layer were washed successively with H₂O (2 \times 20 ml), 2 N HCl (2 \times 20 ml), and 10% aq Na₂CO₃ (2 \times 20 ml) and dried (Na₂SO₄).

Removal of solvent gave the oily 2-nitrile (0.67 g, 87%), which recrystd as colorless needles, mp 104–108°, from Me₂CO–Et₂O: p^{Nucl} 2200 cm⁻¹ (s) CN: P⁺, m/e 226.146668 (C₁₅H₁₃N₂).

 $\nu_{\rm max}^{\rm Nujol}$ 2200 cm⁻¹ (s) CN; P⁺, m/e 226.146668 (C₁₅H₁₈N₂). A soln of the nitrile (0.205 g) in 6% HCl (20 ml) was heated under reflux for 18 hr. The cooled soln was basified (NH₄OH) and extd with Et₂O (3 × 20 ml), and the Et₂O soln in turn was extd wih 2 N HCl (3 × 20 ml).

Basification (NH₄OH) of the acid soln followed by Et₂O (3×20 ml) extn, gave on evapn of the dried (Na₂SO₄) soln **9a**·base (0.14 g, 78%).** **3,5-Dimethyl-6,7-benzomorphan**·HBr crystd as prisms from EtOH-Et₂O and had mp 228-230°. Anal. C₁₄H₂₀BrN) C, H, N.

4,5-Dimethyl-6,7-benzomorphan·HCl (9b·HCl).—By the method described above the base 8 (13.1 g) and CNBr (16.8 g) gave a cryst (plates) *N*-nitrile (8.3 g, 60%): $\nu_{\rm max}^{\rm film}$ 2200 cm⁻¹ (s) CN; P⁺, m/e 226,146887 (C₁₃H₁₈N₂). Hydrolysis of the nitrile (8.3 g) by aq 6% HCl (500 ml) gave 4,5-dimethyl-6,7-benzomorphan (4.36 g, 59%). The hydrochloride was recrystd from EtOH-Et₂O as colorless prisms, mp 215-219°. *Anal.* (C₁₄H₂₀ClN) C, H, N.

2-Cyclopropylmethyl-3,5-dimethyl-6,7-benzomorphan ·HBr (14a ·HBr).—To a soln of 3,5-dimethyl-6,7-benzomorphan (0.64 g) in a mixt of CH₂Cl₂ (35 ml) and Et_aN (6.0 ml) was added cyclopropanecarbonyl chloride (2.0 g). The mixt was refluxed for 12 hr, cooled, and washed successively with 2 N HCl (3×20 ml) and H₂O (3×20 ml). The CH₂Cl₂ soln was dried (K₂CO₈) and evapd to yield the cryst amide 12a (0.336 g, 42%).

A dry Ét₂O soln of **12a** (0.336 g, 20 ml) was added dropwise to a stirred suspension of LAH (1.0 g) in Et₂O. The mixt was refluxed for 6 hr, cooled, and quenched with H₂O. The Et₂O phase was decanted and the inorg gel washed with Et₂O (3×20 ml). The dried (Na₂SO₄) Et₂O solns gave, on evapn, the base **14a** (3.4 g, 79%) which solidified. The hydrobromide recrystd on colorless plates, mp 187-188°, from EtOH-Et₂O. Anal. (C₁₈H₂₆BrN) C, H, N.

2-Cyclopropylmethyl-4,5-dimethyl-6,7-benzomorphan HCl (14b HCl).—By the method described for 14a, 4,5-dimethyl-6,7-benzomorphan (0.316 g) afforded 14b base (0.208 g, 52%). The HCl salt was recrystd from EtOH-Et₂O as colorless plates, mp 202-204°. Anal. (C₁₈H₂₆ClN) C, H, N.

2-Phenethyl-3,5-dimethyl-6,7-benzomorphan HBr (13a HBr). --Phenylacetyl chloride (0.5 ml) in MeOH (2 ml) was added,

** It was sometimes necessary to distil the base over a short path $[70^{\circ} (0.7 \text{ mm})]$ before converting it to the HBr salt.

during 5 min, to a stirred suspension of 9a (0.51 g) in a mixt of K_2CO_3 (0.5 g), MeOH (8 ml), and H_2O (3 ml). The mixt was stirred for 4 hr and was then extd with Et_2O (4 \times 20 ml). The exts were washed successively with 2 N HCl (2 \times 20 ml) and 10% aq NaHCO₃ (2 \times 20 ml) and dried (Na₂SO₄), and the solvent was evapd to give the intermediate amide.

