DOI: 10.1002/ejic.200800642

Dimethyltin(IV) Bis(3,5-diphenylpyrazolate) as a Synthetic Reagent in the Preparation of Rare-Earth Pyrazolate Complexes

Samar Beaini,^[a] Glen B. Deacon,^{*[a]} Ewan E. Delbridge,^[a] Peter C. Junk,^{*[a]} Brian W. Skelton,^[b] and Allan H. White^[b]

Keywords: Redox transmetallation / Lanthanoids / Dimethyltin reagents / Organotin(IV) / Pyrazolate / Rare-earth elements

Reaction of SnMe₂Cl₂ with [Li(Ph₂pz)] (Ph₂pz = 3,5-diphenylpyrazolate) in diethyl ether in a 1:2 ratio afforded the new transmetallation reagent [SnMe₂(Ph₂pz)₂]. Treatment of [SnMe₂(Ph₂pz)₂] with Ln metals in either 1,2-dimethoxyethane (dme) or tetrahydrofuran (thf) provided a new route to the divalent [Ln(Ph₂pz)₂(dme)₂] (Ln = Sm, Eu, Yb) and the trivalent [La(Ph₂pz)₃(dme)₂] and [Yb(Ph₂pz)₃(thf)₂] complexes in comparable yields to those from alternative methods. These reactions enabled isolation of the highly reactive [Sm(Ph₂pz)₂(dme)₂] complex in good yield, in addition to the new *cis* isomer of [Eu(Ph₂pz)₂(dme)₂], thereby establishing a rare case of geometric isomerism in lanthanoid chemistry. ¹H and ¹¹⁹Sn NMR spectral studies and EDAX measurements were performed on the reaction mixture and/or residue to identify the tin-containing products and suggest formation of $SnMe_4$, Sn_2Me_6 , tin metal and two other $SnMe_3$ species, which plausibly result from decomposition of unstable " $SnMe_2$ ". Treatment of $[Yb(Ph_2pz)_2(dme)_2]$ with $[SnMe_2(Ph_2pz)_2]$ or $[Tl(Ph_2pz)]$ resulted in the isolation of $[Yb(Ph_2pz)_3(thf)_2]\cdot 2C_6D_6$ and $[Yb(Ph_2pz)_3(dme)]\cdot 0.5$ dme complexes, the structures of which have eight-coordinate Yb atoms and contrast nine-coordination observed for previous $[Ln(Ph_2pz)_3(thf or dme)_n]$ complexes.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008)

Introduction

Redox transmetallation reactions provide simple halide-free reaction routes to both divalent and trivalent rare-earth complexes.^[1] The use of organomercurial^[1-4] and thal-lium^[4-6] reagents is now well established for the synthesis of various metal–organic lanthanoid derivatives [Equations (1)–(3)].

As an alternative approach, trimethyltin(IV) compounds have recently been shown to be effective reagents in redox transmetallation reactions with Ln metals in the synthesis of both trivalent [Equation (4)] and divalent [Equation (5)] metal–organic lanthanoid complexes,^[7] by utilisation of the Sn^{IV} \rightarrow Sn^{III} reduction.

Earlier, Lappert had provided a single example of the use of the $Sn^{II} \rightarrow Sn^0$ reduction in redox transmetallation.^[8] The

$Ln + HgR_2$	\longrightarrow	$LnR_2 + Hg$	$(R = C_6F_5; Ln = Eu, Yb)$	(1)
$2 Ln + 3 HgR_2$		2 LnR ₃ + 3 Hg	(R = Ph; Ln = Ho, Er)	(2)
Ln + n TlL	>	$Ln(L)_n + n Tl$	$(L = R_2 pz, OAr, Cp; n = 2, 3)$	(3)

 $(R_2pz = 3,5$ -disubstituted pyrazolates)

$$2 \operatorname{Ln} + 6 \operatorname{SnMe_3L} \longrightarrow 2 [\operatorname{Ln}(\operatorname{L})_3(\operatorname{solv})_n] + 3 \operatorname{Sn_2Me_6}$$
(4)

 $\operatorname{Ln} + 2 \operatorname{SnMe}_{3} \operatorname{L} \longrightarrow [\operatorname{Ln}(\operatorname{L})_{2}(\operatorname{solv})_{n}] + \operatorname{Sn}_{2} \operatorname{Me}_{6}$ (5)

L = 3,5-diphenylpyrazolate (Ph₂pz), 2,6-di-*tert*-butyl-4-methylphenolate (OAr), C₆F₅;

solv. = thf, dme; n = 2, 3

[a] School of Chemistry, Monash University,
 P. O. Box 23, Clayton, Victoria 3800, Australia Fax: 61-3-99054597
 E-mail: glen.deacon@sci.monash.edu.au peter.junk@sci.monash.edu.au

[b] Chemistry M313, School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, Crawley, Western Australia, 6009, Australia new use of organotin reagents in redox transmetallation with lanthanoid elements contrasts their common use as non-redox metathesis reagents.^[9]

In a recent study by Westerhausen,^[10] treatment of the dimethyltin(IV) reagent $[SnMe_2(N{SiMe_3})_2]_2$ with Ca metal in a redox transmetallation reaction resulted in the preparation of $[Ca(N{SiMe_3}_2)_2(thf)_2]$ [Equation (6)].

4586

 $16 \text{ Ca} + 15 \text{ SnMe}_{2}[N(\text{SiMe}_{3})_{2}]_{2} \longrightarrow 15 [Ca(N{\text{SiMe}_{3}}_{2})_{2}(\text{thf})_{2}] + [Ca(\text{SnMe}_{3})_{3})_{2}(\text{thf})_{2}] + 3 \text{ SnMe}_{4} + 4 \text{ Sn}_{3}(\text{SnMe}_{3})_{3}(\text{thf})_{2}] + 3 \text{ SnMe}_{4} + 4 \text{ Sn}_{3}(\text{SnMe}_{3})_{3}(\text{thf})_{3}(\text{thf})_{3})_{3}(\text{thf})_{3}(\text{thf})_{3}(\text{thf})_{3}(\text{thf})_{3})_{3}(\text{thf})_$

This raises the possibility of use of dimethyltin(IV) compounds in the redox transmetallation synthesis of lan- $[E^0]$ complexes, though thanoid Ln elements $(Ln^{3+}+3e \rightarrow Ln) = -2.38 \rightarrow -2.30 \text{ V}$ are less electropositive than Ca $[E^0 (Ca^{2+} \rightarrow Ca + 2e) = -2.87 \text{ V}]$.^[11] We now report the successful preparation of both divalent and trivalent lanthanoid 3,5-diphenylpyrazolate complexes [Ln(Ph₂pz)_n- $(solv)_m$ (n = 2, 3; solv = dme, thf; m = 2, 3) by treating the newly synthesised [SnMe₂(Ph₂pz)₂] reagent with an excess of Ln metal. With two Ph₂pz groups per tin atom, $[SnMe_2(Ph_2pz)_2]$ is potentially a more effective pyrazolate transfer reagent than [SnMe₃(Ph₂pz)]. The study provides proof of concept for a new general synthetic method in lanthanoid metal-organic chemistry.

Results and Discussion

Synthesis and Structure of the [SnMe₂(Ph₂pz)₂] Reagent

The air- and moisture-sensitive $[SnMe_2(Ph_2pz)_2]$ complex was obtained by a metathesis reaction between $[Li(Ph_2pz)]$ and $SnMe_2Cl_2$ in Et₂O [Equation (7)].

The ¹H NMR spectrum in C₆D₆ shows the expected 6:22 ratio for Me/Ph₂pz protons. A single resonance at δ = 0.48 ppm is observed for the SnMe₂ moiety and shows two sets of tin satellites corresponding to the two tin isotopes, with the smaller coupling constant (J = 69 Hz) assigned to ¹¹⁷Sn and the larger (J = 72 Hz) to ¹¹⁹Sn. The ¹¹⁹Sn{¹H} NMR spectrum is consistent with the ¹H NMR spectrum, shows a single tin resonance at -8.1 ppm attributable to [SnMe₂(Ph₂pz)₂] and suggests a monomeric four-coordinate Sn^{IV} species.^[12-16] The IR spectrum is void of an NH stretching absorption attributable to Ph₂pzH at 3150–3300 cm⁻¹.

Crystals of [SnMe₂(Ph₂pz)₂(thf)] were obtained by recrystallisation from tetrahydrofuran. An X-ray crystalstructure determination shows a monomeric complex (Figure 1). The five-coordinate Sn^{IV} atom adopts a distorted trigonal-bipyramidal geometry, binding η^1 to two pyrazolate ligands [N(1)] and N(3), two carbon atoms of the methyl groups [C(37) and C(38)] and O(1) of the thf solvent molecule. Although the apical N(1)-Sn(1)-O(1) angle is near 180° (Table 1), the equatorial angles ($\Sigma = 352.28^{\circ}$) deviate considerably from 120°. The Sn(1)-N(1)/N(3) bond lengths of 2.142(3) and 2.092(2) Å, respectively, are close to the Sn-N bond length of four-coordinate SnMe₃(Ph₂pz) $[2.102(5) \text{ Å}]^{[12]}$ and to the Sn–N bond lengths reported for Sn compounds containing various N-heterocycles (for example some pyrazoles,^[17] tetrazolates,^[13] triazolates^[16] and thiodiazolates^[18]). Although Sn(1)...N(2) [2.986(2) Å] and Sn(1)...N(4) [2.913(2) Å] are within the sum of van der Waals radii of tin and nitrogen (3.6 Å), they are considered non-bonding and their proximity is solely due to the N–N connectivity of the pyrazolate ligand. This is supported by the N(2)–N(1)–Sn(1) [114.28(18)°] and N(4)–N(3)–Sn(1) [112.59(17)°] bond angles, both of which are close to the N(2)–N(1)–Sn(1) bond angle in [SnMe₃(Ph₂pz)] [115.7(4)°],^[12] in which Ph₂pz is also considered unidentate. Further, both pseudo bite angles N(1)–Sn(1)···N(2)

(6)

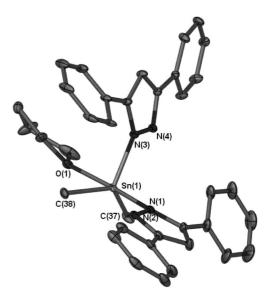


Figure 1. Molecular structure of $[SnMe_2(Ph_2pz)_2(thf)]$; ellipsoids are shown with 35% probability; hydrogen atoms are removed for clarity. Selected bond lengths [Å] and angles [°] for this structure are given in Table 1.

