

Synthesis of Wiberg's Tetrasilatetrahedrane (*t*Bu₃Si)₄Si₄ by a One-Pot Procedure

Frank Meyer-Wegner, Stefan Scholz, Inge Sänger, Frauke Schödel, Michael Bolte, Matthias Wagner, and Hans-Wolfram Lerner*

Institut für Anorganische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany

Received September 1, 2009

Summary: A one-pot synthesis of the tetrasilatetrahedrane $(tBu_3Si)_4Si_4$ was achieved by the reaction of $HSiCl_3$ and $Na[SitBu_3]$. In this reaction the silane tBu_3SiH was obtained along with $(tBu_3Si)_4Si_4$ and $tBu_3SiSitBu_3$. The tetrasilatetrahedrane $(tBu_3Si)_4Si_4$ was also obtained via a one-pot approach by treatment of $Cl_3SiSiCl_3$ or $Cl_3SiSiCl_2SiCl_3$ with Na-[SitBu_3]. In the reaction of $HSiCl_3$ with $Na[SitBu_3]$, two molecules of the tetrasilatetrahedrane $(tBu_3Si)_4Si_4$ crystallize together with one molecule of $tBu_3SiSitBu_3$ and one molecule of benzene. Single crystals suitable for X-ray diffraction composed of one molecule of $(tBu_3Si)_4Si_4$ and two molecules of benzene were obtained by recrystallization from benzene.

Introduction

In 1978, Maier and co-workers reported the first synthesis and determination of the molecular structure of tetra(*tert*butyl)tetrahedrane, which is a very strained cage compound with a highly symmetrical structure and unusual bonding nature.¹ Since 1988, the chemistry of stable, small-cage compounds consisting of the heavier group 14 elements (Si, Ge, and Sn) has been extensively studied. It has been shown that compounds $R_n E_n$ with tetrahedral (A), trigonalprismatic (B), or cubic polyhedra E_n (C) of carbon homologues E are accessible only by using sterically demanding groups R (Chart 1).^{2,3} Evidently, less sterically demanding substituents do not prevent transformation of the core into less strained compounds.^{4,5} Substances with polyhedral structure of type A, B, and C have been synthesized for E = Si and Ge,^{2,3} whereas for E = Sn only those of type B⁶ and C⁷ but not of type A are known.

*Corresponding author. Fax: +49-69798-29260. E-mail: lerner@ chemie.uni-frankfurt.de.

Compounds; Rappoport, Z., Apeloig, Y., Eds.; John Wiley & Sons Ltd.: New York, 1998; Vol. 2, p 119.

(4) Nagase, S. Angew. Chem., Int. Ed. 1989, 28, 329.

(5) Nagase, S. Polyhedron 1991, 10, 1299.

(7) Sita, L. R.; Kinoshita, I. Organometallics **1990**, *9*, 2865. Wiberg, N.; Lerner, H.-W.; Wagner, S.; Nöth, H.; Seifert, T. Z. Naturforsch. **1999**,

(a) Without N. Firmer C. M. M. Delberry K. Ana and Chem. Let Ed

The only known examples with tetrasilatetrahedrane structures, $(tBu_3Si)_4Si_4$ (1)⁸ and $(Dis_2MeSi)_4Si_4$ (Dis = CH(SiMe_3)_2) (2),⁹ were reported in 1993 by Wiberg et al. and 10 years later in 2003 by Sekiguchi and co-workers.

While tetrasilatetrahedrane **1** is stable toward water, air, light, and temperature (decomposition > 300 °C), it seems to be sensitive toward oxidizing agents. It was found that, when using equimolar equivalents of reactants, treatment of **1** with iodine yields quantitatively the cyclotetrasilene **3** (Scheme 1).¹⁰ No reaction could be observed between **1** and $M[SitBu_3](M=Li, Na, K)$.¹¹ However, **2** can be reduced with KC₈ in Et₂O, which results in the selective cleavage of the exocyclic Si–Si bond without degradation of the tetrahedrane core, as shown in Scheme 1.⁹

The tetrasilatetrahedrane **1** was prepared by Wiberg and co-workers in a six-step sequence, and its structure was determined by X-ray diffraction.^{8,12} We present here a one-pot synthesis of the tetrasilatetrahedrane **1** by the reaction of HSiCl₃ with Na[Sit/Bu₃]. In addition, Na[Sit/Bu₃] also reacts with Cl₃SiSiCl₃ and Cl₃SiSiCl₂SiCl₃, respectively, which give **1** in a one-pot procedure.