The crude amide in dry Et₂O (45 ml) was added dropwise to a stirred suspension of LAH (1.0 g) in Et₂O (20 ml), and the mixt was refluxed for 6 hr. Excess LAH was destroyed by the addn of H₂O, and the ethereal supernatant was decanted. The Et₂O soln together with Et₂O washings (3×20 ml) of the inorganic residue was extd with 2 N HCl (3×50 ml), the exts were basified (0.88 ammonia) and extd with Et₂O (3×50 ml). Evapn of the dried (Na₂SO₄) ethereal soln afforded the N-phenethylbenzomorphan (0.52 g, 68%). The hydrobromide hemihydrate recrystd as colorless plates, mp 134-137°, from EtOH-Et₂O. Anal. (C₂₂H₂₅BrN·0.5H₂O) C, H, N.

2-Phenethyl-4,5-dimethyl-6,7-benzomorphan HCl (13b HCl). —Prepd by the method described for 13a, 9b (0.25 g) gave 2phenethyl-4,5-dimethyl-6,7-benzomorphan (0.295 g, 79%). The hydrochloride recrystd as colorless plates, mp 229–231°. Anal. ($C_{22}H_{28}ClN$) C, H, N.

2-(2-Methyl-3-butenyl)-3,5-dimethyl-6,7-benzomorphan HCl (10a HCl).—To a stirred suspension of 9a (0.324 g) and NaHCO (0.5 g) in DMF (15 ml) was added 1-bromo-3-methylbut-2-ene (0.24 g) and the mixt was heated under reflux for 8 hr, cooled, and filtered. The filtrate, plus EtOH washings, was evapd to dryness, and the residue was dissolved in Et₂O, filtered, and extd with 2 N HCl (3×20 ml). Basification (NH₄OH) of the exts followed by Et₂O extn (3×20 ml), gave on evapn of dried (Na₂SO₄) soln, 0.294 g (68%) of the benzomorphan base 10a. The hydrochloride was recrystd from EtOAc-petr ether (bp 40-60°) as prisms, mp 183-185°. Anal. (C₁₉H₂₈ClN) C, H, N.

2-(2-Methyl-3-butenyl)-4,5-dimethyl-6,7-benzomorphan \cdot HCl (10b \cdot HCl).—By the method described for 10a, 9b (0.415 g) and 1-bromo-3-methylbut-2-ene (0.30 g) yielded 0.407 g (73%) of 10b base. The hydrochloride was recrystd from EtOH-Et₂O-petr ether (bp 40-60°) as colorless plates, mp 178-179°. Anal. (C₁₉H₂₈ClN) C, H, N.

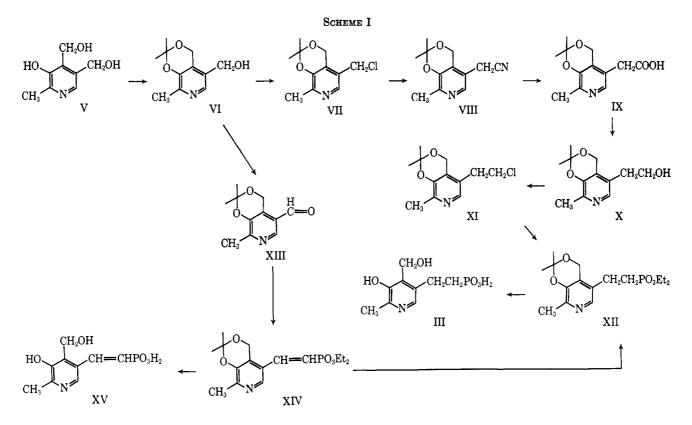
Acknowledgment.—We gratefully acknowledge support of this work by National Institutes of Health Grant NB 07170. We wish to thank Dr. Everette L. May, National Institutes of Health, for biological assays and Hilton-Davis Chemicals for a gift of 1-bromo-3-methylbut-2-ene.

