A FACILE CHEMOENZYMATIC ROUTE TO ENANTIOMERICALLY PURE 4,5-DISUBSTITUTED-2-HEXENOATE DERIVATIVES

Hiroyuki AKITA, *,a Isao UMEZAWA, b Michika TAKANO, h Hiroko MATSUKURA and Takeshi OISHI School of Pharmaceutical Science, Toho University, 2-2-1, Miyama, Funabashi, Chiba 274, Japan and Riken Institute (The Institute of Physical and Chemical Research), 2-1, Hirosawa, Wako-shi, Saitama 351-01, Japan

The reaction of 4,5-epoxy-2-hexenoate $\underline{2}$ and various nucleophiles in the presence of BF $_3$.Et $_2$ 0 predominantly gave the (4,5)-5-hydroxy-4-substituted compounds. Among them, (\pm)-(4,5)-anti-5-hydroxy-4-thiophenoxy ester $\underline{17}$ was enantioselectively esterified with acylating reagent in the presence of lipase "PL 266" from Alcaligenes sp. to provide the (4S,5R)-5-acetoxy ester $\underline{20}$ and the (4R,5S)-17 quantitatively.

KEYWORDS 4,5-epoxy-2-hexenoate; epoxy ring opening; boron trifluoride etherate; lipase; enantioselective esterification

In connection with our work directed towards the synthesis of optically active 2,3-disubstituted butyrate derivatives \underline{A} which were obtained by the reaction of an optically active 2,3-epoxy butyrate $\underline{1}$ and nucleophilic reagents in the presence of Lewis acid, $\underline{1}$ the reaction of 4,5-epoxy-2-hexenoate \underline{B} having a vinylogous structure of $\underline{1}$ and various nucleophiles has aroused our interest. The reactions of \underline{B} and alcohols $\underline{2}$ or acetoacetate $\underline{3}$ or methylcopper reagent, $\underline{4}$ producing the 4,5- or/and 2,5-disubstituted compounds (\underline{C} or \underline{D}), have been reported, but regio- and stereo-selectivities have not been thoroughly studied yet. Optically active 4,5-anti-disubstituted-2-hexenoate derivatives \underline{C} are expected to be a chiral intermediate for the synthesis of biologically active compounds such as amino sugars or their related compounds. We now report the regioselective synthesis of $\underline{(+)-(4,5)-anti}$ \underline{C} and enantioselective esterification of $\underline{(+)-C}$ with lipase in organic solvent.

"Nu-X"; O-nucleophile (alcohol, phenol), C-nucleophile (indol, Et₂AIC≡CSiMe₃)

$$\begin{array}{c} \text{Me} \xrightarrow{5} \xrightarrow{4} \xrightarrow{2} \text{COOR} + \text{"Nu-X" (nucleophile)} \end{array} \\ \begin{array}{c} \text{Me} \xrightarrow{5} \xrightarrow{4} \xrightarrow{3} \text{COOR} \\ \text{OH} \xrightarrow{C} \end{array} \\ \begin{array}{c} \text{OOR} \\ \text{OH} \xrightarrow{D} \end{array}$$

The Reaction of Methyl 4,5-Epoxy-2-hexenoate $\underline{2}$ with Various Nucleophiles The reaction of $\underline{2}$ (10 m mol) with p-methoxyphenol (5 m mol) in the presence of BF $_3$.Et $_2$ 0 (10 m mol) gave the 4,5- \underline{anti} -4-aryl ether (0-substituted compound) $\underline{3}$ (25%) $\underline{5}$) and the 4,5- \underline{anti} -4-aryl substitution products (C-substituted compounds $\underline{4}$ (48%) $\underline{6}$), $\underline{5}$ (6%) $\underline{6}$). When p-cresol was used, the 0-substituted compound $\underline{6}$ (17%) and the C-substituted compound $\underline{7}$ (69%) were obtained.

For the purpose of obtaining selectively the C-substituted compounds, the reaction of $\underline{2}$ with various carbon nucleophiles was examined. When anisole, 1,2-dimethoxybenzene and 1,3,5-trimethoxybenzene were employed, the 4,5-anti-4-aryl substitution products ($\underline{8}$ (33%), $\underline{9}$ (77%) and $\underline{14}$ (91%)) were predominantly obtained. The yield was found to rise as the nucleophilicity of aromatic ring increased. On the other hand, the reaction of $\underline{2}$ with other polymethoxybenzenes yielded the 2,5-anti-2-carbon substituted products 7) as well as the 4,5-anti-4-carbon substituted compounds. The reaction of $\underline{2}$ with thiophenol or with acetyl chloride afforded regioselectively the 4-substituted compounds (17 (95%) or 18 (59%)), respectively.

