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Transition metal alkylidyne complexes are among the most
important organometallic compounds. The great utility of
these compounds in organometallic and organic chemistry
was highlighted by E. O. Fischer and R. R. Schrock in their
Nobel lectures.[1, 2] Numerous stoichiometric and catalytic
transformations have been accomplished with these com-
plexes[3] since their discovery in 1973.[4] In comparison, silicon
analogues of the alkylidyne complexes are presently
unknown,[5,6] thereby emphasizing the marked difference
between silicon and carbon in forming multiple bonds. A
series of compounds featuring metal–germanium, metal–tin,
or metal–lead triple bonds have been obtained by reacting
carbonyl metalates[7] or dinitrogen and homoleptic phosphane
complexes of molybdenum and tungsten[8] with organo
Group 14 element(II) halides.[9] Extension of this efficient
process to silicon analogues was hampered to date by the
absence of any suitable organosilicon(II) halide precursors. In
fact, the isolation of transition metal silylidyne complexes is
one of the most challenging unresolved targets in organo-
silicon chemistry.

Recent studies in our group have shown that N-hetero-
cyclic carbenes can be used to stabilize aryl silicon(II)
chlorides.[10] The synthetic potential of these compounds is
demonstrated herein by the isolation of the first complex
featuring a metal–silicon triple bond.

Heating a toluene solution of SiRCl(Im-Me4) (1: R =

C6H3-2,6-Trip2, Im-Me4 = tetramethylimidazol-2-ylidene)[10]

with Li[CpMo(CO)3]
[11] at 100 8C was accompanied by a

color change from yellow over brown-green to brown.
Monitoring of the reaction progress by IR spectroscopy
revealed a rapid conversion of 1 into the silylidene complex 2,
which was isolated after recrystallization from a toluene/
hexane mixture as a dark-brown, air-sensitive solid in 51%
yield (Scheme 1).[12]

Complex 2 was fully characterized, and its molecular
structure was determined by single-crystal X-ray diffraction
(Figure 1).[13, 14] The three-legged piano-stool complex fea-
tures a Mo�Si double bond (2.345 �), which lies in the range
of Mo�Si bonds reported for molybdenum arylsilylidene
complexes (d(Mo–Si) = 2.288(2)–2.3872(7) �).[5b,15, 16] The
silylidene ligand has a trigonal planar coordinated silicon
center (sum of angles at Si = 357.08) and it adopts an upright
conformation, with the m-terphenyl group pointing towards
the cyclopentadienyl ring.[17] The angles at silicon differ
markedly; the Mo-Si-CAr angle is considerably widened to
145.38 owing to the large steric demand of the m-terphenyl

substituent; the CAr-Si-Ccarbene angle is lowered to 100.48,
which reflects the low tendency of silicon for hybridization.[18]

The Si�Ccarbene bond of 2 (1.944 �) compares well with that of
1 (1.963(2) �)[10] and is only slightly longer than the Si�CAr

bond of 2 (1.920 �) and 1 (1.937(2) �), thus indicating the
presence of a rather strong Ccarbene�Si donor–acceptor inter-
action.[19]

Further structural information is provided by the IR and
NMR spectra of 2. The IR spectrum of 2 in toluene has two
n(CO) absorption bands at considerably lower wavenumbers
(1859 and 1785 cm�1) than those of 3 (1937 and 1875 cm�1 in
toluene), which indicates that the silylidene ligand in 2 is a

Scheme 1. Stepwise synthesis of the silylidyne complex 3.

Figure 1. DIAMOND plot of the molecular structure of the silylidene
complex 2. Thermal ellipsoids are set at 50 % probability, and hydrogen
atoms are omitted for clarity. Selected bond lengths [�] and angles [8]
(values in square brackets are of the second independent molecule of
2 found in the asymmetric unit): Mo1–Si1 2.3474(6) [2.3430(6)] , Mo1–
C49 1.917(2) [1.906(2)], Mo1–C50 1.936(2) [1.938(3)], Si1–C1 1.918(2)
[1.922(2)], Si1–C37 1.943(2) [1.945(2)]; Mo-Si1-C1 145.71(6)
[144.92(6)], Mo-Si1-C37 111.08(6) [111.58(6)], C1-Si-C37 99.64(8)
[101.12(8)], Si1-Mo1-C49 90.67(6) [91.36(7)], Si1-Mo1-C50 82.43(7)
[82.53(8)], C49-Mo1-C50 78.80(9) [80.2(1)].
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considerably weaker p-acceptor ligand than the silylidyne
ligand in 3. The 1H and 13C{1H} NMR spectra reveal a Cs

symmetric structure of the silylidene complex in solution, and
that rotation of the m-terphenyl substituent about the Si–CAr

bond is fast on the NMR timescale at room temperature. The
most distinctive signal in the 13C{1H} NMR spectrum of 2 is
that of the silicon-bonded Ccarbene atom (d = 165.3 ppm),
which appears considerably upfield to that of Im-Me4 (d =

212.7 ppm),[20] but at similar position to that of 1 (d =

166.7 ppm).[10] The 29Si{1H} NMR spectrum of 2 has a
characteristic downfield-shifted signal at d = 201.8 ppm,
which compares well with those of the molybdenum arylsi-
lylidene complexes [(h5-C5Me5)(dmpe)Mo(H){Si(R)Ar}]
(R = H, Cl, Me; Ar = Ph, Mes; d = 182–250 ppm).[5b,15a] All
the spectroscopic data and bonding parameters suggest that 2
is a new type of silylidene complex, which is best described by
the zwitterionic structure depicted in Scheme 1.