Vitamin B_6 Analogs. 4. 4-Desoxyisopyridoxal and the Phosphonic Acid Analog of 4-Desoxypyridoxine Phosphate^{1,2}

ROBERT F. STRUCK,* Y. FULMER SHEALY, AND JOHN A. MONTGOMERY

Kettering-Meyer Laboratory, Southern Research Institute, Birmingham, Alabama 35205

Received November 9, 1970


The phosphonic acid analogs II and III of 4-desoxypyridoxine phosphate and pyridoxine phosphate were synthesized from 4-desoxyisopyridoxal (IV) and pyridoxal, respectively, by means of the modified Wittig reaction. 4-Desoxyisopyridoxal (IV) and its 3-acetyl derivative XVI exhibited antivitamin B_{θ} activity against Saccharomyces carlsbergensis and cytotoxicity against human epidermoid cells in culture. No antileukemic activity was observed for the phosphonic acid analogs II and III or 4-desoxyisopyridoxal (IV) against mouse leukemia L1210.

4-Desoxypyridoxine (I) has been shown to be an inhibitor of several types of tumors in animals maintained on a vitamin B_6 deficient diet. After phosphorylation the vitamin analog I can serve as a substrate for enzymes that use pyridoxal phosphate as a cofactor.³ Because I shows only weak competitive inhibition, as shown by the fact that a deficient diet is necessary for *in vivo* activity, we are engaged in a program of synthesis of analogs of I that might be effective antineoplastic agents on a complete diet.

This investigation was supported by Contract PH43-64-51 with Chemotherapy, National Cancer Institute, National Institutes of Health.
 Part 3, J. L. Greene, Jr., A. N. Williams, and J. A. Montgomery, N. M. B. Greene, Jr., A. N. Williams, and J. A. Montgomery,

J. Med. Chem., 7, 20 (1964).

⁽³⁾ J. A. Montgomery, T. P. Johnston, and Y. F. Shealy, "Medicinal Chemistry," A. Burger, Ed., 3rd ed, Wiley, New York, N. Y., 1970, Chapter 28, pp 680-783.

We report herein the synthesis and antitumor evaluation of phosphonic acid analogs II and III of 4-desoxypyridoxine phosphate and pyridoxine phosphate. Replacement of the phosphate ester oxygen with a methylene group to generate a nonhydrolyzable phosphate analog has been accomplished for several biologically important classes of compounds.⁴ While our synthesis of II and III was in progress, Hullar⁴ described the synthesis of II and XV and observed significant inhibitory activity against aspartate aminotransferase.

Two routes were followed for the synthesis of III as shown in Scheme I. Because of the low yield of XII obtained by means of the Korytnyk⁵-Arbuzov route $(VI \rightarrow VII \rightarrow XI \rightarrow XII)$, the Hullar⁴-modified Wittig route $(VI \rightarrow XIII \rightarrow XIV \rightarrow XII)$ was investigated and found to be greatly superior as a means of obtaining sufficient amounts of intermediates and final product for antitumor evaluation.

The synthesis of II was accomplished in a similar fashion, as shown in Scheme II, from the heretofore unreported 4-desoxyisopyridoxal⁶ (IV).

The vitamin B_6 analogs were tested for cytotoxicity against human epidermoid cells in culture (Table I). Only IV and XVI were significantly inhibitory, and their cytotoxicity was apparent only at the highest level tested.

4-Desoxyisopyridoxal (IV) and its 3-acetyl derivative XVI, as well as the target compounds II and III, were evaluated for antivitamin B_6 activity in cultures of *Saccharomyces carlsbergensis.*⁷ Figure 1 shows that normal growth (A) is altered by the presence of IV (B and C) and XVI (D and E), indicating some inhibi-

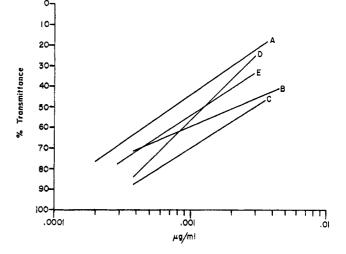
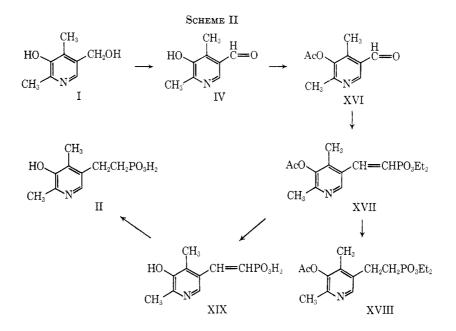