In the reaction of $\underline{2}$ with nucleophiles in the presence of BF $_3$.Et $_2$ 0, the possibility of forming oxo- π -allyl complex $\underline{19}$ from $\underline{2}$ are considered. If the complex formation takes place, then the nucleophilic attack from the less hindered side (anti-direction) should give the 4,5-anti-4-substituted compounds or the 2,5-anti-2-substitution products. In the reaction of $\underline{2}$ and the methylcopper reagents, it was reported that the harder nucleophiles attack predominantly the C $_4$ -position while the softer reagents react predominantly at the C $_2$ -position. In the present case, it is difficult to explain the regionselectivity quantitatively on the basis of a delicate difference in softness among the used nucleophiles.

Enantioselective Esterification of (\pm)-4-Thiophenoxy Ester 17 with Lipase The treatment of (\pm)-17 and acylating reagents (isopropenyl acetate or phenylthioacetate) with lipase "PL 266" from Alcaligenes sp. in isopropyl ether provided quantitatively the (4S,5R)-5-acetoxy ester 20 (98-99% ee) and the (4R,5S)-5-hydroxy ester 17 (97-99% ee). The stereochemistry of (4R,5S)-17 was determined by comparison with authentic sample (4S,5R)-17, prepared by the reaction of the known (4R,5R)-28 and thiophenol in the presence of BF3.Et20.

67% ee)

(4R,5S)-17 (34.6%,

(4R,5S)-17 (49.8%,

(4R,5S)-17 (57.8%,

2

(97)

(107)

(109)

(4S,5R)-20 (61.1%, 58% ee)

(4S,5R)-20 (49.5%, 99% ee)

(4S,5R)-20 (41.5%, 95% ee)

A ; isopropenyl acetate B ; PhSAc

PL 679 (Alcaligenes sp.)

PL 266 (Alcaligenes sp.)

PL 679 (Alcaligenes sp.)

Treatment of (4R,5S)- $\frac{17}{2}$ with Me $_30^+BF_4^-$ was followed by epoxy formation with (i-Pr) $_2$ NEt to afford the (4S,5S)- $\frac{2}{2}$ in 58% overall yield. In this process, the isomerization to the undesired <u>cis</u> epoxy ester was partly observed, but no loss of optical purity was detected. The (4S,5R)-5-acetoxy ester $\frac{20}{2}$ was also converted into the (4R,5R)- $\frac{2}{2}$. These conversions mean that chiral synthesis of the 4,5-disubstituted-2-hexenoate derivatives is achieved by applying the reaction of (\pm) - $\frac{2}{2}$ and various nucleophiles to the reaction using the chiral 4,5-epoxy-2-hexenoate $\frac{2}{2}$.

В

ACKNOWLEDGEMENT This work was supported by the Grant for "Biodesign Research Program" from RIKEN to H. A.

REFERENCES AND NOTES

- 1) a) H. Akita, H. Matsukura and T. Oishi, Tetrahedron Lett., 27, 5397 (1986);
 - b) H. Akita, T. Kawaguchi, Y. Enoki and T. Oishi, Chem. Pharm. Bull., 38, 323 (1990).
- 2) a) Chemical Abstract, <u>81</u>, 266 (1974);
 - b) M. Hirama, T. Shigemoto, Y. Yamazaki and S. Ito, Tetrahedron Lett., 26, 4133 (1985).
 - 3) J. Tsuji, H. Kataoka and Y. Kobayashi, Tetrahedron Lett., 22, 2575 (1981).
 - 4) T. Ibuka, M. Tanaka, H. Nemoto and Y. Yamamoto, Tetrahedron, 45, 435 (1989).
 - 5) Satisfactory analytical data were obtained for all new compounds.
 - 6) The structure of $\underline{\mathbf{4}}$ and $\underline{\mathbf{5}}$ were determined by NMR analysis (NOE experiment) and chemical correlation. Methylation of $\underline{\mathbf{4}}$ and $\underline{\mathbf{5}}$ provided the same dimethoxy compound $\underline{\mathbf{10}}$ which was converted in the δ -lactone $\underline{\mathbf{21}}$. The coupling constant of $\mathbf{C_4}$ -axial proton and $\mathbf{C_5}$ -axial proton of $\underline{\mathbf{21}}$ was 10 Hz, clearly indicating that the starting $\underline{\mathbf{4}}$ or $\underline{\mathbf{5}}$ possessed $\underline{\mathbf{anti}}$ -configuration.
 - 7) In order to determine the structure of this type compound, for example, compound $\underline{11}$ was converted into the δ -lactone $\underline{22}$. The coupling constants due to the C_2 -axial proton and C_5 -axial proton were $J_{2a,3a}$ = 11 Hz , $J_{2a,3e}$ =7 Hz and $J_{5a,4a}$ =11 Hz, $J_{5a,4e}$ =2 Hz, respectively. These data clearly indicate that the starting $\underline{11}$ possessed 2,5-anti-configuration.
 - 8) I. Dyong, R. Knollmann, and N. Jersch, Angew. Chem. Int. Ed. Engl., <u>15</u>, 302 (1976).

O Me OMe

(Received September 20, 1991)