Table 1. Selected bond lengths [Å] and angles [°] for $[SnMe_2(Ph_2pz)_2-(thf)]$.

Bond lengths	
Sn(1)–N(1)	2.142(3)
$Sn(1) - N(2)^{[a]}$	2.986(2)
Sn(1)-N(3)	2.092(2)
$Sn(1) - N(4)^{[a]}$	2.913(2)
Sn(1) - C(37)	2.104(3)
Sn(1)-C(38)	2.111(3)
Sn(1)–O(1)	2.524(3)
Bond angles	
$\overline{N(3)-Sn(1)-N(1)}$	98.59(10)
N(3) - Sn(1) - C(37)	109.19(12)
N(3)-Sn(1)-C(38)	115.28(11)
C(37)-Sn(1)-N(1)	101.69(14)
C(38)-Sn(1)-N(1)	97.41(12)
N(1)-Sn(1)-O(1)	175.18(10)
C(37)-Sn(1)-C(38)	127.81(13)
N(2)-N(1)-Sn(1)	114.28(18)
N(3)-Sn(1)-O(1)	78.90(11)
C(37)-Sn(1)-O(1)	83.06(14)
C(38) - Sn(1) - O(1)	80.12(12)

[a] Considered nonbonding.

 $2 [Li(Ph_2pz)] + SnMe_2Cl_2 \xrightarrow{Et_2O} [SnMe_2(Ph_2pz)]$

 $[SnMe_2(Ph_2pz)_2] + 2 LiCl$

(7)

[24.88(7)°] and N(3)–Sn(1)····N(4) [25.90(6)°] are much smaller than the bite angles for η^2 -pyrazolate bonding, which are in the range 31–35°.^[4,6,7,12,19–21] The differences between the Sn(1)–N(1)/N(2) distance and the Sn(1)–N(3)/ N(4) distance, 0.84 and 0.82 Å respectively, are higher than the upper limit proposed for unsymmetrical η^2 coordination.^[22] The Sn(1)–O(1) bond length of 2.524(3) Å is rather long for a typical Sn–O bond, but is not unusual.^[23] The ¹¹⁹Sn NMR spectrum of the thf complex in C₆D₆ indicates dissociation of thf in solution.

Redox Transmetallation Reactions

Syntheses

 $[SnMe_2(Ph_2pz)_2]$ was treated with the rare-earth metals La, Sm, Eu and Yb in either dme [Equation (8)] or thf [Equation (9)] at room temperature to yield both divalent $[Ln(Ph_2pz)_2(dme)_2]$ (Ln = Sm, Eu, Yb) and trivalent $[Ln(Ph_2pz)_3(solv)_2]$ (Ln = La; solv = dme, Ln = Yb; solv = thf) complexes [Equation (8) and (9)].

Reactions of Sm and Eu metals required 3 d of stirring and/or sonication, respectively, and activation by mercury metal. An analogous reaction of Eu without activation by mercury gave a low yield. Reactions of Yb metal with $[SnMe_2(Ph_2pz)_2]$ in thf or dme with Hg activation were complete in 1 and 2 h, respectively, at room temperature. Without Hg activation, it was necessary to stir for 24 h followed by sonication for 3 and 1 h, respectively, for complete reaction. As an alternative to the use of mercury, activation with iodine^[2,24] was examined in the reaction between $[SnMe_2(Ph_2pz)_2]$ and La metal in dme, and complete reaction giving $[La(Ph_2pz)_3(dme)_2]$ was achieved in 4 d at room temperature *without stirring* and indicates the viability of this approach. In general, syntheses from $[SnMe_2(Ph_2pz)_2]$ and Ln metals [Equation (8) and (9)] gave good yields (60– 80%), comparable with those from redox transmetallation reactions between Ln metals and $[SnMe_3(Ph_2pz)]$ or $[Tl(Ph_2pz)]$ and from other methods (Table 2). Transfer of two Ph_2pz groups per heavy metal is an advantage over $[SnMe_3(Ph_2pz)]$ or $[Tl(Ph_2pz)]$, as is the faster reaction of Yb metal with $[SnMe_2(Ph_2pz)_2]$ than with the other two reagents.^[4,7]

There were some differences in outcomes between the present reactions [Equation (8) and (9)] and redox transmetallation reactions of [SnMe₃(Ph₂pz)] or [Tl(Ph₂pz)].^[6,7] Most notably, only crystals of cis-[Eu(Ph₂pz)₂(dme)₂] were obtained from the reaction of Eu metal with [SnMe2- $(Ph_2pz)_2$ (Table 2), whereas reactions with $[Tl(Ph_2pz)]$ or [SnMe₃(Ph₂pz)] gave only or predominantly (14 out of 15 *transoid*-[Eu(Ph₂pz)₂(dme)₂], respectively,^[4,6,7] crystals) {termed transoid rather than trans as cen[N(1)/N(2)]-Eu-cen[N(3)/N(4)] and cen[O(1)/O(2)]-Eu-cen[O(3)/O(4)]angles (cen[N/N'] and cen[O/O'] are centres of Ph₂pz N-N' bonds and dme $O \cdot \cdot \cdot O'$ vectors, respectively} are ca. 140° rather than 180°). Thus, this provides a rare example of geometric isomerism in lanthanoid chemistry (the first example of lanthanoid geometric isomers is cis- and trans- $[SmI_2(diglyme)_2]$ [diglyme = bis(2-methoxyethyl) ether^[25]), where the lability of lanthanoid complexes militates against their formation. Reactions of Sm metal with [Tl(Ph₂pz)]^[6] and [SnMe₃(Ph₂pz)]^[7] in thf yield [Sm(Ph₂pz)₃(thf)₃], whereas the present synthesis in dme yields [Sm(Ph2pz)2-(dme)₂] (Table 2), previously obtained only by metathesis or protolysis from divalent precursors.^[6]

The formation of a Yb^{II} complex in dme and Yb^{III} in thf suggested that $[Yb(Ph_2pz)_2(dme)_2]$ could be oxidised by $[SnMe_2(Ph_2pz)_2]$ in thf [Equation (10)], and this reaction was carried out at room temperature.

 $Ln + n/2 [SnMe_2(Ph_2pz)_2] \xrightarrow{\text{dme}} [Ln(Ph_2pz)_n(dme)_2] + n/2 "SnMe_2"$ (8) Yb + 3/2 [SnMe_2(Ph_2pz)_2] $\xrightarrow{\text{thf}} [Yb(Ph_2pz)_3(thf)_2] + 3/2 "SnMe_2"$ (9)

 $[SnMe_2(Ph_2pz)_2] + 2 [Yb(Ph_2pz)_2(dme)_2] \xrightarrow{\text{thf}} 2 [Yb(Ph_2pz)_3(thf)_2] + "SnMe_2" \quad (10)$

Table 2. Comparison of yields of $[Ln(Ph_2pz)_n(solv)_m]$ (*n*, *m* = 2, 3; solv = thf, dme) obtained from $[SnMe_2(Ph_2pz)_2]$ with yields from literature methods.^[a]

$[Ln(Ph_2pz)_n(solv)_m]$	Activation	Yield [%] from this work	Yield [%] from Ln + SnMe ₃ (Ph ₂ pz) (Hg activated) ^[7]	Yield [%] from other reported methods	Reported method
$[La(Ph_2pz)_3(dme)_2]$ $[Sm(Ph_2pz)_2(dme)_2]$	I ₂ Hg	79 77	82 ^[7]	77 ^[20] 62 ^[6]	$La/Ph_2pzH/Hg(C_6F_5)_2^{[20]}$ [K(Ph_2pz)]/SmI_2(thf)_2^{[6]}
$[Eu(Ph_2pz)_2(dme)_2]$	none Hg	33 ^{[b][c]} 77 ^[c]	88[7][d] 88[7][d]	30 [e][q] 30 [e][d]	$Eu/Tl(Ph_2pz)^{[6]}$ $Eu/Tl(Ph_2pz)^{[6]}$
[Yb(Ph ₂ pz) ₂ (dme) ₂]	none Hg	71 73	80 ^[7]	66 ^[4]	several ^[6]
$[Yb(Ph_2pz)_3(thf)_2]$	none	58	51 ^[7]	64 ^[26b]	Yb/Tl(Ph ₂ pz)+oxid. with $Tl(Ph_2pz)^{[26b]}$
	Hg	74			

[a] Syntheses in dme, except for the last two reactions, which were performed in thf. [b] Incomplete reaction. [c] *cis* isomer. [d] *transoid* isomer.

$$[Tl(Ph_2pz)] + [Yb(Ph_2pz)_2(dme)_2] \xrightarrow{(i) \text{ thf}} [Yb(Ph_2pz)_3(dme)] \cdot 0.5(dme) + Tl$$
(11)

$$2[Yb(Ph_2pz)_2(dme)_2] + [Hg(C_6F_5)_2] + 2Ph_2pzH \xrightarrow{(i) \text{ thf}} 2[Yb(Ph_2pz)_3(dme)] \cdot 0.5(dme) + 2C_6F_5H + Hg$$
(12)

In unpublished work by Delbridge,^[26a] a similar result was obtained when [Yb(Ph₂pz)₂(dme)₂] was treated with [SnMe₃(Ph₂pz)]. Repeating the reported oxidation of [Yb(Ph₂pz)₂(dme)₂] with [Tl(Ph₂pz)]^[26b] in thf [Equation (11)], followed by recrystallisation of [Yb(Ph₂pz)₃-(thf)₂] from dme, afforded [Yb(Ph₂pz)₃(dme)]·0.5dme in good yield. The same product was also obtained after [Yb(Ph₂pz)₂(dme)₂] was treated with stoichiometric amounts of [Hg(C₆F₅)₂] and Ph₂pzH in thf followed by recrystallisation from dme [Equation (12)].