Figure 1.—Inhibition of growth of Saccharomyces carlsbergensis: A, pyridoxine; B and C, pyridoxine plus 1 μ g and 10 μ g, respectively, of 4-desoxyisopyridoxal; D and E, pyridoxine plus 1 μ g and 10 μ g, respectively, of 3-acetyl-4-desoxyisopyridoxal.

tory effect by the two analogs, whereas no inhibitory effect was observed for 4-desoxypyridoxine (I), II, and III under identical conditions. At concentrations of pyridoxine that were too low to support growth $(0-1 \times 10^{-4} \,\mu\text{g/ml})$ of *S. carlsbergensis*, a high concentration of III (100 $\mu\text{g/ml}$) permitted normal growth, thus suggesting the ability of III to serve as a weak substrate for enzymes that use pyridoxine phosphate as a cofactor.


The analogs were evaluated at a starting dose of 400 mg/kg against leukemia L1210 in mice on a normal diet. Administration was by the intraperitoneal route on the first day of the test in mice inoculated with 10^5 cells. No antileukemic activity was found for any of the compounds tested. Some toxicity was observed for IV and XVI; the highest nontoxic doses administered were 75 and 150 mg/kg, respectively.

⁽⁴⁾ T. L. Hullar, J. Med. Chem., 12, 58 (1969), and ref cited therein.

⁽⁵⁾ W. Korytnyk, B. Paul, A. Bloch, and C. A. Nichol, *ibid.*, **10**, 345 (1967).

⁽⁶⁾ The thiosemicarbazone of 4-desoxyisopyridoxal has been reported: T. S. Gardner, F. A. Smith, E. Wenis, and J. Lee, J. Org. Chem., 16, 1121 (1951).

⁽⁷⁾ E. E. Snell and J. C. Rabinowitz, Anal. Chem., 19, 277 (1947).

	TABLE I	
	CYTOTOXICITY ^a	
		$T - C_{0}/$
Compd		$C - C_0{}^b$
II		0.79
III		0.78
IV		-0.10
VII		0.72
VIII		0.51
XI		1.21
\mathbf{XII}		0.79
XIV		0.70
$\mathbf{X}\mathbf{V}$		0.94
XVI		-0.15
XVII		0.76
XIX		0.98

^a HEp 2 cells. ^b $T - C_0$ and $C - C_0$ represent μ g of protein in treated and control systems in tests at a dose level of 100 μ g/ml.

Experimental Section

Where analyses are indicated only by symbols of the elements, analytical results obtained for those elements were within $\pm 0.3\%$ of the theoretical values. Melting points were determined with a Kofler Heizbank apparatus. Nmr data were determined with a Varian A-60A spectrometer and are given in ppm downfield from Me₄Si. Mass spectra were obtained with a Hitachi RMU-6D spectrometer equipped with mass marker and peak matching device.

5-(2-Chloroethyl)-2,2,8-trimethyl-4H-m-dioxino[4,5-c]pyridine · HCl (XI).— α^4 ,3-O-Isopropylidene- α^5 -pyridoxylmethanol (X) was prepd from pyridoxine (I) according to the method of Korytnyk, et al.⁵ X (1.9 g, 8.53 mmoles) in 125 ml of dry, refluxing C₆H₆ was treated dropwise with stirring in 10 min with a soln of SOCl₂ (1.5 ml, 2.4 g, 20 mmoles) in 5 ml of dry $\rm C_6H_6.$ A ppt formed during the SOCl₂ addition but dissolved before the addition was complete. The soln was refluxed 1 hr after the addition and allowed to stand overnight at room temp. The pptd solid was collected by filtration and dried in vacuo: mp 172–174° dec; yield 1.87 g (79%). The solid was dissolved in 50 ml of dry C6H6 contg a small amt of EtOH. The soln was filtered and the filtrate treated with excess Et₂O; the crystalline ppt was collected by filtration and dried in vacuo: mp 175-177° dec; yield 1.6 g (68%). Anal. (C₁₂H₁₇Cl₂NO₂) C, H, Cl, N.