Results and Discussion

Surprisingly, the reaction of 1 molar equiv of Na[SitBu₃] with one of HSiCl₃, as shown in Scheme 2, is quite different from the reactions of tri-*tert*-butylsilanides M[SitBu₃] (M=Li, Na, K) with organyl-substituted chlorosilanes R_nSiCl_{4-n} .^{11,13} Treatment of HSiCl₃ with Na[SitBu₃] in 1:1 molar ratio in benzene resulted in an immediate reaction, and the mixture quickly became heterogeneous.¹⁴ The ²⁹Si NMR spectrum showed that the silanide had been completely consumed, and new signals appeared that could be assigned to the tetra-silatetrahedrane **1**, the disilane *t*Bu₃SiSi*t*Bu₃, and the silane *t*Bu₃SiH. The formation of these products suggested to us the mechanism, as shown in Scheme 2: (i) First Na[SitBu₃] deprotonates HSiCl₃. (ii) Then, in a second step, transient

⁽¹⁾ Maier, G. Angew. Chem., Int. Ed. 1988, 27, 309.

⁽²⁾ Wiberg, N.; Power, P. P. Molecular Clusters of Main Group Elements; Driess, M., Nöth, H., Eds.; Wiley-VCH: Weinheim, 2004; p 188.
(3) Sekiguchi, A.; Nagase, S. The Chemistry of Organic Silicon

⁽⁶⁾ Wiberg, N.; Lerner, H.-W.; Nöth, H.; Ponikwar, W. Angew. Chem., Int. Ed. 1999, 38, 1103.

⁽⁸⁾ Wiberg, N.; Finger, C. M. M.; Polborn, K. Angew. Chem., Int. Ed. Engl. 1993, 32, 1054.

⁽⁹⁾ Ichinohe, M.; Toyoshima, M.; Kinjo, R.; Sekiguchi, A. J. Am. Chem. Soc. 2003, 125, 13328.

⁽¹⁰⁾ Wiberg, N.; Auer, H.; Nöth, H.; Knizek, J.; Polborn, K. Angew.
Chem., Int. Ed. 1998, 37, 2869.
(11) Lerner, H.-W. Coord. Chem. Rev. 2005, 249, 781. Wiberg, N.;

⁽¹¹⁾ Lerner, H.-W. Coord. Chem. Rev. 2005, 249, 781. Wiberg, N.; Amelunxen, K.; Lerner, H.-W.; Schuster, H.; Nöth, H.; Krossing, I.; Schmidt-Amelunxen, M.; Seifert, T. J. Organomet. Chem. 1997, 542, 1. Lerner, H.-W.; I. Sänger, I.; Schödel, F.; Polborn, K.; Bolte, M.; Wagner, M. Z. Naturforsch. 2007, 62h, 1285.

Naturforsch. 2007, 62b, 1285. (12) Wiberg, N.; Finger, C. M. M.; Auer, H.; Polborn, K. J. Organomet. Chem. 1996, 521, 377.

⁽¹³⁾ Wiberg, N. Coord. Chem. Rev. 1997, 163, 217.

⁽¹⁴⁾ Reaction of HSiCl₃ with K[Si(SiMe₃)₃] gives the cyclotrisilane [(Me₃Si)₂Si]₃ : Klinkhammer, K. W. Thesis, University of Stuttgart, Germany, 1998.

Scheme 1. Chemical Properties of Tetrasilatetrahedranes 1 and 2

NaSiCl₃ undergoes NaCl elimination to form dichlorosilylene SiCl₂. (iii) Reaction of SiCl₂ with Na[SitBu₃] and dimerization of the (tBu₃Si)SiCl thus formed gives the disilene (tBu₃Si)ClSi=SiCl(SitBu₃). (iv) Dehalogenation¹⁵ of the disilene by reaction with Na[SitBu₃] finally gives the tetrasilatetrahedrane 1, the disilane *t*Bu₃SiSi*t*Bu₃, and NaCl. It is interesting to note that the cluster buildup takes place in the presence of unreacted HSiCl₃. Therefore deprotonation of HSiCl₃ must be much slower than cluster formation with Na[SitBu₃]. Filtration and slow concentration of the filtrate resulted in deposition of X-ray quality crystals that contained two molecules of 1, one molecule of tBu₃SiSitBu₃, and one molecule of benzene.¹⁶ The tetrasilatetrahedrane 1 could be separated from tBu₃SiSitBu₃ by HPLC or by its precipitation when acetonitrile was added to a *t*BuOMe solution of 1 and *t*Bu₃SiSi*t*Bu₃.