Characterisation of the Lanthanoid Pyrazolate Complexes

Infrared data for all compounds confirm the absence of the NH functional group, with no absorption bands between 3150 and 3300 cm⁻¹, consistent with previously reported examples.^[4,6,7] For complexes for which NMR spectra were feasible, the NH resonance at ca. 10 ppm was absent. For the diamagnetic La³⁺ and Yb²⁺ species, the chemical shifts are in agreement with those reported.^[4,7] The ¹H NMR spectrum of the [Sm(Ph2pz)2(dme)2] complex in C_6D_6 shows the presence of both divalent and trivalent Smpyrazolate species, although the divalent complex is predominant and it is likely that the extremely air-sensitive [Sm(Ph₂pz)₂(dme)₂] oxidised slightly during preparation and handling of the solution. The identity of the divalent compound is supported by a unit cell determination and a UV/Vis spectrum, both consistent with reported values,^[6] and a Sm metal analysis. The ¹H NMR spectrum of *cis*- $[Eu(Ph_2pz)_2(dme)_2]$ is similar to that recorded for the transoid isomer^[7] and suggests a single species in solution or fast exchange between the isomers. The IR spectrum of $[Yb(Ph_2pz)_3(thf)_2]$ is in agreement with those reported for structurally uncharacterised $[Ln(Ph_2pz)_3(thf)_2]$ (Ln = Gd, Er, Y, Yb, Lu) complexes.^[27] A satisfactory ¹H NMR spectrum of the paramagnetic compound could not be obtained (grossly broadened), but single crystals of [Yb(Ph₂pz)₃- $(thf)_2$]·2C₆D₆ deposited and the structure was determined. The IR spectrum of the new complex $[Yb(Ph_2pz)_3(dme)]$. 0.5dme is similar to those of the $[Ln(Ph_2pz)_3(dme)_2]$ (Ln = La, Nd, Eu, Er)^[7,20] complexes, while the visible/near IR spectrum shows a weak absorption at 975 nm ($\varepsilon = 15$), which is consistent with Yb^{III}. No absorption band is seen near 350 nm, in contrast to the intense absorption band at 410 nm (ε = 744) for [Yb(Ph₂pz)₂(dme)₂].^[4] Satisfactory analyses were obtained, and the structure was established by X-ray crystallography. The structures of the two Yb complexes, $[Yb(Ph_2pz)_3(thf)_2] \cdot 2C_6D_6$ and $[Yb(Ph_2pz)_3(dme)] \cdot$ 0.5dme, are of importance, since they contrast previous structurally characterised thf and dme complexes of $Ln(Ph_2pz)_3$, which have the composition $[Ln(Ph_2pz)_3-(dme)_2]$ (Ln = La, Nd, Eu, Er)^[7,20] and $[Ln (Ph_2pz)_3(thf)_3]$ (Ln = La, Nd, Sm),^[7,21] respectively, in which the Ln metals are nine coordinate. Complexes with the composition [Ln (Ph_2pz)_3(thf)_2] have been obtained with the rare-earth metals (Ln = Sc, Gd, Er, Y, Yb, Lu),^[26b,27] but no structures have been determined.

The Sn Coproduct(s)

The ¹H NMR spectra of the crude products from reactions with La, Sm, Eu and Yb metals display multiple resonances corresponding to methyltin derivatives at around 0.66, 0.81-0.90 and 1.23-1.83 ppm, though the integrations are low when compared with those of the lanthanoid complexes. Comparison of the chemical shifts with those reported for plausible methyltin products (Table 3) suggests that species with SnMe₃ and SnMe₂ groups may be present.^[28,29] No resonances attributable to [SnMe₂(Ph₂pz)₂] were present, hence the reactant is fully consumed. After a separate reaction between Yb metal and [SnMe₂(Ph₂pz)₂], a sample of the reaction mixture diluted with C_6D_6 was examined by ¹¹⁹Sn{¹H} NMR spectroscopy. Four distinct resonances are observed, namely 1.8, -95.5, -97.4 and -108 ppm, which supports the presence of several products as indicated by the ¹H NMR spectra. The resonances at 1.8 and -108 ppm can be attributed to SnMe₄ and Sn₂Me₆ (confirmed by GC/MS), respectively,^[14,30] (Table 3). The resonances at -95.5 and -97.4 ppm are near the value (-95 ppm) reported for a Sn-Yb bonded complex, $[Yb{Sn(Nep)_3}_2(thf)_2]$ (Nep = 2,2-dimethylpropyl).^[31] A corresponding resonance in the ¹⁷¹Yb NMR spectrum near ca. 725 ppm was not observed, the sole signal being at δ = 488 ppm, which corresponds to $[Yb(Ph_2pz)_2(dme)_2]$.^[4] However, there may be a problem with detection, as the more sensitive ¹¹⁹Sn{¹H} resonances are of weak intensity. The chemical shifts at -95 and -97 ppm are also close to resonances for SnMe₃ reported for [SnMe₃]₂SnMe₂ or $(SnMe_3)_3SnMe$ (-99.5 and -89.5 ppm, respectively)^[32,33] (Table 3). However, despite a prolonged scan time (17 h), the corresponding SnMe₂ or SnMe resonances were not observed, nor were resonances attributable to $(SnMe_2)_6^{[34]}$ (-231 and/or -241 ppm). An energy dispersive analysis by X-rays (EDAX) on the metallic residue detected the presence of elemental Sn, in addition to excess Yb metal. The products are consistent with the transitory existence and decomposition of molecular SnMe₂ [Equation (13)],^[9a,9b]

the putative initial product of reactions (8) and (9), and they resemble those from reaction of Ca metal with $[SnMe_2(N(SiMe_3)_2)_2]$ [Equation (6)].

$$n''(\operatorname{SnMe}_2)'' \longrightarrow \operatorname{SnMe}_4 + \operatorname{Sn}_2\operatorname{Me}_6 + \operatorname{SnMe}_3X + \operatorname{SnMe}_3Y + \operatorname{Sn}$$
 (13)

Table 3. ¹H NMR and ¹¹⁹Sn{¹H} NMR chemical shifts [ppm] of some organotin(IV) compounds [119 Sn(1 H) chemical shifts relative to external SnMe₄].

	$\delta(^{1}H)$	$\delta(^{119}\text{Sn}\{^{1}\text{H}\})$
This work	0.63	-1.8
$Ln + [SnMe_2(Ph_2pz)_2]$	0.81-0.90	-95.5
	1.23-1.83	-97.4
		-108.0
Sn ₂ Me ₆	$0.20^{[46]}$	$-108.0^{[32]}$
$(SnMe_2)_n$	1.15-1.36 ^[29]	
$(SnMe_2)_6$	0.63 (conc.) ^[34]	-231.04 and/or -241 ^[34]
. 2,0	0.53 + 0.63 (dil.) ^[34]	
[SnMe ₃] ₄ Sn		-80 and -739 ^[32]
[SnMe ₃] ₃ SnMe		-89.5 and -489 ^[32]
[SnMe ₃] ₂ SnMe ₂		-99.5 and -261 ^[32]

The well documented pyrolysis of polymeric diethyltin gives similar products, viz. $SnEt_4$, Sn_2Et_6 , Sn and other species with $SnEt_n$ [(n = 1-3) groups].^[35]

Single-Crystal X-ray Studies – The Structures of *cis*- $[Eu(Ph_2pz)_2(dme)_2]$, $[Yb(Ph_2pz)_3(dme)]\cdot 0.5dme$ and $[Yb(Ph_2pz)_3(thf)_2]\cdot 2C_6D_6$

Single crystals of $[Sm(Ph_2pz)_2(dme)_2]$ and $[Yb(Ph_2pz)_2(dme)_2]$ were grown, and their unit cells (as determined by single-crystal X-ray diffraction) are in agreement with reported data^[4,6] (see Experimental Section). Although a crystalline product was obtained for $[La(Ph_2pz)_3(dme)_2]$ · dme, the material was not satisfactory for an X-ray crystal-lographic structure determination. However, the structures of the new Eu^{II} isomer *cis*-[Eu(Ph_2pz)_2(dme)_2], [Yb(Ph_2pz)_3-(dme)]·0.5dme and [Yb(Ph_2pz)_3(thf)_2]·2C_6D_6 were determined.

The structure of *cis*-[Eu(Ph₂pz)₂(dme)₂] has an eight-coordinate Eu atom with two chelating dme ligands and two chelating (η^2) pyrazolate ligands (Figure 2) and is isotypic with the reported [Yb(Ph₂pz)₂(dme)₂] analogue.^[4] The cen[N(1)/N(2)]–Eu–cen[N(3)/N(4)] (cen = centre of the N– N bond of the pyrazolate ligand) angle of 102.09° corresponds to a *cis* disposition of the pyrazolate ligands and is consistent with values (103–108°) observed for the *cis* Ln^{II} complexes [Yb(Ph₂pz)₂(dme)₂],^[4] [Sm(Ph₂pz)₂(dme)₂],^[6] [Eu(*t*Bu₂pz)₂(dme)₂]^[6] and [Yb(bind)₂(dme)₂] (*t*Bu₂pz = 3,5-di-*tert*-butylpyrazolate; bind = 4,5-dihydro-2*H*-benz[*g*]indazolate).^[6] In comparison, *transoid* Ln^{II} cen–Ln–cen angles are in the range 141–143°.^[6] Similarly, the present cen[O(1)/O(2)]–Eu–cen[O(3)/O(4)] angle is 95° and contrasts 140° for the *transoid* isomer. Both Ph₂pz ligands are nearly symmetrically chelating in the *cis* isomer with only a small divergence in Ln–N distances (0.01 and 0.05 Å). The η^2 -dme ligands have a slightly larger difference in Eu–O distances (0.05 and 0.07 Å), possibly because of steric hindrance imposed by the phenyl rings and the *cis* arrangement. Table 4 provides a comparison of selected key bond lengths and angles of the structures of the four divalent [Ln(Ph₂pz)₂(dme)₂] complexes. Crystallisation of *cis*-[Eu(Ph₂pz)₂(dme)₂] means that this isomer is established for all three normal divalent elements. However, Eu now provides a rare example of geometric isomerism for labile lanthanoid complexes. The Ln–N bond lengths in [Sm(Ph₂pz)₂(dme)₂]^[6] and the two [Eu(Ph₂pz)₂(dme)₂] isomers are comparable, whilst that of [Yb(Ph₂pz)₂(dme)₂] is smaller owing to the smaller ionic radius of Yb.^[36] Generally, the differ-

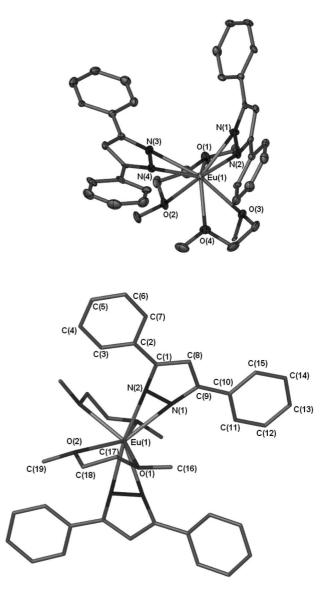


Figure 2. (top) X-ray crystal structure of *cis*-[Eu(Ph₂pz)₂(dme)₂]; ellipsoids shown at 40% probability; hydrogen atoms removed for clarity. Selected bond lengths [Å] and angles [°] for this structure are given in Table 4; (bottom) X-ray crystal structure of *transoid*-[Eu(Ph₂pz)₂(dme)₂];^[6] hydrogen atoms and Me groups of dme molecules are removed for clarity.

