies on the transformation of carboxylic ac-
ids or CX3 into CF3 groups. However, these reactions are
often applicable only to specific substrates. An alternative
strategy is based on the use of CF3-containing building
blocks.8 This includes cyclocondensation reactions,9,10 re-
actions of metalated (trifluoromethyl)arenes,11 Diels–
Alder reactions,12 and cyclizations of enamines with
1,1,1,5,5,5-hexafluoroacetylacetone.13 Recently, we have
reported14 the synthesis of CF3-substituted salicylates by
formal [3+3] cyclizations15,16 of 1,3-bis(silyl enol
ethers)17 with 4-ethoxy-1,1,1-trifluoroalk-3-en-2-ones.
Despite its preparative utility, this method is limited by
the fact that the products contain no functional group lo-
cated at carbon atoms C-3 or C-5.18 On the other hand,
most biologically active salicylates and 2-acylphenols do
contain a functional group at one of these positions, since

they are derived from naturally occurring polyketides.
Herein, we report a new and convenient method for the re-
gioselective synthesis of 4-methoxy-6-(trifluorometh-
yl)salicylates and related compounds by what are, to the
best of our knowledge, the first cyclocondensations of
1,3-bis(silyl enol ethers) with 1,1-bis(methoxy)-1-en-3-
ones. The products are not readily available by other
methods.

The reaction of trifluoroacetic anhydride with 1,1,1-tri-
methoxyethane afforded novel 1,1-dimethoxy-4,4,4-tri-
fluorobut-1-en-3-one (1) in 75% yield (Scheme 1).19 The
TiCl4-mediated reaction of 1 with 1,3-bis(silyloxy)buta-
1,3-diene 2a, readily available from methyl acetoace-
tate,16 afforded methyl 4-methoxy-6-(trifluoromethyl)sal-
icylate (3a) in 42% yield (Scheme 2).

Scheme 1 Synthesis of 1. Reagents and conditions: (i) pyridine,
CHCl3, 20 °C, 12 h.

Scheme 2 Possible mechanism of the formation of 3a. Reagents
and conditions: (i) TiCl4, CH2Cl2, –78 to 20 °C.

During the optimization, it proved to be important to carry
out the reaction in a highly concentrated solution.20 The
formation of 3a can be explained by TiCl4-mediated 1,4-
addition of the terminal carbon atom of 2a onto 1a to give
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intermediate A. The latter underwent a cyclization by at-
tack of the central carbon atom of 2a onto the double bond
to give intermediate B, which was finally transformed into
the product by aromatization.

The TiCl4-mediated reaction of 1 with 1,3-bis(silyl-
oxy)buta-1,3-dienes 2a–v afforded the 4-methoxy-6-(tri-
fluoromethyl)salicylates 3a–f and 3h–t and the 3-
methoxy-5-(trifluoromethyl)phenol 3g in moderate yields
(Scheme 3, Table 2). Noteworthy, the products are not
readily available by other methods.

Scheme 3 Synthesis of 3a–t. Reagents and conditions: (i) TiCl4,
CH2Cl2, –78 to 20 °C.

The structures of the products were confirmed by spectro-
scopic methods. The structure of 3l was independently
confirmed by X-ray crystal structure analysis.21

In conclusion, we reported a convenient and regioselec-
tive synthesis of functionalized 4-methoxy-6-(trifluoro-
methyl)salicylates by the first [3+3] cyclocondensations
of 1,3-bis(trimethylsilyloxy)buta-1,3-dienes with 1,1-
dimethoxy-4,4,4-trifluorobut-1-en-3-one. The prepara-
tive scope of our methodology and applications are cur-
rently being studied in our group.
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3 R1 R2 Yield (%) of 3

a H OMe 42
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