Diethyl α^4 ,3-O-Isopropylidene- α^5 -pyridoxylmethylphosphonate ·HCl (XII).—Diethyl α^4 ,3-O-isopropylidene- α^5 -pyridoxylidenemethylphosphonate ·HCl (XIV) (1 g), prepd by the method of Hullar,⁴ in 100 ml of EtOH was treated with 1 g of 5% Pd/C and hydrogenated with shaking for 4 hr at room temp at an initial pressure of 3.5 kg/cm². The catalyst was removed by filtration, and the filtrate was evapd to dryness *in vacuo*. Trituration of the residue with ether and filtration gave a solid: mp 105-107°; yield 650 mg (65%). Crystn from EtOAc gave XII in analytical purity: mp 114-116°; yield 500 mg (50%); nmr (DMSO- d_6), 1.2 (triplet, OCH₂CH₃), 1.53 (>C(CH₃)₂), 2.5 (2-CH₃-pyridine), 2.5 (multiplet, CH₂CH₂), 4.0 (multiplet, OCH₂CH₃), 5.1 (OCH₂-pyridine), 8.2 (H-pyridine), *ca.* 12 (HCl). *Anal.* (C₁₆H₂₆-NO₅P·HCl) C, H, Cl, N, P.

XII was also prepd from XI by means of the Arbuzov reaction by refluxing XI for 40 hr in $(i-\text{PrO})_{4}$ P according to the procedure of Bennett, *et al.*[§] Yield and purity of XII obtained by this method were inferior to that obtained from XIV.

2-[5-Hydroxy-4-(hydroxymethyl)-6-methyl-3-pyridyl]ethylphosphonic Acid⁴ (III).—XII (200 mg) was refluxed 12 hr in concd HCl, and the resulting soln was evapd to dryness *in vacuo*. The syrupy residue was purified as described by Hullar and gave a product whose ir spectrum was in agreement with that reported.⁴ Further characterization was provided by mass spectral analysis. Although no definitive spectrum was obtained for III itself, trimethylsilylation generated a volatile derivative that showed the following peaks (m/e): 463 (M⁺, tri-TMS derivative), 448 (M⁺ 463 - CH₃), 447 (m/e 448 - H), 432 (M⁺ 463 -CH₂OH), 391 (M⁺, di-TMS derivative), 390 (M⁺ 391 - H), 376 (M⁺ 391 - CH₃), 375 (m/e 376 - H), 360 (M⁺ 391 -CH₂OH).

2-[5-Hydroxy-4-(hydroxymethyl)-6-methyl-3-pyridyl]vinylphosphonic Acid⁴ (XV).—XIV⁴ (350 mg) in 10 ml of coned HCl was refluxed 1 hr and the soln was freed of H₂O by C₆H₆ azeotropic drying. The residue (mp > 260°) was crystallized from EtOH-H₂O: mp > 260°; yield 60 mg. *Anal.* (C₉H₁₂-NO₅P) C, H, N, P.

4-Desoxyisopyridoxal (IV).—Following the procedure of Korytnyk, et al., $^{\circ}$ CrO₃ (31.7 g) was added batchwise to 1500 ml of pyridine (distilled from KMnO₄) in 10 min with vigorous stirring under N₂. After stirring 20 min at room temp, desoxy-pyridoxine (3 g) in 100 ml of pyridine was added in one batch. The mixt was stirred at room temp 1 hr, heated slowly to reflux in 1 hr, and refluxed 2 hr. After cooling to room temp, H₂O (2.5 l) was added, and the mixt was extd continuously with ether for 4 days. Evapn of the ext gave a solid residue (1 g) which was crystd twice from C₆H₆-EtOH and yielded an analytical sample: mp 160°; yield 780 mg. Anal. (C₈H₉NO₂) C, H, N.

5-Hydroxy-4,6-dimethylnicotinaldehyde Acetate Ester (3-Acetyl-4-desoxyisopyridoxal) (XVI).—IV (500 mg) in 10 ml of Ac₂O was stirred 3 days at room temp and evapd to dryness in vacuo. Crystn of the solid residue from C₆H₆ gave an analytical sample: mp 79-80°; yield 220 mg (34%); nmr (DMSO- d_6), 2.4 (partially resolved triplet, 2- and 4-CH₃-pyridine, CH₃CO),

⁽⁸⁾ R. Bennett, A. Burger, and W. W. Umbreit, J. Med. Pharm. Chem., 1, 213 (1959).