Table 4. Selected bond lengths [Å] and angles [°] for <i>cis</i> -[Ln(Ph ₂ pz) ₂ (dme) ₂] and <i>transoid</i> -[Eu(Ph ₂ pz) ₂ (dme) ₂]. ^[a]
--

	cis-[Sm(Ph ₂ pz) ₂ (dme) ₂] ^[6]	transoid-[Eu(Ph2pz)2(dme)2] ^[6]	cis-[Eu(Ph2pz)2(dme)2]	cis-[Yb(Ph2pz)2(dme)2][4]
Ln–N				
N1	2.556(3)	2.552(5)	2.520(7)	2.426(7)
N2	2.556(3)	2.582(4)	2.532(6)	2.414(7)
N3	2.538(3)	2.554(6)	2.512(7)	2.424(7)
N4	2.538(3)	2.536(6)	2.559(7)	2.430(7)
Ln-O				
01	2.720(7)	2.637(6)	2.606(5)	2.502(6)
O2	2.708(5)	2.660(5)	2.671(5)	2.558(7)
O3	2.551(4)	2.614(5)	2.575(4)	2.484(6)
O4	2.627(7)	2.684(5)	2.623(6)	2.576(7)
N–Ln-N				
N1–Ln–N2	31.07(8)	31.0(2)	31.55(15)	32.7(2)
N3–Ln–N4	30.99(10)	31.0(2)	31.34(16)	32.5(2)
O–Ln-O				
O1–Ln–O2	60.2(2)	63.5(2)	62.71(16)	65.2(2)
O3–Ln–O4	69.5(2)	62.9(2)	64.41(17)	65.6(2)

[a] N1–N4 and O1–O4 are generalised atom labels for literature compounds – Sm: N(11), N(11'), N(21), N(21'), O(102), O(105), O(202), O(205); *transoid*-Eu: N(111), N(112), N(211), N(212), O(102), O(105), O(202), O(205); Yb: N(11), N(12), N(21), N(22), O(31), O(31'), O(41), O(41').

ence is close to that expected,^[36] but in the case of Ln–O(4), the difference is only 0.05 Å. Although the two $[Eu(Ph_2pz)_2(dme)_2]$ isomers have similar Eu–N and Eu–O bond lengths (Table 4), the average Eu–N and Eu–O bond lengths for the *cis* isomer (2.53(2) and 2.62(4) Å, respectively) may be marginally shorter than those for the *transoid* [2.56(2) and 2.65(3) Å]. The overall position with the two isomers is that the *cis* isomer is somewhat distorted towards *trans* and the *transoid* isomer is considerably distorted towards the *cis* isomer. Thus, the geometric isomerism contrasts [SmI₂-(diglyme)₂], which forms normal *cis*- and *trans* isomers.

The Yb³⁺ ions in both [Yb(Ph₂pz)₃(thf)₂]·2C₆D₆ (Figure 3) and [Yb(Ph₂pz)₃(dme)]·0.5dme (Figure 4) are eight coordinate and are bonded in an η^2 -fashion by three pyrazolate ligands and two *transoid* thf molecules or a chelating dme molecule, respectively. The eight-coordinate Yb complexes contrast the previously reported nine-coordinate [Ln(Ph₂pz)₃(dme)₂] (Ln = Nd, Eu, Er)^[7,20,37] and ([Ln(Ph₂pz)₃(thf)₃] Ln = Nd^[21] or Sm^[7]) complexes and reflect the lanthanoid contraction. It is thus likely that [Ln(Ph₂pz)₃(thf)₂] (Ln = Y, Er and Lu)^[27] complexes have a similar structure to [Yb(Ph₂pz)₃(thf)₂]. In contrast to the nine-coordinate [Ln(Ph₂pz)₃(dme)₂] complexes of the light lanthanoids, eight coordination is observed in the polymeric [Nd(*t*Bu₂pz)₃(µ-dme)]_n complex,^[20] owing to the bulkier pyrazolate ligand.

The Yb–N bond lengths of $[Yb(Ph_2pz)_3(thf)_2]\cdot 2C_6D_6$ and $[Yb(Ph_2pz)_3(dme)]\cdot 0.5dme$ are remarkably similar (Table 5), given the contrasting nature of the two coordinating neutral ligands. η^2 -Pyrazolate binding is reasonably symmetric, with Yb–N bond length differences ranging from 0.014–0.087 {[Yb(Ph_2pz)_3(thf)_2]\cdot 2C_6D_6} and 0.09– 0.093 Å {[Yb(Ph_2pz)_3(dme)]\cdot 0.5dme}. The average Yb–N bond lengths, 2.310 {[Yb(Ph_2pz)_3(thf)_2]\cdot 2C_6D_6} and

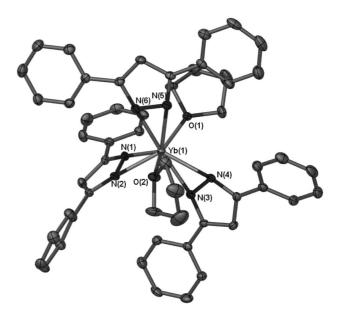


Figure 3. X-ray crystal structure of $[Yb(Ph_2pz)_3(thf)_2]$ · $2C_6D_6$; ellipsoids shown at 50% probability; hydrogen atoms removed for clarity. Selected bond lengths [Å] and angles [°] for this structure are given in Table 5.

2.305 Å {[Yb(Ph₂pz)₃(dme)]·0.5dme}, are 0.12 and 0.13 Å, respectively, shorter than the average Nd–N bond length of the eight-coordinate [Nd(tBu_2pz)₃(μ -dme)]_n complex^[20] and are very close to ionic radii differences.^[36] The O(1)–Yb–O(2) angle of 153.45(7)° in [Yb(Ph₂pz)₃(thf)₂]·2C₆D₆ is close to that of O(1)–Nd–O(3)^[21] in [Nd(tBu_2pz)₃(μ -dme)]_n [153.5(2)°],^[20] but is much larger than that of O(1)–Er–O(2) [140.1(4)°] in [Er(tBu_2pz)₃(thf)₂].^[38]

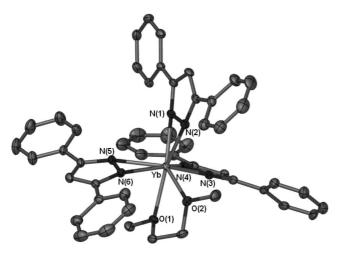


Figure 4. X-ray crystal structure of $[Yb(Ph_2pz)_3(dme)]$ ·0.5dme; ellipsoids shown at 20% probability. Selected bond lengths [Å] and angles [°] for this structure are given in Table 5.

Table 5. Selected bond lengths [Å] and angles [°] for $[Yb(Ph_2pz)_3-(thf)_2]^2C_6D_6$ and $[Yb(Ph_2pz)_3(dme)]^{\circ}0.5dme$.

	$[Yb(Ph_2pz)_3(thf)_2] \cdot 2C_6D_6$	[Yb(Ph ₂ pz) ₃ (dme)]·0.5dme
Bond lengths		
Yb–N(1)	2.291(2)	2.251(4)
Yb-N(2)	2.305(2)	2.347(4)
Yb-N(3)	2.274(2)	2.337(4)
Yb-N(4)	2.361(2)	2.282(4)
Yb-N(5)	2.352(2)	2.356(4)
Yb-N(6)	2.280(2)	2.266(4)
Yb-O(1)	2.3260(19)	2.404(3)
Yb–O(2)	2.357(2)	2.342(3)
Bond angles		
N(1)-Yb-N(2)	34.90(8)	34.44(12)
N(3)-Yb-N(4)	34.50(8)	34.80(13)
N(6)-Yb-N(5)	34.38(8)	34.28(12)
O(1)-Yb-O(2)	153.45(7)	68.33(11)

Observation of a Reaction Intermediate

A feature of reactions (8) and (9) is that they appear to proceed via an "intermediate" stage, where a white precipitate is formed 5-30 min after solvent addition. This "intermediate" then redissolved within 1 h [Yb/dme; Hg activation], 1 d [Yb/thf or Yb/dme; no Hg activation] or 3 d {La [I₂ activation, Eu and Sm (Hg activation)]}, which signifies reaction completion. Attempts were made to identify the "intermediate" species formed during the preparation of $[Eu(Ph_2pz)_2(dme)_2]$ and during the preparation of [La(Ph₂pz)₃(dme)₂]·dme. Lack of crystallinity and near insolubility in suitable NMR solvents hindered structural evaluation. The ¹H NMR spectra suggest the presence of SnMe and Ph₂pz moieties, but adsorption of soluble species in the precipitate is possible. The IR spectrum of the precipitate from the reaction with Eu differs from those of [SnMe₂(Ph₂pz)₂] and [Eu(Ph₂pz)₂(dme)₂], but shows features indicative of Ph₂pz and SnMe groups. An EDAX measurement on this product indicates the presence of Sn and Eu (2:1). It is possible that a dimetallic Sn/Ln intermediate is formed and then reacts further. In the redox transmetallation reaction between Ca and $[SnMe_2(N{Si-Me_3}_2)_2]$, a Ca/Sn complex $[Ca{Sn(SnMe_3)_3}_2(thf)_2]$ was obtained in addition to the target $[Ca(N{SiMe_3}_2)_2(thf)_2]$ compound^[10,39] [Equation (6)]. The very low solubility of this intermediate in any solvent suggests that it is polymeric in nature. An attempt to prepare a Sn/Ln pyrazolate dimetallic without redox, by reaction of $[SnMe_2(Ph_2pz)_2]$ with $[Nd(Ph_2pz)_3(thf)_3]$ -thf, was not successful.