Reaction of nucleophilic reagents with chlorine-substituted polysilanes has received renewed interest in recent years. We have investigated the reaction of Cl₃SiSiCl₃ with Na[Si*t*Bu₃]. When Cl₃SiSiCl₃ in benzene was treated with 2 molar equiv of Na[Si*t*Bu₃], the reaction mixture underwent a color change to orange-yellow. Three products were formed: the tetrasilatetrahedrane **1**, the disilane *t*Bu₃SiSi*t*Bu₃, and the chlorosilane *t*Bu₃SiCl, as shown in Scheme 3. Due to hydrolysis¹¹ and oxidation¹⁷ of Na[Si*t*Bu₃], small amounts of *t*Bu₃SiH and Na[OSi*t*Bu₃] also were formed. Tetrasilatetrahedrane **1** could be separated from *t*Bu₃SiSi*t*Bu₃ by multiple recrystallization. Single crystals composed of one molecule of **1** and two molecules of benzene were isolated by recrystallization from benzene.¹⁸

The trisilane Cl₃SiSiCl₂SiCl₃ reacts with 4 molar equiv of Na[Si*t*Bu₃], surprisingly forming the same products that had been formed in the 1:1 HSiCl₃/Na[Si*t*Bu₃] reaction. After 1 h, the trisilane had been completely consumed, as determined by ²⁹Si NMR spectroscopy. In the ²⁹Si NMR spectrum of the reaction mixture resonances due to the tetrasilatetrahedrane 1, the disilane *t*Bu₃SiSi*t*Bu₃, the chlorosilane *t*Bu₃SiCl, and hexachlordisilane Cl₃SiSiCl₃ as well as polychlorosilanes such as the neopentasilane Si(SiCl₃)₄ were observed. Obviously, a degradation reaction of Cl₃SiSiCl₂SiCl₃ with

Scheme 2. Synthesis of Tetrasilatetrahedrane 1 from HSiCl₃ and Na[SitBu₃]

Scheme 3. Synthesis of Tetrasilatetrahedrane 1 from Reactions of Na[SitBu₃] with Cl₃SiSiCl₃ and Cl₃SiSiCl₂SiCl₃

liberation of SiCl₂ had taken place. The dichlorosilylene SiCl₂ that had been formed apparently underwent an insertion reaction into Cl₃SiSiCl₂SiCl₃ to give perchlorinated neopentasilane Si(SiCl₃)₄. We had verified that the degradation of Cl₃SiSiCl₂SiCl₃ in the presence of catalytic amounts of donors, such as amines, in the first step gives dichlorosilylene SiCl₂ and hexachlordisilane Cl₃SiSiCl₃ and ultimately produces Si(SiCl₃)₄.¹⁹

Experimental Section

General Procedures. All experiments were carried out under dry nitrogen or argon with strict exclusion of air and moisture using standard Schlenk techniques or a glovebox. Na $[SitBu_3]^{11}$ was prepared according to a literature procedure. Benzene was distilled from sodium/benzophenone prior to use.

The NMR spectra were recorded on a Bruker AM 250, a Bruker DPX 250, a Bruker Avance 300, and a Bruker Avance 400 spectrometer.

Synthesis of 1 from HSiCl₃ and Na[SitBu₃]. To a solution of HSiCl₃ (195 mg, 1.44 mmol) in 5 mL of benzene was added a solution of Na[SitBu₃] (320 mg, 1.40 mmol) in 5 mL of benzene. The resulting orange-yellow solution quickly became cloudy. After 1 h, the ²⁹Si NMR spectrum showed that the silanide Na[SitBu₃] had been completely consumed, and new signals appeared that could be assigned to the tetrasilatetrahedrane 1 (δ 52.7, δ 243.7; 6.2%²⁰), the disilane tBu₃SiSitBu₃ (δ 35.0; 13.8%²⁰), the silane tBu₃SiH (δ 17.2, 10.8%²⁰), and the remaining HSiCl₃ (δ –6.2, 69.4%²⁰). Due to interference of the signals of the tetrasilatetrahedrane 1 and the disilane tBu₃SiSitBu₃ in the ¹H NMR spectrum (δ 1.36), the progress of the reaction was monitored by ²⁹Si NMR spectroscopy. After the reaction mixture had been filtered and the filtrate had been left to stand at ambient temperature for one day, X-ray quality crystals that consist of two molecules of 1, one molecule of tBu₃SiSitBu₃, and

⁽¹⁵⁾ Dehalogenation of $(tBu_3Si)BrSi=SiBr(SitBu_3)$ with Na[SitBu_3] results in the formation of the tetrasilatetrahedrane 1; see ref 12.

⁽¹⁶⁾ Structural details: CCDC 744853.