⁽⁹⁾ W. Korytnyk, E. J. Kris, and R. P. Singh, J. Org. Chem., 29, 574 (1964).

8.75 (H-pyridine), 10.25 (CH=O). Anal. (C₁₀H₁₁NO₂) C, H, N.

Diethyl [2-(5-Acetoxy-4,6-dimethyl-3-pyridyl)vinyl]phosphonate · HCl (XVII).—Tetraethyl methylenediphosphonate¹⁰ (11.5 g, 0.04 mole) was added dropwise in 15 min at room temp to a stirred mixt of NaH (1.92 g, 50% oil dispersion, 0.04 mole) in 200 ml of dry 1,2-dimethoxyethane. After stirring 1 hr, the homogeneous system was treated with XVI (6 g, 0.031 mole) batchwise in 5 min, and the soln was stirred overnight. A syrup pptd during the stirring period. Evapn of the solvent, addn of 50 ml of H₂O, and overnight extn with EtOAc yielded the crude product in the org layer. The solvent was removed, and the residue in Et₂O was treated with dry HCl until pptn of an oil was complete. After stirring 15 min, the ppt (now crystalline) was collected by filtration: yield 6.5 g (45%). Crystn from Et₂O-EtOAc gave the purified product: mp 125-127°; mass spectrum (m/e), 327 (M⁺), 285 (M⁺ - COCH₃ + H), 282 (M⁺ - OEt), 248.4 (metastable, 327 \rightarrow 285), 177 (M⁺ - CHPO₃Et₂), 176 (177 - H), 149 (177 - CO), 148 (177 - HCO), 36 (base peak, HCl).

Diethyl [2-(5-Hydroxy-4,6-dimethyl-3-pyridyl)ethyl]phosphonate Acetate Ester HCl (XVIII).—XVII (1 g) in 50 ml of EtOH was treated with 1 g of 5% Pd/C and hydrogenated at room temp with shaking for 7 hr at an initial pressure of 3.5 kg/cm². Removal of the catalyst by filtration and evapn of the filtrate gave a syrup. This was sublimed *in vacuo* (*ca.* 0.02 mm) at 100° and yielded a white, cryst sublimate: mp 100–102°; yield 180 mg; mass spectrum (*m/e*) 329 (M⁺), 314 (M⁺ – CH₃), 300 (M⁺ – C₂H₅), 287 (M⁺ – COCH₃ + H), 272 (*m/e* 287 – CH₃), 258 (*m/e* 287 – C₂H₅), 242 (*m/e* 287 – OC₂H₅), 192 (M⁺ – PO₃Et₂), 150 (*m/e* 287 – PO₃Et₂). Anal. (C₁₈H₂₄NO₃P·HCl) C, H, Cl, N, P.

[2-(5-Hydroxy-4,6-dimethyl-3-pyridyl)vinyl]phosphonic Acid (XIX).—XVII (200 mg) in 10 ml of concd HCl was refluxed for 5 hr, and the resulting soln was evapd to dryness *in vacuo*. Tri-

(10) G. M. Kosolapoff, J. Amer. Chem. Soc., 75, 1500 (1953).

turation of the residue with Et₂O and filtration gave a white solid: mp > 260°; yield 130 mg. The solid was crystd from EtOH-H₂O: mp >260°; yield 50 mg (40%); nmr (DMSO-d₆), 2.4, 2.65 (2- and 4-CH₃-pyridine), 7.05 (multiplet, trans-HC=CH), 8.45 (H-pyridine), 10.7 (OH and H₂O). Anal. (C₈H₁₂-NO₄P·H₂O) C, H, N, P.

[2-(5-Hydroxy-4,6-dimethyl-3-pyridyl)ethyl]phosphonic Acid (II).—XIX (500 mg) suspended in 25 ml of H_2O was treated dropwise with 1 N KOH until homogeneous. To the soln (pH 7-8) was added 500 mg of 5% Pd/C, and the mixt was hydrogenated at room temp with shaking for 12 hr at an initial pressure of 3.5 kg/cm². The catalyst was removed by filtration, and the reduced product was isolated from the filtrate as described by Hullar⁴ for the corresponding pyridoxine analog: mp >260°; yield 100 mg (20%); nmr (CF₃COOD), 2.4, 3.2 (pair of complex multiplets, CH₂CH₂), 2.6, 2.75 (2- and 4-CH₃-pyridine), 8.1 (H-pyridine), 11.25 (OH). Anal. (C₉H₁₄NO₄P) C, H, N.