Conclusions

This study further highlights the efficacy of organotin(IV) reagents in redox transmetallation reactions for the synthesis of rare-earth complexes. Treatment of the new reagent $[SnMe_2(Ph_2pz)_2]$ with Ln metals (Ln = La, Sm, Eu and Yb) enables the preparation of both divalent and trivalent Ln-pyrazolate complexes. A second geometric isomer (*cis*) of [Eu(Ph₂pz)₂(dme)₂] was characterised. This work complements the success of [SnMe₃(Ph₂pz)] in the synthesis of $Ln(Ph_2pz)_n$ (n = 2, 3) complexes.^[7] The yields of products obtained were comparable to those obtained from [SnMe₃(Ph₂pz)] and from other literature methods. However, reactions involving [SnMe₂(Ph₂pz)₂] occur faster than those of [SnMe₃(Ph₂pz)] and even [Tl(Ph₂pz)], especially with Yb metal, and have the advantages of transferring two Ph₂pz groups per Sn atom. The organotin product undergoes decomposition to form tin metal, Sn₂Me₆, SnMe₄, in addition to two other species. From oxidation reactions of [Yb(Ph₂pz)₂(dme)₂], the new crystallographically characterised [Yb(Ph₂pz)₃(thf)₂] and [Yb(Ph₂pz)₃(dme)] complexes were obtained.

Experimental Section

General Remarks: All reactions were carried out under dry nitrogen by using standard Schlenk and dry box equipment. Tetrahydrofuran and diethyl ether were freshly distilled from sodium/ benzophenone, while 1,2-dimethoxyethane was distilled from sodium. Infrared spectra (4000-650 cm⁻¹) were recorded as Nujol mulls with a Perkin-Elmer 1600 FTIR spectrophotometer. ¹H NMR spectra were recorded with a Bruker DPX 300 MHz spectrometer by using dry degassed deuterated benzene, and resonances were referenced to residual hydrogen from the solvent. ¹¹⁹Sn NMR spectra were obtained by using a Bruker DRX 400 spectrometer, and resonances were referenced to tetramethyltin. Metal analyses of the lanthanoid complexes were performed by EDTA titration with Xylenol Orange indicator following digestion in concentrated nitric and sulfuric acids unless indicated otherwise and buffering with hexamine.^[6] Microanalysis samples were sealed in glass ampoules under purified N2 and were determined by the Campbell Microanalytical service, University of Otago, New Zealand. EDAX (Energy Dispersive Analysis by X-rays) was used to qualitatively determine the presence of lanthanoid and tin metals in specific samples. Measurements were carried out by using a Joel JSM 840A scanning microscope in EDS mode. GC Mass spectra were obtained by using the Agilent 5973 spectrometer. Dimethyltin dichloride was purchased from Aldrich and used as is. 3,5-Diphenylpyr-

azole^[40] and bis(pentafluorophenyl)mercury^[41] were prepared by literature methods.

Preparation of [SnMe₂(Ph₂pz)₂]: [SnMe₂Cl₂] (1.50 g; 6.86 mmol) was added to a solution of [Li(Ph₂pz)] (3.09 g; 13.7 mmol) in Et₂O (50 mL), causing formation of a milky white suspension, which was stirred at room temperature overnight. After filtration through a filter cannula, the Et₂O was removed under vacuum. The white product was washed with hexane (40 mL). Yield: 2.91 g (72%). IR: $\tilde{v} = 1602$ (m), 1538 (w), 1268 (m), 1158 (m), 1111 (m), 1071 (m), 1026 (m), 955 (m), 798 (m), 758 (vs), 698 (s) cm⁻¹. ¹H NMR (300 MHz, C₆D₆, 25 °C): $\delta = 0.48$ (s, ${}^{2}J_{\text{H},117\text{Sn}} = 69$, ${}^{2}J_{\text{H},119\text{Sn}} =$ 72 Hz, 6 H, Me₂Sn), 6.79 [s, 2 H, H4 (pz)], 7.12 (t, 4 H, p-H), 7.34 (br. t, 8 H, m-H), 7.79 (br. s, 8 H, o-H). $^{119}Sn{^{1}H}$ NMR (149 MHz, C_6D_6 , 25 °C): $\delta = -8.1$ ppm. Crystals of $[SnMe_2(Ph_2pz)_2 -$ (thf)] were obtained after recrystallisation from thf. ¹H NMR (300 MHz, C₆D₆, 25 °C): δ = 0.49 (s, ²J_{H,117Sn} = 69, ²J_{H,119Sn} = 72 Hz, 6 H, Me₂Sn), 1.25-1.30 (m, 4 H, CH₂-thf), 3.34-3.47 (m, 4 H, OCH₂-thf), 6.74 [s, 2 H, H4(pz)], 7.12 (t, 4 H, p-H), 7.34 (br. t, 8 H, *m*-H), 7.77 (br. s, 8 H, *o*-H) ppm. ¹¹⁹Sn{¹H} NMR (149 MHz, C₆D₆, 25 °C): $\delta = -9.3$ ppm. For [SnMe₂(Ph₂pz)₂(thf)]: C₃₆H₃₆N₄OSn (659.38): calcd. C 65.57, H 5.50, N 8.49; found C 63.13, H 5.12, N 8.85. For unsolvated [SnMe₂(Ph₂pz)₂]: C32H28N4Sn (587.30): calcd. C 65.44, H 4.81, N 9.54; found C 63.13, H 5.12, N 8.85.

Redox Transmetallation Reactions with La, Sm and Eu

[La(Ph2pz)3(dme)2].dme

(a) Activation by I₂: dme (50 mL) was added by a cannula to a mixture of La metal filings (1.11 g; 8.03 mmol), $[SnMe_2(Ph_2pz)_2]$ (1.14 g; 1.94 mmol) and I₂ (\approx 0.1 g). The resulting deep-orange solution was allowed to stand at room temperature. Within 1 h of standing, the solution lightened to a light yellow, and after 6 h this colour was pale orange-yellow with crystalline white material forming. This product then redissolved after 4 d of standing when the solution was again deep orange. The filtrate was collected by a filter cannula, and the dme was concentrated to 15 mL, resulting in deep orange-yellow (microcrystalline) material. Yield 1.09 g (79%). The IR spectrum was identical with that reported for [La(Ph_2pz)_3-(dme)_2],^[7] and the ¹H NMR spectrum was also in agreement with that reported for [La(Ph_2pz)_3(dme)_2]·dme in C₆D₆.^[7] C₅₇H₆₃LaN₆O₆ (1067.05): calcd. La 13.02; found La 12.74.

(b) Activation by Hg: dme (40 mL) was added by a cannula to a mixture of La metal filings (0.55 g; 3.97 mmol), [SnMe₂(Ph₂pz)₂] (0.51 g; 0.87 mmol) and 1-2 drops of Hg. The resulting colourless solution was stirred at room temperature. A white precipitate appeared after 20 min and was still visible after 5 h. Approximately 5 mL of "intermediate suspension" was collected by a cannula, and dme was concentrated to 1 mL. ¹H NMR (300 MHz, diluted by C_6D_6 , 25 °C): $\delta = 0.31-1.81$ (multiple resonances) 7.15-7.19 (t, p-H), 7.24–7.30 (tr, m-H), 8.00–8.02 (br. d, o-H) ppm. ¹H NMR spectrum of sample exposed to air (300 MHz, 3:1 CD₃CN/C₆D₆, 25 °C): δ = 2.26 (br. s, H₂O), 3.27–3.38 (br. s, *CH*₃-dme), 3.52–3.53 (br. s, CH2-dme), 7.09 (s, H4), 7.44-7.71 (m, p-H, m-H), 7.82-8.01 (br. d, o-H), 11.62 (br. s, NH) ppm. The bulk reaction mixture was stirred for 2 d, after which time the precipitate had redissolved. The dme filtrate was collected by a filter cannula, and dme was concentrated to 5 mL, resulting in a white precipitate. The IR and ¹H NMR (in C_6D_6) spectra were consistent with that reported for $[La(Ph_2pz)_3(dme)_2]$ ·dme.^[7].

[Sm(Ph₂pz)₂(dme)₂]: dme (40 mL) was added by a cannula to a stirring mixture of [SnMe₂(Ph₂pz)₂] (0.24 g; 0.42 mmol), Sm metal powder (0.49 g; 3.25 mmol) and 1–2 drops of Hg. The pale-yellow

solution was stirred for 1 h, whereby after 15 min reaction time a precipitate had formed. The mixture was then placed in a sonication bath for a further 1 h and 30 min, but the precipitate was still present. The mixture was then stirred at room temperature for 2 d, resulting in a deep-yellow solution. After standing for 3 d, the solution had darkened to a deep colour. The filtrate was collected by a filter cannula, and the dme solution was concentrated to ca. 3 mL, yielding a dark sludgy precipitate, amongst which were a few single crystals. The IR spectrum was in agreement with that reported for $[Sm(Ph_2pz)_2(dme)_2]$.^[6] Visible/near IR (thf): $\lambda_{max}(\varepsilon) = 545$ (841, br.) nm. The ¹H NMR spectrum showed the presence of both trivalent $[Sm(Ph_2pz)_3(dme)_2]^{[4]}$ and divalent $[Sm(Ph_2pz)_2(dme)_2]^{[6]}$ species, with the latter dominant (300 MHz, C_6D_6 , 25 °C): δ = for [Sm(Ph₂pz)₂(dme)₂]: -9.67 (v br. s, H4), -4.43 (v br. s, o-H) (resonances too broad owing to paramagnetism for meaningful integration), 3.73 (br. s, 20 H, CH₂ and CH₃-dme), 5.22 (br. s, 4 H, p-H), 5.91 (br. s, 8 H, m-H) ppm; for $Sm(Ph_2pz)_3$ the pyrazolate resonances are: 7.46-7.96 (br. m, p- and m-H), 8.30 (br. s, H4), 9.12 (br. s, o-H). A unit cell for the purple crystals [orthorhombic, a =8.02(2), b = 24.39(14), c = 19.22(5) Å; V = 3762(10) Å³ was consistent with formation of [Sm(Ph2pz)2(dme)2]^[6] [orthorhombic, Pnma, $a = 7.9941(6), b = 24.263(3), c = 19.080(3) \text{ Å}; V = 3701 \text{ Å}^3$]. The metal analysis of the samarium complex was performed by EDTA titration with Xylenol Orange indicator following degradation with 4 м HCl and buffering with hexamine. C₃₈H₄₂N₄O₄Sm (769.12): calcd. Sm 19.54; found Sm 18.70 [For trivalent C53H53N6O4Sm (988.38): calcd. Sm 15.22; found Sm 18.70].