⁽¹⁷⁾ Lerner, H.-W.; Scholz, S.; Bolte, M. Organometallics **2002**, *21*, 3827.

⁽¹⁸⁾ Structural details: CCDC 744852.

⁽¹⁹⁾ Donor-induced degradation of Cl₃SiSiCl₂SiCl₃ leads to formation of Si(SiCl₃)₄, and in the presence of the silylene trapping agents 2,3dimethyl-1,3-butadiene gives the [4+1] cycloadduct (δ (²⁹Si) 36.1): Meyer-Wegner, F.; Nadj, A.; Tüllmann, S.; Bolte, M.; Holthausen, M. C.; Wagner, M.; Lerner, H.-W. Unpublished results.

⁽²⁰⁾ Integral ratio of the signals in the 29 Si NMR spectrum.

one molecule of benzene could be obtained from the filtrate.¹⁶ These crystals were dissolved with *t*BuOMe (10 mL). After treatment of the solution with acetonitile (6 mL) pure **1** was precipitated from this solution. Pure **1** could also be obtained by HPLC carried out on normal stationary phase (Nucleosil, 5 μ m, 250 × 20 mm; eluent heptane). Yield: 44 mg (48%). ¹H NMR (250.1 MHz, C₆D₆): δ 1.36 (s, 54H, *t*Bu). ¹³C NMR (62.9 MHz, C₆D₆): δ 25.3 (*C*CH₃), 31.7 (*C*CH₃). ²⁹Si NMR (79.5 MHz, C₆D₆): δ 52.7 (*Sit*Bu₃), -243.7 (*Si*-SitBu₃). The spectroscopic data are in agreement with those reported in ref 12.

Synthesis of 1 from Cl₃SiSiCl₃ and Na[SitBu₃]. A mixture of Cl₃SiSiCl₃ (315 mg, 1.14 mmol), Na[SitBu₃] (596 mg, 2.68 mmol), and 10 mL of benzene was stirred for 2 h at ambient temperature. After 2 h, we observed in the ²⁹Si NMR spectrum of the reaction solution the resonances that could be assigned to the tetrasilatetrahedrane 1 (δ 52.7, δ –243.7; 5.6%²⁰), the disilane *t*Bu₃SiSitBu₃ (δ 35.0; 20.6%²⁰), the chlorosilane *t*Bu₃. SiCl (δ 33.5; 6.8%²⁰), Cl₃SiSiCl₃ (δ –6.5; 62.5%²⁰), and other Si-containing compounds (*t*Bu₃SiH, Na[OSitBu₃], etc. (4.5%²⁰)). After filtration, cocrystals composed of two molecules of 1, one molecule of *t*Bu₃SiSitBu₃, and one molecule of benzene were grown from the filtrate at ambient temperature. Purification of the tetrasilatetrahedrane 1 and separation from

 $tBu_3SiSitBu_3$ was achieved by multiple recrystallizations. Single crystals of the composition of one molecule of **1** and two molecules of benzene were isolated by recrystallization from benzene.¹⁸ Yield: 31 mg (26%). For selected data for **1** see above.

Synthesis of 1 from Cl₃SiSiCl₂SiCl₃ and Na[SitBu₃]. A solution of Cl₃SiSiCl₂SiCl₃ (124 mg, 0.34 mmol) and Na[SitBu₃] (284 mg, 1.28 mmol) in 10 mL of benzene in 1:4 molar stoichiometry was stirred for one day at ambient temperature. The ²⁹Si NMR spectrum of the reaction solution showed resonances due to the tetrasilatetrahedrane 1 (δ 52.7, δ –243.7; 8.2%²⁰), the disilane *t*Bu₃SiSitBu₃ (δ 35.0; 38.9%²⁰), the chlorosilane *t*Bu₃SiCl (δ 33.5; 13.2%²⁰), the hexachlorodisilane Cl₃SiSiCl₃ (δ –6.5; 38.1%²⁰), the perchloroneopentasilane Si(SiCl₃)₄ (δ 3.5, δ –82.0; 7.3%²⁰), and other chlorine-substituted polysilanes (2.3%²⁰) ((Cl₃Si)₃SiSiCl₂SiCl₃ (δ 5.9, 3.7, –4.1, –80.5) and (Cl₃Si)₃SiCl (δ –0.3, –32.2)). After filtering, single crystals composed of two molecules of 1, one molecule of *t*Bu₃SiSi*t*Bu₃, and one molecule of benzene were isolated. Yield: 37 mg (31%). For selected data for 1 see above.

Acknowledgment. We are grateful to the University of Frankfurt for financial funding and the Chemetall GmbH for a gift of *tert*-butyllithium.