The bond dissociation enthalpy Do(0) and Gibbs free
dissociation energy DGD

o(298) required to cleave the Si�
Ccarbene bond of 2 was calculated to be 62.1 and 1.2 kJmol�1,
respectively.[21,22] Both values are smaller than the respective
values of 1 (Do(0) = 94.3 kJ mol�1, DGD

o(298) =

28.1 kJ mol�1),[10] which suggests that dissociation of the N-
heterocyclic carbene Im-Me4 from 2 might occur to some
extent at elevated temperatures and in the presence of a
suitable carbene trapping agent may lead to the silylidyne
complex 3. Indeed, reaction of 2 with one equivalent of the
triarylborane B(C6H4-4-Me)3 in refluxing o-xylene afforded
selectively the silylidyne complex 3 and the carbene–borane
adduct Im-Me4·B(C6H4-4-Me)3 (4-Me; Scheme 1).[12] Com-
plex 3 was easily separated from the adduct 4-Me upon
fractional crystallization from pentane and was isolated as a
brick-red, air-sensitive solid in 53 % yield.

The molecular structure of 3 was determined by single-
crystal X-ray diffraction (Figure 2).[13] The almost Cs-sym-
metric three-legged piano-stool complex[23] is isostructural
with the germanium analogue [Cp(CO)2Mo�Ge�C6H3-2,6-
Trip2].[7b] It features an almost linearly coordinated silicon
center (Mo-Si-CAr = 173.49(8)8) and a very short Mo�Si bond
(2.2241(7) �), which is 12 pm shorter than the Mo�Si double
bond of 2. The Mo�Si bond length of 3 compares well with the
calculated Mo�Si bond lengths of the hypothetical silylidyne
complexes [Cp(CO)2Mo�Si�R] (R = H: 2.213 �, R = Me:
2.229 �)[24] and the Mo�Si bond length of [(h5-C5Me5)-
(dmpe)(H)MoSiMes][B(C6F5)4] (2.219(2) �).[5b]

The IR and NMR spectra support the structure of
complex 3. The 29Si{1H} NMR spectrum of 3 has a distinctive
signal that is considerably downfield (at d = 320.1 ppm) to
that of 2 (d = 201.8 ppm). The IR spectrum of 3 in toluene has
two n(CO) bands (1937 and 1875 cm�1) that appear at almost
the same position as those of the germylidyne complex
[Cp(CO)2Mo�Ge-C6H3-2,6-Mes2] (1930 and 1875 cm�1 in
nujol),[7a] but at considerably lower wavenumbers than those
of the alkylidyne complex [Cp(CO)2Mo�C�C6H3-2,6-Me2]
(1992 and 1919 cm�1 in CH2Cl2).[25] This result indicates that
metal–carbonyl back-bonding is stronger in the complexes
[Cp(CO)2Mo�E�R] (E = Si, Ge). It also suggests that
silylidyne and germylidyne ligands have a similar s-donor/p-
acceptor ratio, which is however larger than that of alkylidyne

ligands. Further evidence for the stronger metal–carbonyl
back-bonding in [Cp(CO)2Mo�E�C6H3-2,6-Trip2] (E = Si,
Ge) is provided by the downfield-shifted 13C NMR signal of
the carbonyl ligands (E = Si (3): d = 231.1 ppm, E = Ge: d =

231.4 ppm[7b]) than that of [Cp(CO)2Mo�C�C6H3-2,6-Me2]
(d = 228.7 ppm).[25]

The thermochemical parameters for the carbene transfer
reaction of 2 with the borane B(C6H4-4-Me)3 to give 3 and 4-
Me were computed.[21, 22] Formation of the silylidyne complex
3 is an exergonic process (DGR8(298) =�39.0 kJmol�1),
which is favored by both the reaction enthalpy
(DHR8(298) =�21.8 kJmol�1) and the reaction entropy
(DSR8(298) = 57.7 Jmol�1 K�1). The negative reaction
enthalpy results from the higher bond dissociation enthalpy
Do(0) of the carbene–borane adduct 4-Me (88.4 kJmol�1)
than that of 2 (62.1 kJ mol�1) and suggests that triarylboranes,
such as B(C6H4-4-Me)3, should be useful N-heterocyclic
carbene abstracting agents owing to the formation of a
rather strong B�Ccarbene bond.

The isolation of the silylidyne complex 3 shows the
potential of the carbene adduct 1 as a source for the
generation of unprecedented compounds featuring silicon
multiple bonds. Studies are currently in progress to explore
this potential and the chemistry of the silylidyne complex 3.
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Figure 2. DIAMOND plot of the molecular structure of the silylidyne
complex 3. Thermal ellipsoids are set at 50 % probability, and hydrogen
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B(C6H4-4-Me)3) and Im-Me4 at 298 K, respectively. DGR
o(298) is

the Gibbs free energy and DHR8(298) the enthalpy of the
reaction of 2 with B(C6H4-4-Me)3 to give 3 and 4-Me at 298 K.
DGR

o(298) = DGD
o(298)(2)�DGD

o(298)(4-Me). DGD
o(298)(2)

and DGD
o(298)(4-Me) were calculated to be 1.2 and

40.2 kJ mol�1, respectively. DHR
o(298) = Do(298)(2)�Do(298)

(4-Me), where Do(298)(2) is the enthalpy of the dissociation of
2 to give 3 and Im-Me4 at 298 K, and Do(298)(4-Me) is the
enthalpy of the dissociation of 4-Me to give B(C6H4-4-Me)3 and
Im-Me4 at 298 K. Do(298)(2) and Do(298) (4-Me) were calcu-
lated to be 60.7 and 82.5 kJmol�1, respectively.
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