cis-[Eu(Ph2pz)2(dme)2]

(a) Without Activation by Mercury: dme (40 mL) was added by a cannula to a mixture of Eu metal pieces (0.77 g; 5.09 mmol) and [SnMe₂(Ph₂pz)₂] (0.33 g; 0.56 mmol). After 30 min of sonication, a murky peach-coloured solution was observed and a precipitate began to deposit. After 2 d of sonication, a yellow colour was observed with the precipitate still visible. The yellow solution was filtered by a filter cannula, and the precipitate was collected. The yellow filtrate was concentrated under reduced pressure, yielding yellow crystalline material (0.14 g, 33%). X-ray analysis on five crystals showed formation of the cis-[Eu(Ph2pz)2(dme)2] species. The IR spectrum agreed with that reported for transoid-[Eu(Ph2pz)2- $(dme)_2$].^[6] ¹H NMR (300 MHz, C₆D₆, 25 °C): $\delta = 0.28$ (br. m, 12 H, CH₃-dme), 0.63 (br. s, 8 H, CH₂-dme), 0.92 (br. s, 4 H, p-H), 1.34 (br. s, 18 H, H4, o-H,m-H) ppm. The precipitate was only barely soluble in available deuterated solvents (C_6D_6 , $CD_3C_6D_5$, C_2D_6OS , C_4D_8O), with the resulting NMR spectra inconclusive. However, no starting material [SnMe2(Ph2pz)2] was present. The IR was different from those of both starting material and the target $[Eu(Ph_2pz)_2(dme)_2]$ complex: $\tilde{v} = 1600$ (s), 1536 (m), 1512 (m), 1427 (s), 1400 (s), 1319 (w), 1295 (w), 1276 (w), 1224 (w), 1189 (m), 1152 (w), 1121 (w), 1078 (s), 1062 (vs), 1026 (s), 1000 (w), 980 (vs), 961 (s), 912 (s), 869 (m), 846 (w), 807 (m), 758 (vs), 707 (s), 682 (vs), 658 (w) cm⁻¹. EDAX showed 2:1 Sn/Eu ratio.

(b) With Activation by Mercury: dme (50 mL) was added by a cannula to a mixture of Eu metal pieces (0.87 g; 5.76 mmol), $[SnMe_2(Phpz)_2]$ (0.40 g; 0.68 mmol) and two Hg drops. An instant golden-yellow solution was obtained, with all $[SnMe_2(Ph_2pz)_2]$ dissolved. After 5 min of stirring at room temperature, a precipitate was seen, and the solution was a lemon-yellow colour. The mixture was stirred at room temperature for 2 d, after which time all the precipitate had redissolved giving a golden-yellow solution. Concentrating the filtrate resulted in crystalline material of $[Eu(Ph_2pz)_2(dme)_2]$. Yield: 0.40 g (77%). The IR and ¹H NMR spectra were as above for the $[Eu(Ph_2pz)_2(dme)_2]$ complex.^[6] C₃₈H₄₂EuN₄O₄

(770.73): calcd. Eu 19.72; found Eu 20.05. Single-crystal X-ray determination on three representative crystals of the bulk yellow crystals showed formation of the *cis*- $[Eu(Ph_2pz)_2(dme)_2]$ isomer.

[Yb(Ph2pz)2(dme)2]

(a) Activation by Hg: dme (40 mL) was added by a cannula to a mixture of [SnMe₂(Ph₂pz)₂] (0.62 g; 1.06 mmol), Yb metal filings (0.91 g; 5.26 mmol) and 2 drops of Hg. An orange colour was observed immediately. After 10 min of stirring, the initial orange colour lightened to a light-orange hue as a white precipitate began to form. This precipitate redissolved into solution after 2 h of stirring, causing the solution to deepen into a deep orange/red colour. The deep-coloured filtrate was collected by a filter cannula, and the dme solution was concentrated under vacuum to ca. 10 mL, resulting in deep-red crystalline material. Yield: 0.61 g (73%). A unit cell of these crystals [monoclinic, $P2_1/c$, a = 24.12(8), b = 18.53(6), c =7.63(3) Å; $\beta = 95.6(2)^{\circ}$, V = 3394(5) Å³] was in agreement with that reported for $[Yb(Ph_2pz)_2(dme)_2]^{[4]}$ [monoclinic, $P2_1/a$, a = 7.882(4), $b = 18.959(3), c = 24.080(14) \text{ Å}; \beta = 91.03(2)^{\circ}, V = 3598(3) \text{ Å}^3$]. This was also confirmed by the ¹H NMR and IR spectra, which were identical with those reported.^[4] $C_{38}H_{42}N_4O_4Yb$ (791.80): calcd. Yb 21.85; found Yb 21.51.

(b) Without Activation by Hg: dme (40 mL) was added by a cannula to a mixture of Yb metal filings (0.67 g; 3.89 mmol) and [SnMe₂(Ph₂pz)₂] (0.48 g; 0.82 mmol). A golden-yellow solution was observed after 5 min. As with mercury activation, a white precipitate appeared with progression of the reaction. The mixture was stirred overnight, after which time the colour had deepened to an orange colour with some precipitate still observed. The mixture was sonicated for 1 h, causing the remaining precipitate to dissolve, and the solution was orange-red. The filtrate was collected by a filter cannula and dme was concentrated to 10 mL, resulting in deep-red crystalline material. Yield 0.65 g (71%). The IR and ¹H NMR spectra of these crystals were identical with those reported for [Yb(Ph₂pz)₂(dme)₂].^[4] A unit cell on these crystals [monoclinic, $P2_1/a, a = 7.827(3), b = 18.835(6), c = 24.005(7) \text{ Å}; \beta = 91.17(3)^\circ,$ $V = 3538(1) \text{ Å}^3$ was in agreement with that reported for [Yb(Ph₂pz)₂(dme)₂].^[4] C₃₈H₄₂N₄O₄Yb (791.80): calcd. Yb 21.85; found Yb 22.44.

Analysis of [Yb(Ph₂pz)₂(dme)₂] Reaction Mixture (for Identification of Sn Coproducts): dme (15 mL) was added by a cannula to a mixture of Yb metal filings (0.98 g; 5.68 mmol), [SnMe₂(Ph₂pz)₂] (0.59 g; 1.01 mmol) and 1–2 drops of Hg. The resulting solution was stirred for 2 h, resulting in a deep-red solution. Samples of the reaction mixture were collected in the drybox for ¹¹⁹Sn and ¹⁷¹Yb NMR spectroscopy. ¹¹⁹Sn{¹H} NMR (149 MHz, C₆D₆, 25 °C): δ = 1.8, –95.5, –97.4, –108.0 ppm. ¹⁷¹Yb NMR: δ = 488.6 ppm. GC/ MS of the reaction mixture indicated formation of hexamethylditin (*m*/*z* 326, most intense peak of cluster with the correct isotope pattern).

[Yb(Ph₂pz)₃(thf)₂]

(a) Activation by Hg: thf (40 mL) was added by a cannula to a mixture of Yb metal filings (0.66 g; 3.81 mmol), $[SnMe_2(Ph_2pz)_2]$ (0.54 g; 0.93 mmol) and Hg (2 drops). An instant deep-orange colour was observed. The mixture was stirred for 1 h, after which time the resulting deep orange-red solution was filtered by a filter cannula. Upon concentration of the filtrate, the deep-coloured solution lightened gradually to a yellow solution, and very fine yellow crystalline material formed. These crystals were unsuitable for X-ray determination. The solvent thf was removed under vacuum, yielding a pale-yellow precipitate (0.43 g; 74%). The IR spectrum agreed with that of [Yb(Ph_2pz)_3(thf)_2].^[27] C₅₃H₄₉N₆O₂Yb (975.03): calcd.

Yb 17.74; found Yb 18.59. For loss of one thf molecule $C_{49}H_{41}N_6OYb$ (902.92): calcd. 19.16; found 18.59.

(b) Without Activation by Hg: thf (40 mL) was added by a cannula to a mixture of Yb metal filings (0.76 g; 4.40 mmol) and $[\text{SnMe}_2(\text{Ph}_2\text{pz})_2]$ (0.42 g; 0.72 mmol). No colour change was observed after 5 min. The solution was stirred overnight, after which time a white precipitate was observed. The mixture was placed in the sonication bath for 3 h. After 2 h of sonication, a deep-yellow colour was obtained, which deepened to deep orange-red after 3 h. The deep-coloured solution was allowed to settle and was then filtered by a filter cannula. As the solution was concentrated, the colour lightened to an orange colour. No crystals formed, and thf was removed under vacuum, yielding pale orange-yellow precipitate (0.27 g; 58%). The IR spectrum was in agreement with that of $[Yb(\text{Ph}_2\text{pz})_3(\text{thf})_2].^{[27]}$ For $C_{53}H_{49}N_6O_2Yb$ (975.03): calcd. Yb 17.74; found Yb 17.76.

[Yb(Ph₂pz)₃(thf)₂]·2C₆D₆: thf (10 mL) was added to [Yb(Ph₂pz)₂- $(dme)_2$ (0.14 g; 0.18 mmol) and $[SnMe_2(Ph_2pz)_2]$ (0.08 g; 0.13 mmol), and an instant orange-red solution was observed. The solution was stirred at room temperature for 2 d, after which time an orange solution was obtained. Concentration of the thf solution resulted in an orange precipitate. The IR spectrum of the orange precipitate was different to both starting materials and was similar to other reported $[Ln(Ph_2pz)_3(thf)_2]^{[27,41]}$ complexes: $\tilde{v} = 1601$ (m), 1574 (w), 1537 (w), 1511 (w), 1401 (m), 1294 (w), 1099 (br. s), 1059 (br. s), 1020 (br. s), 976 (m s), 915 (m), 866 (m), 792 (br. s), 754 (s), 706 (m), 688 (s), 668 (m) cm⁻¹. The ¹H NMR spectrum was attempted in C_6D_6 . However, due to the paramagnetic nature of Yb³⁺, a spectrum could not be obtained due to excessive broadening and shifting of the resonances. The NMR solution was returned to the dry box, and crystalline product [Yb(Ph₂pz)₃(thf)₂]·2C₆D₆ was obtained after allowing the C6D6 solution to slowly evaporate over time.