Acknowledgments.—The authors express their appreciation to Drs. W. J. Barrett, W. C. Coburn, Jr., P. D. Sternglanz, and associates for microanalytical and spectral determinations, to Mrs. Martha Thorpe for nmr data, and to Mr. Marion C. Kirk for mass spectral data. Some of the analyses were performed by Galbraith Laboratories, Knoxville, Tenn. Biological testing was performed by the Chemotherapy Department of Southern Research Institute under Contract PH43-65-594 with Chemotherapy, National Cancer Institute, National Institutes of Health; *in vivo* testing was carried out under the supervision of Drs. F. M. Schabel, Jr., and W. R. Laster, Jr., and *in vitro* tests were under the supervision of Drs. R. F. Pittillo and G. J. Dixon.

Alkaloid Studies. 7.¹ Reactions of 18-Hydroxymethyleneyohimban-17-one and the Preparation of Yohimbano[17,18-c and 18,17-d]pyrazoles

J. DONALD ALBRIGHT, NATALIE H. CONROY, LEON GOLDMAN,*

Organic Chemical Research Section

AND ARNOLD C. OSTERBERG

Experimental Therapeutics Research Section, Lederle Laboratories, A Division of American Cyanamid Company, Pearl River, New York 10965

Received November 5, 1970

Some reactions of 18-hydroxymethyleneyohimban-17-one (1) were investigated. Hydrazine and 1 gave yohimbanopyrazole 2, acylation of which produced acetyl and 3,4,5-trimethoxybenzoyl derivatives 8 and 9. Phenylhydrazine and 1, or its isobutyl ether 5, produced isomeric phenylyohimbano[17,18-c and 18,17-d]pyrazoles 3 and 4. Methylhydrazine and 1 produced isomeric methylyohimbano[17,18-c and 18,17-d]pyrazoles 11 and 10. Structural assignments of N-substituted pyrazoles based on pmr measurements are discussed. O-Benzoyl and O-3,4,5-trimethoxybenzoyl derivatives 12 and 13 were prepared by acylation of 1. Potent CNS depressant activity in laboratory animals was exhibited by 1, 2, 5, 10, and 11.

Our interest in the introduction of substituents into the E ring of yohimbanones and in further modification of the E ring led us to study the chemistry of C-18 substituted yohimban-17-ones. In a previous publication² we have described the synthesis of C-18 substituted yohimban-17-ones and presented evidence for substitution at C-18 in carboxylation and formylation of yohimban-17-one. A study of the chemistry of 18hydroxymethyleneyohimban-17-one² (1) was undertaken since hydroxymethylene ketones³ are reactive intermediates which undergo numerous condensation reactions. Reactions with amines give aminomethylene derivatives,^{4,5} while reactions with alcohols afford alkoxymethylene ketones; heterocyclic pyrazoles are

⁽³⁾ For the preparation of 2-hydroxymethylene 3-ketosteroids see: (a)
H. J. Ringold, E. Batres, O. Halpern, and E. Necoechea, J. Amer. Chem. Soc., 81, 427 (1959); (b) F. L. Weisenborn and H. E. Appelgate, *ibid.*, 81, 1960 (1959).

⁽⁴⁾ For the preparation of 2-aminomethylene 3-ketosteroids see:
(a) J. A. Zderic, O. Halpern, H. Carpio, A. Ruiz, D. C. Limon, L. Magana, H. Jimenez, A. Bowers, and H. J. Ringold, Chem. Ind. (London), 1625 (1960);
(b) Col. 201 (201)

Alkaloid Studies. VI: J. D. Albright, L. A. Mitscher, and L. Goldman, J. Heterocycl. Chem., 7, 623 (1970).
 J. D. Albright, L. A. Mitscher, and L. Goldman, J. Org. Chem., 28,

 ⁽²⁾ J. D. Albright, L. A. Mitscher, and L. Goldman, J. Org. Chem., 28, 38 (1963).

⁽b) G. de Stevens and A. Halamandaris, J. Org. Chem., 26, 1614 (1961).
(5) Reactions of 18-hydroxymethyleneyohimban-17-one (1) with amines will be described in a forthcoming publication.