[Yb(Ph2pz)3(dme)].0.5dme

(a) Oxidation with [TI(Ph₂pz)]: [Tl(Ph₂pz)] (0.42 g; 1.00 mmol) was added to a thf solution (30 mL) of [Yb(Ph₂pz)₂(dme)₂] (0.79 g; 1.00 mmol), causing an immediate colour change from deep red to pale yellow and suspension of a grey solid. The solid was isolated and thf was removed under reduced pressure to give an off-white solid. The precipitate was recrystallised from dme to give yellow crystals of [Yb(Ph₂pz)₃(dme)]·0.5dme (0.74 g; 77%). IR: $\tilde{v} = 3060$ (m), 3036 (m), 1605 (m), 1512 (m), 1422 (w), 1408 (w), 1250 (w), 1191 (w), 1124 (m), 1108 (m), 1092 (m), 1072 (w), 1047 (s), 1021 (m), 974 (s), 909 (w), 861 (s), 803 (m), 761 (vs), 694 (vs), 683 (vs) cm⁻¹. Visible/near IR (thf): λ_{max} (ε) = 975 (15) nm. C₅₁H₄₈N₆O₃Yb (966.0): calcd. C 63.41, H 5.01, N 8.70, Yb 17.91; found C 62.74, H 5.28, N 8.56, Yb 17.50.

(b) Treatment with Ph₂pzH and [Hg(C₆F₅)₂]: Ph₂pzH (0.33 g; 1.50 mmol) and [Hg(C₆F₅)₂] (0.41 g; 0.75 mmol) were successively added to a thf solution (30 mL) of [Yb(Ph₂pz)₂(dme)₂] (1.19 g; 1.5 mmol) causing an immediate colour change (on addition of [Hg(C₆F₅)₂]) from deep red to pale yellow and suspension of a grey solid. After filtration thf was removed under reduced pressure to give an off-white solid, which was recrystallised from dme to give large yellow crystals of [Yb(Ph₂pz)₃(dme)]·0.5dme (1.16 g; 80%). The IR spectrum was the same as that obtained in method a. C₅₁H₄₈N₆O₃Yb (966.0): calcd. Yb 17.91; found Yb 17.50. Single crystals suitable for X-ray were grown at -20 °C from a saturated solution in dme.

Reaction of [Nd(Ph₂pz)₃(thf)₃]·thf with [SnMe₂(Ph₂pz)₂] in thf: thf (10 mL) was added by a cannula to a mixture of [SnMe₂(Ph₂pz)₂]

(0.13 g; 0.22 mmol) and [Nd(Ph₂pz)₃(thf)₃]·thf (0.44 g; 0.40 mmol), and the resulting mixture was stirred at room temperature for 1 h. Concentration of the thf solution resulted in pale-blue crystalline material. A unit cell of these crystals [orthorhombic, $P2_12_12_1$, a = 14.13(2), b = 16.11(1), c = 22.61(2) Å; V = 5147(8) Å³] was in agreement with that of [Nd(Ph₂pz)₃(thf)₃]·thf^[21] [orthorhombic, $P2_12_12_1$, a = 14.009(9), b = 16.280(8), c = 22.640(16) Å; V = 5163(5) Å], indicating no reaction. The IR and ¹H NMR spectra both agreed with data for [Nd(Ph₂pz)₃(thf)₃]·thf.^[21]

X-ray Crystallography: Crystalline samples of [SnMe₂(Ph₂pz)₂-(thf)], $[Eu(Ph_2pz)_2(dme)_2]$, $[Yb(Ph_2pz)_2(dme)].0.5dme$ and [Yb-(Ph₂pz)₃(thf)₂]·2C₆D₆ were mounted on glass fibres in viscous hydrocarbon oil. Crystal data were collected by using the Bruker ApexII diffractometer, equipped with monochromated Mo- K_{α} radiation, $\lambda = 0.71073$ Å. All data were collected at 123 K, maintained by using an open flow of nitrogen from an Oxford Cryostreams cryostat. X-ray data were processed by using the SAINT^[42] package (Bruker). Structural solution and refinement was carried out by using SHELXS-97^[43] and SHELXL-97^[44] utilising the graphical interface X-Seed.^[45] For [SnMe₂(Ph₂pz)₂(thf)], the thf molecule showed signs of disorder and was successfully modelled over two positions. Crystal data and refinement parameters for all complexes are compiled below. CCDC-676346, -676347, -676348 and -676463 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

[SnMe₂(Ph₂pz)₂(thf)]: C₃₆H₃₆N₄OSn, M = 659.38, colourless block, 0.25×0.18×0.16 mm, monoclinic, space group $P2_1/n$ (No. 14), a = 11.3424(3), b = 17.1623(4), c = 16.4613(3) Å, $\beta = 102.7590(10)^\circ$, V = 3125.26(12) Å³, Z = 4, $D_c = 1.401$ g/cm³, $2\theta_{max} = 55.0^\circ$, 80348 reflections collected, 7176 unique ($R_{int} = 0.0353$). Final *GooF* = 1.12, $R_1 = 0.042$, $wR_2 = 0.083$, R indices based on 6810 reflections with $I > 2\sigma(I)$ (refinement on F^2), 382 parameters, 0 restraints. L_p and absorption corrections applied, $\mu = 0.85$ mm⁻¹.

cis-[Eu(Ph₂pz)₂(dme)₂]: C₃₈H₄₂EuN₄O₄, M = 770.72, yellow block, 0.20×0.15×0.12 mm, monoclinic, space group $P2_1/c$ (No. 14), a = 23.894(4), b = 18.840(3), c = 7.8584(13) Å, $\beta = 90.163(5)^\circ$, V = 3537.7(10) Å³, Z = 4, $D_c = 1.447$ g/cm³, $2\theta_{max} = 55.0^\circ$, 62824 reflections collected, 8129 unique ($R_{int} = 0.0633$). Final *GooF* = 1.248, $R_1 = 0.048$, $wR_2 = 0.105$, R indices based on 7686 reflections with $I > 2\sigma(I)$ (refinement on F^2), 425 parameters, 24 restraints. L_p and absorption corrections applied, $\mu = 1.82$ mm⁻¹.

[Yb(Ph₂pz)₃(thf)₂]·2C₆D₆: C₆₅H₆₁N₆O₂Yb, M = 1131.24, colourless block, $0.10 \times 0.08 \times 0.07$ mm, monoclinic, space group $P2_1/c$ (No. 14), a = 15.5107(3), b = 10.1644(2), c = 34.8291(6) Å, $\beta = 100.9280(10)^\circ$, V = 5391.48(18) Å³, Z = 4, $D_c = 1.394$ g/cm³, $2\theta_{max} = 55.0^\circ$, 64783 reflections collected, 12379 unique ($R_{int} = 0.0414$). Final *GooF* = 1.085, $R_1 = 0.034$, $wR_2 = 0.063$, R indices based on 10378 reflections with $I > 2\sigma(I)$ (refinement on F^2), 667 parameters, 0 restraints. L_p and absorption corrections applied, $\mu = 1.79$ mm⁻¹.

[Yb(Ph₂pz)₃(dme)]·0.5dme: C₅₁H₄₈N₆O₃Yb, M = 965.99, yellow prism, $0.52 \times 0.48 \times 0.28$ mm, monoclinic, space group $P2_1/c$ (No. 14), a = 11.401(11), b = 14.769(8), c = 27.594(18) Å, $\beta = 102.74(6)^{\circ}$, V = 4532(6) Å³, Z = 4, $D_c = 1.416$ g/cm³, $2\theta_{max} = 50^{\circ}$, 7962 unique reflections measured. Final *GooF* = 1.14, RI = 0.033, wR2 = 0.100, R indices based on 6938 reflections with $I > 2\sigma(I)$ (refinement on F^2), 581 parameters, 0 restraints. L_p and absorption corrections applied, $\mu = 2.1$ mm⁻¹. *Variata*: A unique data set was acquired at ca. 293 K by using a single counter instrument.

Acknowledgments

The authors gratefully acknowledge the financial support of the Australian Research Council and for support received from the Monash University Postgraduate Publications Award.

- [1] M. N. Bochkarev, L. N. Zakharov, G. S. Kalinina, Organoderivatives of the Rare Earth Elements, Kluwer, Dordrecht, 1995; D. C. Bradley, R. C. Mehrotra, I. P. Rothwell, A. Singh, Alkoxo and Aryloxo Derivatives of Metals, Academic Press, London, 2001; G. B. Deacon, A. J. Koplick, W. D. Raverty, D. G. Vince, J. Organomet. Chem. 1979, 182, 121-141; G. B. Deacon, W. D. Raverty, D. G. Vince, J. Organomet. Chem. 1977, 135, 103-114; G. B. Deacon, D. G. Vince, J. Organomet. Chem. 1976, 112, C1-C2; F. T. Edelmann, in Comprehensive Organometallic Chemistry, vol. 4 (Eds.: G. Wilkinson, F. G. A. Stone, E. W. Abel), Pergamon, Oxford, 1995; F. T. Edelmann, in Comprehensive Organometallic Chemistry II, vol. 4 (Eds.: E. W. Abel, F. G. A. Stone, G. Wilkinson), Pergamon, Oxford, 1995; F. T. Edelmann, "Complexes of Group 3 and Lanthanide Elements" in Comprehensive Organometallic Chemistry III, vol. 4 (Eds.: D. M. Mingos, R. H. Crabtree), Elsevier, 2007; C. M. Forsyth, G. B. Deacon, Organometallics 2000, 19, 1205-1207; H. Schumann, J. A. Meese-Marktscheffel, L. Esser, Chem. Rev. 1995, 95, 865-986.
- [2] L. N. Bochkarev, T. A. Stepantseva, L. N. Zakharov, G. K. Fukin, A. I. Yanovsky, Y. T. Struchkov, *Organometallics* 1995, 14, 2127–2129.
- [3] G. B. Deacon, G. D. Fallon, C. M. Forsyth, H. Schumann, R. Weimann, *Chem. Ber./Recueil* 1997, 130, 409–415.
- [4] G. B. Deacon, E. E. Delbridge, B. W. Skelton, A. H. White, *Eur. J. Inorg. Chem.* 1998, 543–545.
- G. B. Deacon, A. Dietrich, C. M. Forsyth, H. Schumann, An-[5] gew. Chem. Int. Ed. Engl. 1989, 28, 1370-1371; G. B. Deacon, A. Dietrich, C. M. Forsyth, H. Schumann, Angew. Chem. 1989, 101, 1374–1375; G. B. Deacon, T. Feng, P. MacKinnon, R. H. Newnham, S. Nickel, B. W. Skelton, A. H. White, Aust. J. Chem. 1993, 46, 387-399; G. B. Deacon, T. Feng, S. Nickel, M. I. Ogden, A. H. White, Aust. J. Chem. 1992, 45, 671-683; G. B. Deacon, C. M. Forsyth, B. M. Gatehouse, A. Philosof, B. W. Skelton, A. H. White, P. A. White, Aust. J. Chem. 1997, 50, 959–970; G. B. Deacon, C. M. Forsyth, R. H. Newnham, T. D. Tuong, Aust. J. Chem. 1987, 40, 895-906; G. B. Deacon, P. B. Hitchcock, S. A. Holmes, M. F. Lappert, P. MacKinnon, R. H. Newnham, J. Chem. Soc., Chem. Commun. 1989, 935-937; G. B. Deacon, A. J. Koplick, T. D. Tuong, Aust. J. Chem. 1984, 37, 517-525; G. B. Deacon, G. N. Pain, T. D. Tuong, Inorg. Synth. 1990, 28, 291-297; G.Y. Lin, T.W. Wong, J. Organomet. Chem. 1995, 495, 203-208; G. Y. Lin, T. W. Wong, J. Organomet. Chem. 1996, 523, 93-98.
- [6] G. B. Deacon, E. E. Delbridge, B. W. Skelton, A. H. White, *Eur. J. Inorg. Chem.* 1999, 751–761.
- [7] S. Beaini, G. B. Deacon, M. Hilder, P. C. Junk, D. R. Turner, *Eur. J. Inorg. Chem.* 2006, 3434–3441.
- [8] B. Cetinkaya, P. B. Hitchcock, M. F. Lappert, R. G. Smith, J. Chem. Soc., Chem. Commun. 1992, 932–934.
- [9] a) A. G. Davies, "Tin" in Comprehensive Organometallic Chemistry II, vol. 11 (Eds.: E. W. Abel, F. G. A. Stone, G. Wilkinson), Pergamon, Oxford, 1995; b) A. G. Davies, P. W. Smith, "Tin" in Comprehensive Organometallic Chemistry I, vol. 2 (Eds.: G. Wilkinson, F. G. A. Stone, E. W. Abel), Pergamon, Oxford, 1982; c) P. Oulié, N. Brefuél, L. Vendier, C. Duhayon, M. Etienne, Organometallics 2005, 24, 4306–4314.
- [10] M. Westerhausen, *Dalton Trans.* 2006, 4755–4768; M. Westerhausen, J. Greul, H.-D. Hausen, W. Schwarz, *Z. Anorg. Allg. Chem.* 1996, 622, 1295–1305.
- [11] F. A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry: A Comprehensive Text, John Wiley & Sons, New York, 1999.

- [12] G. B. Deacon, E. E. Delbridge, C. M. Forsyth, P. C. Junk, B. W. Skelton, A. H. White, *Aust. J. Chem.* **1999**, *52*, 733–739.
- [13] M. S. Hill, P. B. Hitchcock, N. Smith, *Polyhedron* **2004**, *23*, 801–807.
- [14] J. C. Martins, M. Biesemans, R. Willem, Prog. Nucl. Magn. Reson. Spectrosc. 2000, 36, 271–322.
- [15] J. L. Wardell, G. M. Spencer, "Tin: Organometallic Chemistry", in *Encyclopedia of Inorganic Chemistry* (Ed.: R. B. King), New York, Wiley, **2006**.
- [16] H.-X. Yu, J.-F. Ma, G.-H. Xu, S.-L. Li, J. Yang, Y.-Y. Liu, Y.-X. Cheng, J. Organomet. Chem. 2006, 691, 3531–3539.
- [17] S. K. Lee, B. K. Nicholson, J. Organomet. Chem. 1986, 309, 257–265; S. Calogero, G. Valle, P. Cecchi, G. G. Lobbia, Polyhedron 1996, 15, 1465–1471; M. Austin, K. Gebreyes, H. G. Kuivila, K. Swami, J. A. Zubieta, Organometallics 1987, 6, 834–842; C. H. Dungan, W. Maringgele, A. Meller, K. Niedenzu, H. Nöth, J. Serwatowska, J. Serwatowski, Inorg. Chem. 1991, 30, 4799–4806; K. Niedenzu, H. Nöth, J. Serwatowska, J. Serwatowski, Inorg. Chem. 1991, 30, 3249–3254.
- [18] C. Ma, F. Li, Q. Jiang, R. Zhang, J. Organomet. Chem. 2004, 689, 96–104; C. Ma, J. Zhang, F. Li, R. Zhang, Eur. J. Inorg. Chem. 2004, 2775–2783.
- [19] G. B. Deacon, E. E. Delbridge, B. W. Skelton, A. H. White, Angew. Chem. Int. Ed. 1998, 37, 2251–2252; J. E. Cosgriff, G. B. Deacon, Angew. Chem. Int. Ed. 1998, 37, 286–287.
- [20] J. E. Cosgriff, G. B. Deacon, G. D. Fallon, B. M. Gatehouse, H. Schumann, R. Weimann, *Chem. Ber.* **1996**, *129*, 953–958.
- [21] J. E. Cosgriff, G. B. Deacon, B. M. Gatehouse, Aust. J. Chem. 1993, 46, 1881–1896.
- [22] G. B. Deacon, E. E. Delbridge, D. J. Evans, R. Harika, P. C. Junk, B. W. Skelton, A. H. White, *Chem. Eur. J.* 2004, 10, 1193–1204; H. Nöth, H. Sachdev, M. Schmidt, H. Schwenk, *Chem. Ber.* 1995, 128, 105–113; W. Zheng, M. J. Heeg, C. H. Winter, *Angew. Chem. Int. Ed.* 2003, 42, 2761–2764.
- [23] E. R. T. Tiekink, *Appl. Organomet. Chem.* **1991**, *5*, 1–23; A search of the CSD revealed 281 structures involving Sn–O bond lengths greater or equal to 2.50 Å, CSD version 5.28 (November 2006), Conquest Version 1.9, date accessed June 11, **2007**.
- [24] G. Z. Suleimanov, T. K. Kurbanov, Y. A. Nuriev, L. F. Rybakova, I. P. Beletskaya, *Dokl. Akad. Nauk SSSR* 1982, 265, 896.
- [25] V. Chebolu, R. R. Whittle, A. Sen, *Inorg. Chem.* 1985, 24, 3082–3085; A. Sen, V. Chebolu, A. L. Rheingold, *Inorg. Chem.* 1987, 26, 1821–1823.
- [26] a) E. E. Delbridge, Ph. D. Thesis, Monash University, 1999; b)
 G. B. Deacon, C. M. Forsyth, A. Gitlits, B. W. Skelton, A. H. White, *Dalton Trans.* 2004, 1239–1247.

- [27] J. E. Cosgriff, G. B. Deacon, B. M. Gatehouse, P. R. Lee, H. Schumann, Z. Anorg. Allg. Chem. 1996, 622, 1399–1403.
- [28] T. Imori, V. Lu, H. Cai, T. D. Tilley, J. Am. Chem. Soc. 1995, 117, 9931–9940.
- [29] T. Azemi, Y. Yokoyama, K. Mochida, J. Organomet. Chem. 2005, 690, 1588–1593.
- [30] T. N. Mitchell, G. Walter, J. Chem. Soc. Perkin Trans. 2 1977, 1842–1847.
- [31] F. G. N. Cloke, C. I. Dalby, P. B. Hitchcock, H. Karamallakis, G. A. Lawless, J. Chem. Soc., Chem. Commun. 1991, 779–781.
- [32] W. Biffar, T. Gasparis-Ebeling, H. Nöth, W. Storch, B. Wrackmeyer, J. Magn. Reson. 1981, 44, 54–61.
- [33] J. D. Kennedy, W. McFarlane, J. Chem. Soc., Dalton Trans. 1976, 1219–1223.
- [34] B. Watta, W. P. Neumann, J. Sauer, Organometallics 1985, 4, 1954–1957.
- [35] Organotin Compounds (Ed.: A. K. Sawyer), vol. 1–3, Marcel Dekker, New York, 1971; H. Gilman, W. H. Atwell, F. K. Cartledge, Adv. Organomet. Chem. 1966, 4, 1–94; K. Sisido, S. Kozima, T. Isibasi, J. Organomet. Chem. 1967, 10, 439–445.
- [36] R. D. Shannon, Acta Crystallogr. Sect. A 1976, 32, 751–767.
- [37] G. B. Deacon, E. E. Delbridge, G. D. Fallon, C. Jones, D. E. Hibbs, M. B. Hursthouse, B. W. Skelton, A. H. White, *Organometallics* 2000, 19, 1713–1721.
- [38] J. E. Cosgriff, G. B. Deacon, B. M. Gatehouse, H. Hemling, H. Schumann, Aust. J. Chem. 1994, 47, 1223–1235.
- [39] M. Westerhausen, Angew. Chem. Int. Ed. Engl. 1994, 33, 1493– 1495.
- [40] J. Elguero, E. Gonzalez, R. Jacquier, Bull. Soc. Chim. Fr. 1968, 707–713.
- [41] G. B. Deacon, J. E. Cosgriff, E. T. Lawrenz, C. M. Forsyth, D. L. Wilkinson in *Hermann-Brauer Synthetic Methods of Or*ganometallic and Inorganic Chemistry (Ed.: W. A. Herrmann), vol. 6 (Ed.:F. T. Edelmann), Thieme, Stuttgart, **1997**, p. 48.
- [42] SAINT is part of the ApexII software package, Bruker AXS, Madison, WI, USA.
- [43] G. M. Sheldrick, SHELXS-97, University of Göttingen, Germany, 1997.
- [44] G. M. Sheldrick, SHELXL-97, University of Göttingen, Germany, 1997.
- [45] L. J. Barbour, J. Supramol. Chem. 2003, 1, 189-191.
- [46] T. L. Brown, G. L. Morgan, Inorg. Chem. 1963, 2, 736–740.

Received: June 26, 2008 Published Online: September 4, 2008

4596 www.eurjic.org